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Maximilian Schäfer, Friedrich-Alexander Universität Erlangen-Nürnberg

Jiri Schimmel, Brno University of Technology

Rod Selfridge, Edinburgh Napier University
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Welcome to DAFx23!

This year the DAFx conference responds to the tireless creativity our community with a lot of novelty. By
substantially shortening oral presentations in favour of a prolonged discussion after each session, and by
considering late breaking results whenever a team of researchers proposed an ongoing yet convincing idea,
the 2023 edition disrupts the traditional setting. Additionally, the logo, which was established as early as 1998
for the first conference edition in Barcelona, has been renovated. With its five thematic oral sessions, a poster
session, a session including demos and late breaking results, two mindopening keynotes and one special
session animated by the industry, DAFx23 testifies the continuously increasing interest for digital audio effects
as flagship products, squeezing the best from what acoustics, virtual analog, software engineering and product
design can offer today. In these proceedings the interested reader in fact will discover unexpectedly rich and
advanced applications of sound wave theory, musical circuit modelling, artificial intelligence for music, high-
performance algorithms, software coding, real-time programming, human-computer interaction and subjective
evaluation, to mention some.

The social part further revolutionises the get together at the conference hall, the breaks and the social events:
we will be invited to extend our discussions and to follow off-events later in the evening, yet without setting the
alarm clock just in time as yoga early morning sessions will be organised to engage us, and optimally set our
minds to receive the science to come next across the day.

And, last but not least, let us not miss the chance to submit an extended version of our research to the special
issue on Directions of Digital Audio Effects, to appear on the EURASIP Journal of Audio, Speech and Music
processing under the editorial supervision of Stefania Serafin, Federico Fontana and Silvin Willemsen.

Twenty-five years have passed since the first edition in Barcelona, and DAFx shines younger than ever. So,
loud and again, welcome to DAFx23!

Stefania, Federico, Silvin
Copenhagen, September 2023
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Keynotes

Sustainable perceptual evaluation for digital audio applications: moti-
vation, methods, and best practice

Hanna Järveläinen, Zurich University of the Arts

Listener tests are a standard, partly even standardized, procedure in the development of new audio technology.
This kind of testing is often carried out to measure the degradation of perceived audio quality. Experimental
research with participants is also performed in basic and applied psychoacoustic research, user experience
studies with digital musical instruments and interfaces, and in designing applications for special groups. Within
the DAFx community, methods from the audio testing field are presently most widely used. However, long-
term development requires considering the end user both in passive perception and active interaction, often
in multisensory, ecological, or creative settings. The presentation will discuss state-of-the art procedures and
analysis methods that could contribute to digital audio research in this challenging environment.

Linking Sound, Morphology and Perception: Towards a Language of
Sound

Mitsuko Aramaki, CNRS – Aix-Marseille University

The Sciences of Sound and Music have considerably grown notably thanks to the development of digital audio
processing. Today, we have numerous synthesis tools, models and methods for sound creation to generate
sounds of impressive realism. However, the perceptual control of these synthesis processes remains a current
challenge. Based on the ecological approach to perception, a synthesis control paradigm enabling the creation
of sounds from evocations has been proposed and led to the development of environmental sound synthesizers
which can be directly controlled from perceptual attributes. In this talk, we will present the methodology through
a series of perceptual studies to better understand the relationship between sound morphology and human
perception for synthesis purposes with an interdisciplinary perspective.
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Tutorials

Virtualization of Acoustic Transducers based on Direct and Inverse Cir-
cuital Modeling

Alberto Bernardini, Politecnico di Milano

Audio systems can be often accurately described using equivalent circuit models that are capable to represent
their behavior in multiple physical domains (e.g., electrical, magnetic, mechanical, acoustic) in a unified fashion.
Moreover, such models allow us to efficiently emulate audio systems in the digital domain by employing circuit
simulation methods. In this tutorial, we will highlight a further advantage of representing audio systems using
circuits. In fact, we will show how, given an audio system represented as a circuit with input and output
signals, it is possible to design the corresponding inverse circuital system. As a first example of application of
this inverse system design approach, we will describe a method for loudspeaker virtualization through digital
audio signal preprocessing. This method can be used to alter the behavior of a physical loudspeaker in such
a way to match that of a target loudspeaker. Special cases of this approach are loudspeaker linearization
and equalization. The proposed virtualization algorithm is extensively tested both through simulations and
applications to real loudspeakers. Moreover, we will show how a similar reciprocal approach can be used for
the virtualization of acoustic sensors, like microphones or guitar pickups. Finally, further possible examples of
application and related future research works are discussed.

Performance analysis of DSP algorithms

Stefano D’Angelo, Orastron Srl

Performance analysis of DSP algorithms in scientific literature is usually limited to counting the number and
type of operations involved and sometimes determining their algorithmic complexity. While these metrics are
important, they can only give a rough idea on the computational cost of actual implementations. This tutorial
touches on theoretical and practical aspects of trying to achieve high-performance when implementing DSP
algorithms on modern platforms, such as computer architectures, instruction sets, operating systems, and
numerical analysis.

Recent developments in Topological Signal Processing

Georg Essl, University of Wisconsin-Milwaukee

This workshop will present recent developments in Topological Signal Processing that spring from combinato-
rial Hodge theory. Graph and simplicial versions of frequency analysis and filter constructions have emerged
in this framework. We will cover combinatorial Hodge theory and its relationship to Homology and classical
vector calculus. We then develop graph signal processing and basic notions such as the graph Fourier trans-
form. Finally, we will extend these ideas to arrive at simplicial signal processing, which is a topological version
of higher dimensional signal processing.
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Workshops

Applying Machine Learning to Virtual Analog Modeling

Boris Kuznetsov, TikTok UK

How do we apply advances in the machine learning and deep learning fields to the discipline of classical signal
processing and virtual analog modeling? We will talk about how you can use machine learning to both help
you design and iterate on virtual analog models faster and how to potentially replace entire subsets of your
work with deep learning.

Daisy Dub Hackathon for Digital Audio Effects Enthusiasts and DSP
developers (Max/gen, Rust, C++, PureData, Arduino)

Rasmus Kjærbo & Leo Fogadić, Componental

Join us for an exhilarating hackathon workshop centered around the groundbreaking Daisy Dub pre-production
prototype: the ultimate swiss army knife tailored for music producers, DSP developers, and DJs. Dive into
the expansive world of quadrophonic real-time audio engineering and live performance and experience the
processing power of Electro-Smith’s Daisy Seed DFM module.

Co-designing Tactile Experiences for Musical Creativity

Doga Buse Cavdir, Multisensory Experience Lab, Aalborg University

This design workshop invites all participants to co-create new mappings for audio-tactile languages. The
workshops will introduce and demo new haptic interfaces while developing discussions on the relationships
between vibrotactile stimuli and music. During this two-part workshop, we hope to explore the relationships
between musical and tactile communications and identify new frameworks which allow Deaf/Hard of Hearing
(DHH) individuals to learn and create music using vibrotactile experiences.
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Special sessions

Advances, Barriers, and Future Direction for Hearing Aid Effects

Niels H. Pontoppidan, Danish Sound

During the last 20 years advanced applications for hearing instruments only possible with machine learning
(ML) emerged. However, for many and for long the computational complexity did not allow for actual imple-
mentation. Nevertheless, in 2020 core signal processing based on ML principles came in use for enhancing
speech in the presence of noise. It is interesting to look back at the interplay of applications, algorithms, con-
nectivity, and hardware to speculate about the next core signal processing areas in hearing instrument that ML
will enhance.

Leveraging Deep Learning for Enhanced Signal Processing in Telecom-
munication Devices: A Step towards Futuristic Audio

Clément Laroche, Jabra

With the rapid evolution of artificial intelligence and deep learning algorithms, it’s essential to discern their trans-
formative impacts on telecommunication devices’ audio performance, specifically headsets, speakerphones,
and videobars. This presentation will start by delineating the challenges faced by conventional signal pro-
cessing techniques in the current digital age, such as the inability to effectively filter ambient noises in varying
environments or adapt to different speech characteristics. We then explore how can deep learning-based
approaches aid in overcoming these challenges by learning complex, non-linear relationships from vast au-
dio data. However, the computational demand and memory footprint of such advanced models can often
pose a challenge for their deployment on resource-constrained embedded devices. Limitations imposed by
the computational and memory requirements of deep learning models, highlighting the importance of model
optimization for their practical use in real-time telecommunication devices. Spotlight will be put on dynamic
neural networks, a compelling concept that allows ‘early exiting’ from computations. This approach facilitates
rapid decisions when the network encounters less complex tasks, thus conserving computational resources
— a valuable attribute for real-time applications on embedded devices. In addition to the technical aspect, we
believe in the invaluable role of human listeners in validating our models. Hence, we will share results from a
study conducted on Amazon’s Mechanical Turk platform, where a diverse crowd sourced the rating of audio
quality. The insights gathered from these human ratings provided a more nuanced understanding of the per-
ceived audio quality, underlining the importance of a human-centric approach in our technical advancements.
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REAL-TIME GONG SYNTHESIS
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ABSTRACT
Physical modeling sound synthesis is notoriously computa-

tionally intensive. But recent advances in algorithm efficiency, ac-
companied by increases in available computing power have brought
real-time performance within range for a variety of complex phys-
ical models. In this paper, the case of nonlinear plate vibration,
used as a simple model for the synthesis of sounds from gongs is
considered. Such a model, derived from that of Föppl and von Kár-
mán, includes a strong geometric nonlinearity, leading to a variety
of perceptually-salient effects, including pitch glides and crashes.
Also discussed here are input excitation and scanned multichannel
output. A numerical scheme is presented that mirrors the energetic
and dissipative properties of a continuous model, allowing for con-
trol over numerical stability. Furthermore, the nonlinearity in the
scheme can be solved explicitly, allowing for an efficient solution
in real time. The solution relies on a quadratised expression for nu-
merical energy, and is in line with recent work on invariant energy
quadratisation and scalar auxiliary variable approaches to simula-
tion. Implementation details, including appropriate perceptually-
relevant choices for parameter settings are discussed. Numerical
examples are presented, alongside timing results illustrating real-
time performance on a typical CPU.

1. INTRODUCTION

Physical modeling synthesis has now reached a certain level of ma-
turity. It has become possible to perform audio rate simulations of
relatively complex systems in real time. One reason for this fol-
lows from the steady increase in available computing power, ac-
companied by newer tools allowing code acceleration using low-
level parallelisation on the CPU [1]. More important, though, have
been advances in algorithm efficiency, particularly for systems ex-
hibiting a strong nonlinearity, the subject of this paper.

Perhaps the strongest nonlinear mechanism in any acoustic
musical instrument is found in gong-like percussion instruments

∗ Michele Ducceschi has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme, Grant agreement No. 950084 - NEMUS.
Copyright: © 2023 Stefan Bilbao et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

leading to characteristic pitch glides, crashes and swells. A lin-
ear model is grossly insufficient to capture such effects, and the
nonlinearity is distributed throughout the entire vibrating structure,
normally modelled as a thin plate or shell. Physical models have
been available for some time [2, 3], and used for sound synthesis
purposes [4], but have been limited to offline use. Computational
cost is large, due to the essentially 2D nature of such models, and
increased further due to the complexity of the geometric nonlin-
earity, alongside various practical algorithm design constraints.

The most important of these constraints is the requirement
for numerically stable behaviour. Though simple efficient explicit
time domain simulation methods, such as Störmer-Verlet integra-
tion are available [5], stability is not ensured, and indeed such
methods are highly prone to explosive instability, particularly at
high amplitudes, exactly at the onset of perceptually salient non-
linear effects. One approach to ensuring numerical stability is
through the use of energy-conserving numerical designs, where
the solution size is bounded by a numerical invariant (the energy
or pseudo-energy). In the present case of nonlinear plate vibra-
tion, such methods have been proposed, and allow for designs
of so-called linearly implicit character—costly iterative methods
such as Newton Raphson are avoided, but potentially large linear
systems must be both constructed and solved in the run-time loop
[6]—real-time performance is ruled out for such methods. A more
recent approach follows from invariant energy quadratisation [7, 8]
and scalar auxiliary variable [9, 10] methods applied in geometric
numerical integration. In general, these also lead to algorithms
with the same linearly-implicit character. However, recent results
have allowed for fully explicit numerical solutions through the ex-
ploitation of structure in the linear system to be solved, increasing
the speed of calculation by an order of magnitude at least [11, 12],
while maintaining stable numerical behaviour. This paper is con-
cerned with the range of algorithmic and programming techniques
necessary in order to generate gong-like sounds in real time.

A model of nonlinear plate vibration at high amplitudes, based
on the dynamic analogue of the model of Föppl and von Kármán,
and including effects of loss as well as input excitation and scanned
multichannel output, is presented in Section 2. An energy balance
is also presented. The basic steps leading to a discrete-time simula-
tion algorithm are presented in Section 3, beginning from the defi-
nition of a basic spatial grid and difference operators, and proceed-
ing to a semi-discrete form. This form may then be written directly

DAFx.1
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as an extension of a Hamiltonian system. A fully discrete time
numerically stable algorithm accompanied by an energy balance
may be constructed, and has the advantage that the nonlinearity is
dealt with fully explicitly. Approaches to the numerical solution
of the remaining required linear system, involving the biharmonic
operator are also outlined. Implementation details, including the
simplification of user-supplied instrument design and control pa-
rameters, are described in Section 4. Numerical results, including
timings illustrating real time performance on a standard CPU, as
well as spectrograms of representative outputs are provided in Sec-
tion 5. Concluding remarks appear in Section 6. Sound examples
are available at the companion page 1.

2. MODEL

Realistic sound synthesis from a gong-like instrument requires a
nonlinear model of plate vibration—necessary in order to capture
strong amplitude-dependent effects such as pitch glides, crashes
and swells. Linear models (such as, e.g. the thin model due to
Kirchhoff [13] or even thick models of Mindlin-Reissner form
[14]) are insufficient for this purpose. Simplified nonlinear models
such as that of Berger [15] are able to replicate pitch glides, but not
the energy cascade to high frequencies characteristic of crashes.

The simplest suitable model is the dynamic analogue of the
system of Föppl and von Kármán [16, 17, 18], and describes the
high amplitude vibration of thin plates. When accompanied by ad-
ditional terms emulating loss, and a forcing term, it may be written
as the following coupled system of partial differential equations:

ρξ∂2
tw = −Q∆∆w − 2ρξσ0∂tw + 2ρξσ1∂t∆w

+L(w,Φ) + δ(r− ri)f (1a)
2

Eξ
∆∆Φ = −L(w,w) . (1b)

Here, w(r, t) and Φ(r, t) are the transverse plate deflection and
Airy stress function, respectively. Both are functions of time t ≥
0, and spatial coordinates r = (x, y) ∈ D ⊂ R2. In this paper,
the rectangular domain D = [−Lx/2, Lx/2] × [−Ly/2, Ly/2]
will be considered, for plate side lengths Lx, Ly in m. See Fig-
ure 1. The other material and geometric parameters that define the
plate are the density ρ, in kg m−3, the plate thickness ξ, in m, and
Young’s modulus E in Pa—the flexural rigidity Q is defined as
Q = Eξ3/12(1−ν2), where ν is Poisson’s ratio for the plate ma-
terial. The two parameters σ0, in s−1 and σ1, in m2s−1 give two-
parameter control over frequency-dependent loss [19]—see also
Section 4.1. ∂t represents partial differentiation with respect to
time t, and ∆ the two-dimensional Laplacian, where ∆ = ∂2

x+∂
2
y ,

for spatial partial derivatives ∂x and ∂y with respect to coordinates
x and y respectively. ∆∆ is the biharmonic operator.

The nonlinear operator L, defined, in terms of its operation on
two functions α(x, y) and β(x, y), as:

L(α, β) = ∂2
xα∂

2
yβ + ∂2

yα∂
2
xβ − 2∂x∂yα∂x∂yβ . (2)

For simplicity, boundary conditions are chosen to be of simply
supported type over the boundary ∂D of D, so that

w = ∆w = 0 Φ = ∆Φ = 0 for r ∈ ∂D . (3)

Initial conditions are assumed to be zero, so that

w(r, 0) = ∂tw|r,t=0 = 0 . (4)

1https://physicalaudio.co.uk/modelling-gongs/

Figure 1: Plate geometry, with side lengths Lx and Ly . The driv-
ing location ri is indicated, as well as the two output locations
r
(1)
o (t) and r

(2)
o (t), drawn from an elliptical trajectory.

Initial conditions for Φ do not need to be set independently.
Versions of system (1) have been used in various studies of

percussion instruments, and in particular, the cases of circular plates
[2] and the generalisation to the case of curved plates or shells [3].
Shells of variable thickness have also been examined in the con-
text of cymbal acoustics [20]. Here, a simplified flat rectangular
geometry is chosen, as it reproduces many of the features that are
characteristic of gong-like instruments, and also leads to simula-
tion algorithm designs that are very well suited for acceleration.

2.1. Input and Output

Also included in system (1) is a point-like excitation term. f(t), in
N, is a forcing function applied at location ri = (xi, yi); δ is a 2-
dimensional Dirac delta function. A full model of the interaction
between a striking object (such as a mallet) and the plate could
be included here, as in earlier models of percussion instruments
[21]. Because the interaction time is generally extremely short (on
the order of 1-5 ms), a much simpler approach is to model this
interaction using an externally supplied excitation function of the
form of a short pulse. A suitable candidate is a time-limited raised
sinusoidal distribution [19] of the form

f(t) =

{
fmax sin

2
(

π(t−t0)
T

)
, t0 ≤ t ≤ t0 + T

0, otherwise
. (5)

See Figure 2. Other excitation functions can be applied—including
steady sinusoidal functions, and possibly even audio, in which case
the physical model behaves as an effect instead of a synthesizer.

Figure 2: Excitation function f(t), as defined in (5).

For output, the picture is slightly different. Output audio sig-
nals w(p)

o (t) can be drawn from the plate at P distinct locations
r
(p)
o , p = 1, . . . , P , and defined in terms of plate displacement, as

w(p)
o (t) = w(r(p)o , t) . (6)
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It can be useful, as an additional effect, to allow the output loca-
tions to be time varying. Here, outputs r

(p)
o = (x

(p)
o , y

(p)
o ) are

drawn from an elliptical distribution as

x(p)o (t) =
LxR

2
cos(2πf (p)

o t+ ϕ(p)
o ) (7a)

y(p)o (t) =
LyR

2
sin(2πf (p)

o t+ ϕ(p)
o ) . (7b)

Here, 0 ≤ R < 1 is a dimensionless parameter controlling the size
of the ellipse, f (p)

o is a scan frequency (sub audio rate), and ϕ(p)
o

is an initial phase. See Figure 1. If different values are used for
each output, with fixedR, then a natural phasing effect is obtained,
while maintaining uniform normalisation for all channels.

2.2. Energy Balance

System (1) satisfies an energy balance of the form

Ḣ = −Q+ P , (8)

where here, a dot indicates ordinary time differentiation. H(t) is
the total stored energy in the plate,Q(t) is power loss, and P(t) is
input power. These can be defined explicitly [19] as

H =

∫∫

D

ρξ

2
(∂tw)

2 +
Q

2
(∆w)2 +

1

2Eξ
(∆Φ)2dr (9a)

Q =

∫∫

D
2ρξσ0(∂tw)

2 + 2ρξσ1|∇∂tw|2dr (9b)

P = f∂tw|ri,t . (9c)

Here,∇ indicates a gradient with respect to r. All are scalar func-
tions. In particular, both H and Q are non-negative, meaning that
the system is dissipative under zero input conditions (and lossless
when σ0 = σ1 = 0, meaning that the energyH(t) is constant).

3. FDTD METHODS

3.1. Spatial Grid and Difference Operators

As a first step, suppose that the plate surface is discretised with a
2D grid of spacing h = Lx/Nx, for some integer Nx. Then, set
Ny = ⌊Ly/h⌋, where ⌊·⌋ indicates a flooring operation. Here, for
simplicity, the plate side length in the y direction is set to Nyh ≈
Ly . The semi-discrete grid functions wl,m(t) and Φl,m(t), in-
dexed by integers l and m with 1 ≤ l ≤ Nx − 1 and 1 ≤
m ≤ Ny − 1, represent approximations to w(r, t) and Φ(r, t)
at r = −1/2(Lx, Ly) + h(l,m). Due to the choice of simply
supported boundary conditions (3), the grid functions are assumed
to take on values of zero at l = 0, l = Nx, m = 0 and m = Ny—
and thus, such points may be excluded from the algorithm entirely.

For a given grid function ul,m(t), forward and backward spa-
tial differences in the x and y directions, approximating ∂x and ∂y ,
are defined (suppressing time dependence) as

D±
x ul,m = ±ul±1,m−ul,m

h
D±

y ul,m=±ul,m±1−ul,m

h
. (10)

Second derivative approximations follow directly as:

Dxx = D+
xD

−
x Dyy = D+

y D
−
y . (11)

The Laplacian and biharmonic may then be approximated as

D∆ = Dxx +Dyy D∆∆ = D∆D∆ . (12)

Finally, four approximations Dab
xy to ∂x∂y may be defined as

Dab
xy = Da

xD
b
y for a, b ∈ {+,−} . (13)

3.2. Semi-discrete Form

Before moving directly to a semi-discrete form, it is useful to re-
cast the (Nx− 1)× (Ny − 1) grid functions wl,m(t) and Φl,m(t)
as N × 1 column vectors w(t) and Φ(t), through concatena-
tion of consecutive columns of wl,m(t) and Φl,m(t). Here, N =
(Nx − 1)(Ny − 1) is the total number of grid points in either grid
function. The linear operators Dxx, Dyy , Dab

xy , D∆ and D∆∆ can
thus be represented as sparse N × N matrices Dxx, Dyy , Dab

xy ,
D∆ and D∆∆, respectively. Simply supported boundary condi-
tions are assumed directly encoded into these matrices [19]. Also
necessary is an approximation to the Dirac delta function which
selects the excitation location in (1). This may be represented as
an N × 1 column vector 1

h2 j. Many approximations to the delta
function over a grid are available [22]; for simplicity, excitation is
assumed to occur directly at a grid point, so that j is all zero except
for a single value of 1 at the excitation location.

A semi-discrete form of (1) may be written directly as

ρξẅ = −QD∆∆w − 2ρξσ0ẇ + 2ρξσ1D∆ẇ

+ℓ(w,Φ) +
1

h2
jf (14a)

2

Eξ
D∆∆Φ = −ℓ(w,w) . (14b)

Here, a discrete counterpart to the nonlinear operator L, as defined
in (2), may be written in terms of its action on two N × 1 vectors
α and β, as

ℓ(α,β) = Dxxα⊙Dyyβ +Dyyα⊙Dxxβ (15)

− 1
2

∑

a,b∈{+,−}
Dab

xyα⊙Dab
xyβ

where ⊙ denotes element-wise multiplication of two vectors. The
approximation ℓ to L is bilinear and possesses various important
symmetry properties, including that of triple self-adjointness [19]
inherited from the continuous operator L—the reader is referred
to the literature for further discussion [23].

3.3. Energy Balance and Potential Energy Quadratisation

For analysis purposes, it is useful to rewrite the system of ordi-
nary differential equations (14) in terms of displacement w and
momentum p, as:

ẇ = ∇pH ṗ = −∇wH −Rp+ jf . (16)

Here, H(t) is the total system energy, defined as

H = 1
2M

pTp+ V0 + V ′ (17)

and ∇p and ∇w represent gradients with respect to p and w, re-
spectively. The first term in H represents kinetic energy, where
M = ρξh2 is the mass per grid point, in kg. V0 and V ′ represent
contributions to the potential energy due to linear and nonlinear
effects, respectively, and are defined by

V0 = 1
2
wTK0w V ′ = 1

2
ΦTK′Φ , (18)
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where

K0 = Qh2D∆∆ > 0 K′ = h2

Eξ
D∆∆ > 0 . (19)

The positive definiteness conditions above hold under simply sup-
ported boundary conditions. The plate nonlinearity intervenes through
the relationship (14b) between Φ and w.

The equations (16) are an extension of Hamilton’s equations,
including loss and a forcing term. Loss is encoded here through
the matrix R, defined as

R = 2σ0IN︸ ︷︷ ︸
R0

+−2σ1D∆︸ ︷︷ ︸
R1

≥ 0 , (20)

where IN is the N × N identity matrix. Under unforced condi-
tions, with f = 0, the system is dissipative, so that

Ḣ = − 1
M
pTRp ≤ 0 . (21)

H(t) is the semi-discrete counterpart of the total plate energy, as
defined in (9a). When σ0 = σ1 = 0, the system is lossless.

V ′, as defined in (18), is non-negative. Scalar auxiliary vari-
able methods follow from the definition of a new variable ψ, as

V ′ = 1
2
ψ2 . (22)

Notice here that only the contribution V ′ to the energy due to non-
linear effects has been quadratised here—other possibilities are
avalable [12]. System (16) can then be rewritten, using this defini-
tion, as well as the quadratic dependence of H on p, as

ẇ = 1
M
p ṗ = −K0w − ψg −Rp+ jf , (23)

where
g ≜ ∇wψ . (24)

Furthermore, using the chain rule,

ψ̇ = (∇wψ)
T ẇ = gT ẇ . (25)

Given that H is quadratic in p, a second order form of (23)
follows immediately as

Mẅ = −K0w − ψg −MRẇ + jf . (26)

This equation, alongside (25), describing the time evolution of the
scalar auxiliary variable ψ, and the nonlinear relationship (14b),
forms a complete system describing the vibration of the plate.

3.4. Fully Discrete Form

A discrete update preserving an energy balance may be arrived at
directly, generalising results in [12]. First, beginning from system
(23) and (25), define the time series wn and gn, representing ap-
proximations to w(t) and g(t) at times t = nk, for a given time
step k in s, and for integer n, and pn+1/2, ψn+1/2, interleaved
approximations to p(t) and ψ(t) at times t = (n + 1/2)k. Con-
sider the following time-interleaved scheme, resulting from basic
centered differences and averaging of (23) and (25):

wn+1 = wn + k
M
pn+

1
2 (27a)

pn+
1
2 = pn− 1

2 − kK0w
n − k

2

(
ψn+

1
2 + ψn− 1

2

)
gn (27b)

−k
2
R0

(
pn+

1
2 + pn− 1

2

)
− kR1p

n− 1
2 + kjfn

ψn+
1
2 = ψn− 1

2 + 1
2
(gn)T

(
wn+1 −wn−1) . (27c)

Notice that in (27b), the linear and nonlinear parts of the plate dy-
namics have been approximated using different integration rules;
and, in order to arrive at an explicit update, as will be seen shortly,
the loss terms have been approximated separately, according to the
decomposition in (20). fn is an approximation to f(t) at t = nk;
the calculation of gn will be returned to in Section 3.6.

The updates (27a) and (27b) can be consolidated into a single
two-step update in wn

Anwn+1 = Uwn −Cnwn−1 + k2

M

(
fnj− ψn− 1

2 gn

)
(28)

and depends upon the three matrices An, U and Cn defined by

An = IN + k
2
R0 +

k2

4M
gn (gn)T (29a)

U = 2IN − k2

M
K0 − kR1 (29b)

Cn = IN − k
2
R0 − kR1 − k2

4M
gn (gn)T . (29c)

This update is apparently implicit, requiring the inversion of An

at each time step. However, An is of the form of a multiple of the
identity plus a rank-one perturbation, or An = dIN + an(an)T ,
where d = 1 + kσ0 and an = k

2
√
M
gn. A closed-form inverse is

available through the Sherman-Morrison formula [24] as

(An)−1 = d−1

(
IN − an(an)T

d+ (an)Tan

)
. (30)

Thus the linear system solution required in (28) can be performed
in O(N) operations, and the update can be viewed as effectively
explicit.

3.5. Discrete Energy Balance and Stability Condition

In the lossless and source-free case, the scheme (27) is lossless to
machine precision, as demonstrated recently [12]. When loss and
sources are present, an energy balance of the following form holds:

1

k

(
hn+

1
2 − hn− 1

2

)
= −qn + pn , (31)

where

hn+
1
2 = 1

2M
|pn+

1
2 |2 + 1

2
wn+1K0w

n + 1
2

(
ψn+

1
2

)2

(32a)

− k
4M

(pn+
1
2 )TR1p

n+
1
2

qn = 1
4M

(pn+
1
2 +pn− 1

2 )T (R0+kR1)(p
n+

1
2 +pn− 1

2 )(32b)

pn = 1
2M

(pn+
1
2 +pn− 1

2 )T jfn . (32c)

This energy balance mirrors that of the continuous system, from
(9); the major difference is that the expression hn+1/2 for the
stored energy is only non-negative under the condition

h ≥ 2
√
k

√
σ1 +

√
σ2
1 +Q/ρξ , (33)

which is the numerical stability condition for scheme (28). This
is the same condition that follows from an analysis of numerical
stability for the plate under linear conditions (i.e., the Kirchhoff
plate) [19]. In practice, h will be set as close to possible above this
lower bound. Another difference, with respect to the energy for
the continuous system, from (9a), is the appearance of additional
stored energy above due to the loss term—this is the result of using
a non-centered (backward) difference for the frequency-dependent
loss term, allowing an explicit update for the plate.
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3.6. Linear System Solution: The Biharmonic Operator

The scheme (28), as written, appears to be fully explicit, once
Sherman-Morrison inversion is employed in order to solve the lin-
ear system involving An. A hidden aspect here, though, is the
determination of gn, approximating g(t) as defined in (24) at time
t = nk. Regardless of the form of this approximation, the scheme
(28) will be dissipative under zero-input conditions—note that gn

does not appear explicitly in the energetic expressions in (32). It
must, however, be chosen to be consistent with the definition of
g(t) in order to lead to a convergent algorithm. Note, from the
definition of g, that one may furthermore write, using V ′ = 1

2
ψ2,

g = ∇wψ = 1√
2V ′∇wV

′ . (34)

From the definition of V ′ in terms of Φ, from (18), and also the
definition of Φ in terms of w, from (14b), one may ultimately
arrive at the following form [12] for gn:

gn = − h2√
2(V ′)n

ℓ(wn,Φn) , (35)

where, in discrete time,

(V ′)n = 1
2
(Φn)TK′Φn and D∆∆Φn = −EH

2
ℓ(wn,wn) ,

(36)
and where the bilinear operator ℓ is as defined in (15).

Most of the operations above required in order to form gn are
simple. The exception is the linear system involving the bihar-
monic operator D∆∆ required in (36) in order to determine Φn

from wn. This is the remaining computational bottleneck, and is
inherent to all numerical solutions to the Föppl-von Kármán equa-
tions. Using the fact that, under simply supported conditions, the
biharmonic may be separated into a product of two Laplacians as
D∆∆ = D∆D∆, the linear system to solved at each time step is:

D∆D∆y = c (37)

for a known N × 1 vector c, yielding an N × 1 vector y.
Standard linear system solvers (such as, e.g., those relying on

Cholesky or LU factorisation) are far out of real time for reason-
able plate sizes. See Section 5.1. Here, a very recently developed
solver [25] that exploits the structure of D∆ is employed, leading
to an efficient variant of the Thomas algorithm [26]. It is closely
related to the method proposed by Buzbee [27]. To this end, note
that the scaled N × N Laplacian operator D̃∆ = h2D∆ may be
written explicitly as the Toeplitz-block-Toeplitz form:

D̃∆ =




T I •
I T I

. . .
. . .

. . .
I T I

• I T




T =




-4 1 •
1 -4 1

. . .
. . .

. . .
1 -4 1

• 1 -4



.

(38)
Here, block sizes are (Ny−1)× (Ny−1). I is an identity matrix,
and T a Toeplitz matrix as given above. Zero entries are indicated
by •, and D̃∆ is extremely sparse. The matrix T has the closed
form eigendecomposition T = SΛS where

[S]βγ =
√

2
Ny

sin(βγπ/Ny) [Λ]ββ = 2 cos(βπ/Ny)− 4

(39)

for 1 ≤ β, γ ≤ Ny−1. Note that S = ST = S−1 is an orthogonal
(Ny − 1) × (Ny − 1) matrix. Λ is diagonal, and contains the
eigenvalues of D̃∆.

Now, form the N ×N matrix Q as a Kronecker product Q =
INx−1 ⊗ S. Using the orthogonality of S, one has

D̃∆ = QΞQ Ξ =




Λ I •
I Λ I

. . .
. . .

. . .
I Λ I

• I Λ



. (40)

Given that Q inherits orthogonality from S, one may then write
the solution to (37) as

y = h4QΞ−1Ξ−1Qc . (41)

Note here that Q is sparse, withNx−1 blocks of size (Ny−1)×
(Ny − 1). Also, Ξ is block tridiagonal, with diagonal blocks, and
thus the Thomas algorithm may be applied directly (twice, here).

Other approaches to Toeplitz-block-Toeplitz linear system so-
lution are available, and were tested during the course of this work.
These include extensions of the Levinson-Durbin algorithm due to
Wax and Kailath [28]. One may also note that the matrix S corre-
sponds to a discrete sine transform (DST); fft-based methods were
tried, but were not efficient, due to the small size of Ny , and ex-
hibited great variation depending on the factorisation of Ny . The
method presented above performed best in all tests.

3.7. Output and Interpolation

Moving outputs are assumed drawn at locations (r
(p)
o )n sampled

from the elliptical trajectories r(p)o (t), p = 1, . . . , P as defined in
(7), and at times t = nk. Interpolation is a necessity in this setting,
in order to avoid numerical artefacts (“zipper noise").

Suppose, at a given time instant, the coordinates of one of the
trajectories takes on the value η = (r

(p)
o )n. One may write

η = h(lo,mo) + h(ζx, ζy) (42)

uniquely for integer grid indeces (lo,mo) and fractional addresses
(ζx, ζy), where 0 ≤ ζx, ζy < 1. Assuming an interpolation
width of 2J points, one may form an interpolant wo from the two-
dimensional grid function wl,m as:

wo =

J∑

νx=−J+1

J∑

νy=−J+1

bνxx (ζx)b
νy
y (ζy)wlo+νx,mo+νx . (43)

Here, the interpolant is assumed separable, so that bνxx (ζx) and
b
νy
y (ζy), −J +1 ≤ νx, νy ≤ J are one-dimensional interpolation

coefficients. In this work, approximations are assumed to be of
Lagrange type, with J = 2.

When the grid function wl,m is reconstituted as an N × 1
column vector w, then this linear operation may be expressed as
an inner product

wo = bTw , (44)
where the N × 1 vector b incorporates the interpolation coeffi-
cients bx and by The extension to the case of P time-varying out-
put trajectories is straightforward, and may be represented as

wn
o = (Bn)Twn . (45)

Here, wn
o is a P × 1 column vector of output signals, and Bn =

[bn,(1) . . .bn,(P )] is anN×P matrix of interpolation coefficients.
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Figure 3: Spectrograms of output from a small plate model, at different excitation amplitudes, as indicated.

4. IMPLEMENTATION

4.1. Parameter Sets

Complete parameter sets for the gong, assuming a struck excita-
tion, and P outputs over an elliptical trajectory, are as follows:

Oplate = {E, ρ, ξ, ν, Lx, Ly, σ0, σ1} (46a)
OI = {t0, T, fmax} (46b)

OO = {R, f (1)
o , . . . , f (P )

o , ϕ(1)
o , . . . , ϕ(P )

o } . (46c)

The sample rate Fs must also be supplied. For the given system,
this set of parameters is redundant, in terms of the space of possible
sound outputs. One approach to reducing the number of defining
parameters in Oplate is to non-dimensionalise the system (1) with
respect to w and Φ, and to spatially scale the domain to unit area.
Equally, and perhaps more intuitively, one could fix the plate ma-
terial and thickness, leaving only the plate dimensions variable2.
Furthermore, it is useful to introduce the equivalent parameters

A = LxLy α = Ly/Lx (47)

which are the plate surface area in m2 and dimensionless aspect
ratio respectively. A is useful, as it will scale directly with compu-
tational cost, independently of α. Furthermore, it is more intuitive
to set the loss parameters in terms of perceptually-relevant decay
times T60,0 and T60,c at 0 Hz and fc Hz, respectively as

σ0 =
6 ln(10)

T60,0
σ1 =

6 ln(10)
√
Q/ρξ

2πfc

(
1

T60,c
− 1

T60,0

)
,

(48)
with T60,0 ≥ T60,c. A reduced parameter set O′

plate results:

O′
plate = {A,α, T60,0, T60,c} . (49)

For the reduced set, A and α must remain fixed over the course of
a simulation. It is possible to vary T60,0 and T60,c, though in this
case one must back off slightly from the stability condition given
in (33) to accommodate the range of such variations.

4.2. Real-time Implementation

Prototyping was carried out in Matlab, using a sparse vector/matrix
representation following directly from the form of the scheme in
(28). Such a representation is optimal in terms of performance

2In this article, the material is taken to be steel, with E = 2×1011 Pa,
ρ = 7850 kg m−3, and ν = 0.3, and the plate thickness is ξ = 0.5 mm.

as well as readability and debugging in Matlab. (The additional
biharmonic linear system solution in (36) was carried out using a
generic Cholesky factorisation computed outside the runtime loop.)

In order to achieve real-time performance as in, e.g., an audio
plug-in format, highly-optimised single-threaded C++ code is re-
quired. Previous testing has shown that a direct “matrix-unrolled"
approach is up to 10× faster than using a sparse matrix repre-
sentation directly in C++ [29]. There are two main reasons why
unrolling the sparse matrix form and applying stencil operations
directly is more efficient. First, the vector/matrix representation,
while sparse, is highly redundant with many repeated values, and
can be reduced to a very small number of stencil coefficients. Sec-
ond, in unrolled form the compiler is much more likely to be able
to vectorize the code using a suitable optimisation level, and even
if not it is relatively simple to manually apply vector intrinsics to
the update. Sparse matrix data structures are more complicated in
this respect due to the irregular data patterns used in typical re-
duced memory formats such as CSR (Compressed Spare Row).

For the gong algorithm described here, there are 12 different
array operations that are required at each time-step, not includ-
ing the core element of the linear system solution, as described in
Section 3.6. By unrolling the sparse matrix representation and us-
ing -O3 optimisation level in Clang, the compiler was able to fully
vectorize each array operation with AVX vectors without having to
write any manual intrinsics at all. The solver element, however, did
require manual application of intrinsics in order to achieve maxi-
mum efficiency.

5. NUMERICAL RESULTS

5.1. Timings

For numerical tests, three machines were used: (1) LinuxLap: a
Linux laptop with an Intel 12th Gen quad-core i7-1260P CPU; (2)
WinPC: a Windows desktop with an AMD Ryzen 7 8-core 5800X
CPU; and (3) MBA: MacBook Air with an Intel 10th Gen quad-
core i5 CPU; All tests were written in C++ and compiled with -O3
and -mavx2 flags.

Computation times for the complete plate simulation algo-
rithm, for various choices of plate area and aspect ratio on different
machines are shown in Table 1. These indicate that computation
time tracks the total surface area A reasonably closely, regardless
of the aspect ratio, which is as expected. They indicate faster than
real time performance for these plate areas, which are small, but
definitely within the realm of musical gongs.

Table 2 shows the comparison between computation times for
the biharmonic solver presented in Section 3.6 and those for heavily-
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A (m2) α Nx Ny LinuxLap WinPC MBA
0.06 1.24 25 31 0.484 0.635 0.908
0.06 0.80 31 25 0.569 0.649 0.993
0.05 1.38 21 29 0.365 0.441 0.636
0.05 0.72 29 21 0.393 0.510 0.695
0.05 2.06 17 35 0.278 0.360 0.761
0.05 1.00 25 25 0.393 0.476 0.815
0.05 3.46 13 45 0.280 0.355 0.664
0.04 1.32 19 25 0.295 0.397 0.562
0.04 0.76 25 19 0.296 0.421 0.653
0.03 1.24 17 21 0.150 0.183 0.264
0.03 2.08 13 27 0.150 0.190 0.287

Table 1: Timings, in s, to compute 1 s output for plates of different
areasA and aspect ratiosα. Grid sizesNx andNy are as indicated.

14× 14 16× 20 23× 17 25× 25
Our solver 0.054 0.135 0.118 0.279
LU 0.375 0.652 0.865 1.735
Cholesky 0.254 0.476 0.531 0.978

Table 2: Comparison between computation times, in s, for the bi-
harmonic solver presented in Section 3.6 and alternative solvers
from Eigen on WinPC, for typical grid sizes Nx ×Ny .

used generic linear system solvers like based on LU and Cholesky
decompositions. Here we have used realisations of these solvers
from Eigen[30], a well-known high-level C++ library for linear
algebra.

Table 3 shows the percentage split between the biharmonic
solver element of the timeloop code and the remaining sections.
The solver is by far the most significant element, taking up to 76%
of the computation time at each time-step.

5.2. Sound Output

It is useful to examine the effect of the plate nonlinearity through
spectrograms of sound output. The sample rate is chosen as Fs =
44.1 kHz, and the material parameters and thickness are fixed as
in the footnote on page 6. Reduced plate parameters are chosen as
α = 1.4, T60,0 = 20 s and T60,c = 10 s, with fc = 1 kHz. The
excitation is of the form of (5), with t0 = 0 s. Spectrograms are
calculated using a window size of 2048 points, with a hop size of
128 points and Hann windowing applied.

Consider first a very small plate with A = 0.01 m2, and the
effect of increased excitation amplitude fmax, where all other pa-
rameters are held constant. Output is drawn at the fixed location
ro = (Lx/5, 0). In this case, the excitation duration is T = 2
ms. See Figure 3. Under low-amplitude excitation amplitude, the
linear behaviour of the plate is recovered, and distinct constant

Plate size Biharmonic Solver Remaining
19× 25 (0.04, 1.2) 72.3% 27.7%
25× 31 (0.06, 1.2) 75.3% 24.7%
19× 35 (0.05, 1.8) 72.4% 27.6%
29× 21 (0.05, 0.7) 76.2% 23.8%

Table 3: Comparison of computation time for the solver vs remain-
ing elements of the optimised C++ code at each time-step.

modal frequencies are observed. At higher amplitudes, effects of
pitch glides are observed—these glides are not uniform across all
partials, however, as they would be if a simpler model of nonlin-
ear plate vibration (e.g. that of Berger [15]) were used. At very
high amplitudes, the partials themselves are replaced by wideband
noise—the crash.

As a further illustration, consider now the case of a larger
plate, with A = 0.16 m2, again under increasing excitation am-
plitude, and now with excitation duration T = 4 ms. See Figure
4. In this case, the characteristic “swell" of a gong-like instru-
ment may be observed—a slow migration of energy to the high
frequency range over the first several hundred milliseconds.

As a final example, consider a comparison between spectro-
grams of sound output for a small plate with A = 0.01 m2, and
with an excitation amplitude fmax = 20 N and duration T = 4
ms, in the presence of time-varying monophonic output, drawn
from an ellipse with R = 0.4, and with a scan frequency of 1 Hz.
See Figure 5. Easily visible are complex modulations of the indi-
vidual frequency components, characteristic of that which occurs
in an instrument that may be free to exhibit rigid-body oscillation
relative to the listener.

Figure 4: Spectrograms of output from a large plate model, at dif-
ferent excitation amplitudes, as indicated.
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Figure 5: Spectrograms of output from a small plate model, with
a static output location (left), and a time-varying output location
(right).

6. CONCLUDING REMARKS

In this paper, it has been shown that it is possible to implement
computationally-intensive physical models in real time—in this
case the Föppl-von Kármán model of high amplitude plate vibra-
tion that is necessary in order to emulate gongs. Due to the com-
plexity of the system, achieving real-time performance requires
optimisation at multiple levels. First: the design of a numerically
stable explicit integrator, as presented here, has been the key to
breaking the real-time barrier. The computational advantage here
hinges on the exploitation of matrix structure (in this case, rank-
1 perturbation of the identity—a general property of SAV designs
for Hamiltonian or near-Hamiltonian systems [12]) But even when
this bottleneck has been removed, there remains the problem of
linear system solution (of the biharmonic operator) in the run-time
loop. Fast solution has been approached by exploiting a differ-
ent type of matrix structure (block Toeplitz in this case). This
type of acceleration is much more targeted at the particular case
of the Föppl-von Kármán system. Further acceleration depends on
the use of low-level parallelisation tools. The larger lesson here
is that for physical modeling synthesis from any reasonably com-
plex system, a silver bullet is likely not available—rather, in order
to achieve good performance, great attention must be paid to the
specifics of the system at hand.

Many simplifications to more realistic models of percussion
instruments have been made in order to arrive at a real-time im-
plementation. Among these are: a) the restriction to a rectangu-
lar geometry with simply-supported conditions; b) the assumption
of a flat plate rather than a curved shell, which is more usual; c)
the assumption of a uniform thickness; and d) the consolidation
of effects of loss due to various mechanisms (radiation, viscother-
mal) to a basic two-parameter loss model. Including any of these
effects would have no impact on the explicit integration method,
provided the system may still be written in terms of the extension
of a Hamiltonian system. On the other hand, the block-Toeplitz
solver is highly dependent on restrictions a) to c). Coping with
restriction d) would necessarily increase the temporal order of the
scheme as a whole, leading to a larger footprint in terms of both
memory usage (not a major concern here) as well as computational
cost.
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ABSTRACT

We present a non-supervised approach to optimize and evaluate
the synthesis of non-speech audio effects from a speech produc-
tion model. We use the Pink Trombone synthesizer as a case study
of a simplified production model of the vocal tract to target non-
speech human audio signals –yawnings. We selected and opti-
mized the control parameters of the synthesizer to minimize the
difference between real and generated audio. We validated the
most common optimization techniques reported in the literature
and a specifically designed neural network. We evaluated several
popular quality metrics as error functions. These include both ob-
jective quality metrics and subjective-equivalent metrics. We com-
pared the results in terms of total error and computational demand.
Results show that genetic and swarm optimizers outperform least
squares algorithms at the cost of executing slower and that specific
combinations of optimizers and audio representations offer signif-
icantly different results. The proposed methodology could be used
in benchmarking other physical models and audio types.

1. INTRODUCTION

Articulatory synthesis provides a unique opportunity to delve into
the mechanics of speech production [1, 2]. Unlike black box mod-
els, physical models achieve an interpretable representation of the
inner characteristics of the vocal tract. This allows for a deeper un-
derstanding of the processes involved in speech production. They
also provide precise control of the speech’s articulatory, resonance,
and phonatory characteristics, such as the position of the tongue,
lips, existing constrictions, or nose size; as well as informed con-
trol of model parameters. This makes natural-sounding synthetic
speech samples less prone to artifacts than other synthesis models.
Furthermore, they may produce any type of human sound coming
out of the mouth and the nose. Those include sounds that are not
words, such as sighs, laughs, yawns, and so on.

These non-speech sounds are becoming increasingly impor-
tant in today’s audiovisual productions and digital interactions.

Copyright: © 2023 Mateo Cámara et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

From the sound effects in movies and videogames to the sound-
scapes in podcasts and audiobooks [3, 4, 5], the ability to gener-
ate these sounds has become a critical aspect to produce realistic
performances. Analyzing the ability of models to construct these
types of sounds is crucial to understand the limits and limitations
of models [6], as well as the underlying complexities of produc-
ing naturally sounding audio samples. Answering those questions
opens up new possibilities for sound and user-experience design-
ers, video-game developers, and audio production professionals
looking for new and innovative ways to create high-quality, realis-
tic, and engaging sound experiences.

Physical models for speech synthesis pose challenges that are
extensively reported in the literature. They often include many pa-
rameters that are difficult to configure simultaneously to achieve
high-quality sounds. Their combined optimization can be demand-
ing, computationally expensive, time-consuming, and challenging
to implement in real time. These complications explain the need
to improve and optimize the synthesizer.

Our research focuses on articulatory parameters from a black-
box point of view. We optimize synthesizers without paying spe-
cific attention to what each parameter represents to maximize ob-
jective similarity by minimizing the difference between a target
signal and the synthesized signal. This ensures superior general-
ization capabilities for the proposed method and valuable results
for other contexts.

In this contribution, we look at the physical model known as
the Pink Trombone (PT)1. This is a simplified version of the vocal
tract that uses a small set of fundamental parameters to control the
shape and movements of the articulators during speech production
[7]. We fixed its articulatory bounds to focus on sounds that a
human could physically produce, and used these to optimize the
PT and compare its result with human audio samples.

We conduct a case study using synthetic, sustained, and yawn-
ing sounds to understand its capabilities and limitations. We test
different black-box strategies to predict the synthesizer control pa-
rameters, including well-known optimization techniques and Deep
Neural Networks, trained on a set of PT synthetic samples. For
experimentation, we use sound files generated by the PT, as well
as audio clips downloaded from the Freesound platform [8].

Experiments shall lay the foundations for studies on articula-
tory and production models with multiple parameters and different

1https://dood.al/pinktrombone/
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audio types. The dataset, test sounds, and algorithms are available
online2. Our goals for this contribution are the following:

• Determine if PT parameters can be accurately predicted ex-
clusively from acoustic features. We optimize synthesizer
control variables from audio samples as a black-box.

• Determine best optimization technique for articulatory vari-
ables. We evaluate how different optimizers perform in
front of increasingly challenging sounds.

• Determine the error metric that yields a more satisfactory
outcome. We benchmark different techniques for standard
error metrics and acoustic parameterizations of audio files.

The remainder of this paper is organized as follows. Sec. 2
expands on the optimization techniques and the parameterizations
reported in the literature. Sec. 3 describes the experiments covered
to meet our objectives. Sec. 4 analyzes and discusses the results
obtained, and Sec. 5 concludes the paper.

2. BACKGROUND

For sound-matching optimization, one may focus on the control
parameters of the synthesizer, the input acoustic features extracted
from the audio, and the process that leads to optimization. All
these aspects provide insights into the methodologies and objec-
tives of various optimization studies in synthesizers. Fig. 1 depicts
the overall schematic of the optimization process.

2.1. Optimization Methods

Considering the complexity of sound synthesizers, there is a need
for reliable optimization techniques. Numerous optimization meth-
ods have been investigated in terms of optimizing parameters for
physical models or traditional synthesizers. The related work can
be organized into two main categories:

Search-based Methods: these have been widely applied to phys-
ical models in audio synthesis due to their ability to handle non-
differentiable, non-linear, and non-convex optimization problems.
They are universal and regard the synthesizer as a black-box model,
focusing solely on parameter space optimization. Standard ways
include the use of Evolutionary Algorithms (EA), including Evo-
lution Strategies [9], Genetic Algorithm (GA) [10], or Particle
Swarm Optimization (PSO) [11]. Other methods, including Hill
Climber [12], Levenberg–Marquardt Algorithm [13] and Nelder-
Mead Method [14] are also considered.

Model-based Methods: machine learning (ML) models have be-
come mainstream for synthesizer parameter estimation in recent
years. They learn the mapping between the latter and audio fea-
tures directly from data. In [15], authors used a strided Convo-
lutional Neural Network (CNN) to predict the parameters of a
subtractive synthesizer. Recent work proposed differentiable digi-
tal signal processing (DDSP) [16] and integrated an additive syn-
thesizer with a filtered noise synthesizer into the end-to-end deep
learning framework. These allow direct gradient descent optimiza-
tion. DDSP is now widely utilized for parameter estimation [17],
despite its need for precise reproduction of the target synthesizer
in a differentiable manner, which poses difficulties.

2https://slash-trombone.github.io/

Figure 1: Schematic on the optimization process.

Each approach has its own benefits and limitations, leading to
ongoing discussions. In [12], authors compared sound-matching
performance on a VST synthesizer using two search strategies and
three neural network methods. Results indicated that search meth-
ods are limited by their computational cost, and modeling meth-
ods are restricted to the inductive bias of model structure and data
availability. We tested these limitations for the PT, including sim-
ple speech and non-speech vocalisations to evaluate the perfor-
mance of the optimized model parameters to reproduce sounds.

2.2. Parameter Selection

The control parameters of the synthesizer and the input parame-
ters for the optimizer largely depend on the synthesis technique
and the desired outcomes, in accordance with Fig. 1. We focus
on the PT control parameters –see Table 1. Physical models may
alternatively use local constrictions to describe the configuration
required for the vocal tract to produce a certain sound. The PT can
actually operate on those as well. Nonetheless, we are interested
in the primary ones.

Furthermore, inputs to the optimizer must represent the acous-
tic content of the audio samples so that the model may produce
accurate outputs. For this task, we shall look at acoustic features.

2.3. Acoustic Features Extraction

Various acoustic features have been used in synthesizer optimiza-
tion studies to evaluate and quantify the quality of the synthesized
sounds to guide the optimization process. Spectral features are the
most common, but finding the best metric with good perceptual
consistency is still an open question [18]. In [19] authors focus on
the spectral norm error, [10] used spectral norm plus spectral cen-
troid error extracted from short-time Fourier transform (STFT) for
each frame, [9] used relative spectral error, which is computed by
summing normalized differences between frequency components
extracted from two spectra, [20] combined the least squared er-
ror of the STFT of two sounds plus the perceptual error apply-
ing a narrow band masking curve. On error computation, [12]
used Euclidean distance of Mel-Frequency Cepstral Coefficients
(MFCCs), [16] used a deep representation extracted from MFCCs,
and multiscale spectral loss plus perceptual loss, [15] compared
the following features as the Deep Neural Networks (DNN) in-
put: a set of spectral features [21], STFT, and deep representa-
tion extracted by a CNN from the raw signal. Results showed
that STFT and deep representations seem more representative than
handcrafted features. Our aim now is to identify suitable ones for
the PT parameters optimization.
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3. EXPERIMENTATION

We designed our experiments to focus on three specific character-
istics that are relevant to the acoustic-to-articulatory inversion: the
optimizer used to predict control variables, the audio representa-
tion to compute the difference between original and synthesized
audio, and the signal complexity.

3.1. Pink Trombone Fundamentals

The PT is a simple vocal tract model that can be interacted with
through a web interface. It is a Kelly-Lochbaum (KL) type model
whose technical details can be found in [22]. In our black-box case
study, we focused on the number of parameters to be used and their
bounds. Table 1 summarizes these, which correspond to physical
attributes of the vocal tract. We aimed to decouple the meaning of
these parameters from their human meaningfulness for our method
to be useful to any synthesizer.

Table 1: Pink Trombone parameters and their bounds.

Pink Trombone Parameters Lower bound Upper bound
Pitch (Hz) 75 330
Voiceness 0 1
Tongue Index 14 27
Tongue Diameter (cm) 1.55 3
Lips Diameter (cm) 0.6 1.2
Constriction index 12 42
Constriction Diameter (cm) 0.6 1.2
Throat Constriction (cm) 0.5 1.0

3.2. Signal complexity

Signal complexity refers to the challenges we pose to the optimiz-
ers to predict the exact parameters. In that sense, we consider three
independent characteristics of the signal. First, the origin of the
audio file: audio generated by a speech synthesizer or a person.
Second, variations over time: sustained notes or dynamic audio
(such as a yawn). Third, number of variables to optimize: related
to the characteristics of the synthesizer. Hereafter we enumerate
all experiments conducted from the least to the most complex.

• PT generated sounds for which:

– One of the control parameters is unknown.

– All of the control parameters are unknown.

– Gaussian white noise is added. This evaluates the ro-
bustness of optimizers dealing with non-ideal signals.

– Control parameters vary over time.

• Audio clips containing:

– Sustained vowel sounds.

– Yawnings.

3.3. Audio Representation and Quality Assessment

3.3.1. Representations focusing on spectral difference

To minimize the difference between the target and reconstructed
sound, we focused on the spectral features of the audio signals.
The following list includes all the transformations evaluated:

• STFT. A window size of 1024 samples with a 2x overlap
STFT was taken.

• Multiscale spectrogram. The window sizes were {64, 128,
256, 512, 1024}, with a 75% overlap.

• MEL-spectrogram. We used 128 filters in the MEL bank up
to a maximum frequency of 8 KHz.

• MFCCs. We took 20 cepstral coefficients from the MEL-
spectrograms.

Computations were performed in Python 3.9, using the Au-
raLoss library [23]. The Mean Absolute Error (MAE) between the
input and reconstructed audio was computed as the error function.

3.3.2. Perceptual metrics

In addition to MAE, we also computed a set of perceptual quality
and intelligibility metrics. These metrics were not used as error
functions in the optimization process. The findings may be rep-
resentative of the perceptual similarity between sounds. However,
we encourage readers to listen to the results we posted online. The
following full reference metrics were analyzed:

• PESQ: Perceptual Evaluation of Speech Qlt. [24].

• PEAQ: Perceptual Evaluation of Audio Qlt. [25].

• ViSQOL: Visually-Inspired Speech Qlt. Obj. Listener [26].

• STOI: Short-Time Objective Intelligibility [27].

3.4. Selected Optimizers

We used optimization algorithms and a CNN to predict the con-
trol parameters of the synthesizer. We fed the algorithms with the
MAE between the original and the synthesized signal. Hereafter
we briefly introduce the selected optimization algorithms, which
we have evaluated in terms of computational cost and reconstruc-
tion error.

Genetic Algorithm (GA): is an optimization technique inspired
by natural selection and genetics [28]. The candidate solutions are
defined by a set of genes. In every generation (loop over all candi-
dates), the genes are able to randomly change (mutation), combine
with other candidates (crossover), and be selected (optimization)
to search for optimal solutions in the solution space. The fitness
function seeks to minimize differences in the input/output signals.

We used 32 bits to define the genes, a crossover rate of 0.9, a
mutation rate of 0.03, and a population of 10 individuals.

Particle Swarm Optimization (PSO): is a nature-inspired meta-
heuristic optimization technique that simulates the social behavior
of swarms [29]. PSO operates by iteratively adjusting the position
of particles within the search space based on their individual and
global best experiences, converging towards the optimal solution.
In our case, we set acceleration parameters c1 = 0.5, c2 = 0.3
(trust in itself, trust in its neighbors), and inertia weight w = 0.9,
with 10 particle population.

Trust Region reFlective (TRF): The Trust Region reFlective
[30] algorithm is a computational technique for solving least squares
optimization problems. It employs a model-based method, seeking
to minimize a function by iteratively creating simplified models of
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the objective function within certain trusted regions. The term “re-
flective” refers to the method’s way of handling boundaries and
constraints: if a proposed step hits a boundary, it is reflected in the
feasible region.

Nelder-Mead Method (NM): also known as the downhill sim-
plex method [31], is a multidimensional optimization technique
well suited for non-linear problems. The algorithm starts with an
initial simplex, a set of n+1 points in an n-dimensional space. The
algorithm iteratively updates the position of the simplex by reflect-
ing, expanding, contracting, or shrinking it, based on the values of
the function being optimized at the vertices of the simplex.

Covariance Matrix Adaptation Evolution Strategy (CMA-ES):
is a stochastic optimization algorithm that uses information about
the distribution of the samples generated by the algorithm to guide
the search for the optimal solution [32]. The algorithm starts with
an initial guess for the solution and then generates a set of samples
around this point. The distribution of these samples is then up-
dated based on the fitness of the samples, with higher-fitness sam-
ples being more likely to be selected. As the algorithm progresses,
outcomes increasingly concentrate around the optimal solution.

Neural network prediction (NN): In addition to the optimiza-
tion techniques, we tested the capability of neural networks to pre-
dict the control variables based on the acoustic features. We de-
signed a CNN that admits spectrograms as input and outputs the
control variables. To train it we collected a database of 400,000
different PT clips. We trained four different networks, each admit-
ting as input for each audio representation mentioned in subsection
3.3.1. The network has been coded with Pytorch 1.7.1, with 2 con-
volutional layers, ReLU as the activation function, 0.0001 as the
learning rate, ADAM optimizer, and following the 60/20/20 data
splitting strategy between training, validation, and test.

3.5. Materials

Attending to the scope of this contribution, the assessment of the
performance achieved by the different techniques, audio represen-
tations, and optimizers in predicting the parameters of the physical
model for sound-matching required two sets of audio files:

• Synthetic audio samples, generated at 48 kHz sampling rate
and 1 s long. To generate these, we used the Programmable
version of the PT3 modified to be a Node.js server. We
generated 80 audio clips with random control parameters.

• Audio samples downloaded from Freesound containing ut-
terances from different speakers. We focused on sustained
vowels (5 clips) and yawnings (8 clips). The vowels are one
second long and the yawnings are three seconds on average.
All files were recorded at a 48 kHz sampling rate to match
the same conditions as the synthetic audio.

4. RESULTS

In this section, we present the results of the experiments aimed at
predicting control parameters for PT. We sought to fix the same
conditions for all optimizers to ensure a fair comparison. Some
considerations apply to all experiments:

3https://github.com/zakaton/Pink-Trombone

Figure 2: Optimizer performance over one control parameter. X-
axis includes the optimizers. Y-axis represents the normalized er-
ror. Each bar is a control parameter.

• Error values are normalized with respect to the maximum
and minimum values that each parameter can take.

• The random seed was fixed to randomize the PT control pa-
rameters in each experiment, such that the optimizers face
the same initial conditions in all cases.

• Each experiment was repeated 20 times. Initial conditions
and target values were randomized.

• All optimizers had the same stop criterion: reach an error of
less than 0.0001 in the metric or stop to improve the relative
error with respect to the previous 20 loops.

4.1. Optimization of PT-generated sounds

Hereafter we present the results of the different tests that were con-
ducted using PT synthetic audio clips as inputs.

4.1.1. Optimization of one control parameter

In this experiment, we fixed all control parameters except for one.
We predicted the unknown value. This set of experiments does not
include the CMA-ES algorithm because its particular design does
not support single-parameter prediction. The results are shown in
Figure 2, for the different optimizers and PT control parameters.

Results demonstrate the effectiveness of GA and PSO in ac-
curately predicting the control parameters. No outliers were ob-
served in the genetic algorithm’s performance. The NM algorithm
successfully reached the absolute minimum for most parameters.
However, it struggled to achieve the same for the pitch and one
tongue-related parameter. A closer examination of these param-
eters revealed that their error functions contained multiple local
minima. Since the performance of the NM is heavily influenced
by its initial conditions, it makes it prone to getting stuck in them.

Despite not always arriving at the optimal values, TRF and NN
converge rapidly to the minimum. Once it is trained, NN takes less
than a second to reach the minima. TRF algorithm takes 5 seconds
on average, which is four times faster to optimize than PSO and
NM, and 100 times faster than GA.

In the same line, Figure 3 illustrates the error associated with
each audio representation. All audio representations are suitable
for optimizing individual control parameters. However, no error is
observed in the multiresolution. This makes sense, since it is an
extension of the STFT that better represents the spectral character-
istics of the signal.
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Figure 3: Audio representation performance over one control pa-
rameter. X-axis represents each audio representation. Y-axis rep-
resents the normalized error. Each bar is a control parameter.

4.1.2. All control parameters

The single-parameter experiments validate that articulatory param-
eters can be predicted from sound representations alone. However,
this scenario is too simplified to clarify which optimizer is more
accurate. This can be done by increasing the complexity of the
experiment, seeking to predict all control parameters at once. The
prediction results for each parameter are shown in Figure 4.

Experiments focusing on predicting all parameters demonstrate
the superior performance of GA, CMA-ES, and PSO compared
to other methods. In this experiment set, the eight-dimensional
search area makes the optimization more challenging. The TRF
and NM algorithms yielded unsatisfactory results, deeming them
unsuitable for tackling the problem. As the number of potential so-
lutions grows exponentially with increasing dimensions, only the
most robust methods can find an optimal solution. Genetic algo-
rithms and PSO can outperform least squares minimization or the
downhill simplex method because they are more robust in han-
dling complex search spaces, non-convex functions, and intricate
relationships between variables.

On the other hand, observing how the different audio repre-
sentations behave in this scenario is interesting. They are shown in
Figure 5. We can observe that no representation performs signif-
icantly better than the rest, not even the multiresolution represen-

Figure 4: Optimizer performance when all parameters are pre-
dicted at the same time. X-axis includes all optimizers. Y-axis
represents the normalized error. Each bar corresponds to an au-
dio representation.

Figure 5: Audio representation performance while predicting all
parameters at a time. X-axis covers the representations. Y-axis
represents the normalized error. Each bar corresponds to a control
parameter.

tation. However, finding a higher error is not necessarily a serious
problem when reconstructing the signal. Most control parameters
have local minima very close to the global minimum. This means
that different PT configurations can produce almost the same re-
construction. This does not apply to the pitch parameter, which is
one of the critical parameters in quality and, as can be seen, the
MFCCs do not make it easy to reach its minimum.

In fact, Figure 6 illustrates precisely these phenomena. It shows
the MAE of the original and reconstructed signal. It is observed
that regardless of the optimizer used when the search space is
large, the MFCCs do not achieve satisfactory results. Thus, this
experiment indicates that the best prediction of the control param-
eters can be made with GA or the PSO using the MEL scale or
Multiresolution spectrograms.

In addition, Figure 7 shows the computational costs of each
optimizer. It shows that the NN is the fastest once trained, while
PSO is the fastest of the suitable optimization techniques.

4.1.3. All control parameters which vary over time

The next level of complexity we tested was optimizing parameters
that varied over time. To achieve this, we created an interpolator
that generated intermediate values between two temporal spaces

Figure 6: Absolute performance of the optimizers and representa-
tions. X-axis includes all optimizers. Y-axis represents the MAE
of the target and reconstructed audio file. Each bar is the audio
representation.
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Figure 7: Computational cost for the different optimizers –in X-
axis. Y-axis represents the time to converge, in seconds.

Figure 8: Performance of optimizers and representations when the
signal varies over time. X-axis includes all audio optimizers. Y-
axis represents the normalized error between the target and recon-
structed audio. Each bar corresponds to an audio representation.

defined by two sets of articulatory parameters in the PT. As shown
in Figure 8, none of the optimizers were able to achieve a satisfac-
tory result when optimizing a time-variant set of parameters. The
only optimizer that achieved a result closer to zero was the GA, us-
ing the STFT. The tendency is that as more parameters are added to
optimize, the search space becomes more complex and therefore
very difficult to reach the absolute minimum. It is important to
note that this method is not suitable for a neural network. It would
be necessary to train new networks depending on the number of
parameters to be predicted.

To achieve a more satisfactory, general solution, it was decided
that the best strategy for optimizing signals that vary over time is
to segment the signal into small windows and optimize them as if
they were a static signals. We tested different window sizes and
found out a 100 milliseconds length performed optimally. These
windows can then be connected using a Savitzky-Golay filter [33],
which smooths out the result. The optimization results of these
tests suggest insights equivalent to predicting a non-variant set of
parameters. That is why this technique is the preferred choice for
optimizing sounds created by humans.

4.1.4. All control parameters in noise

In these experiments, different amounts of Gaussian white noise
were added to the original signal. We sought to predict the articu-

latory parameters that defined the signal. As shown in Figure 9, the
optimizers performance deteriorates as more noise is added. Ad-
ditionally, we observed that the optimizers do not start to exhibit
exponentially growing errors until the signal-to-noise ratio reaches
20 decibels. All optimizers act similarly, with the exception of the
NN, which does not tolerate noise at its input.

From these experiments, we can conclude that it is possible to
optimize signals that are not perfectly generated by a synthesizer
but may come from any source, such as a recording from a public
database. This finding is significant because it suggests that our
approach can be applied in real-world scenarios where the input
signals will likely not be perfectly recorded.

4.2. Optimization of real audio files

Results of the tests with real sounds can be seen in Table 2. The re-
sults for each perceptual metric are shown for the best-performing
combination of the optimizer-representation pair. The columns de-
tail the optimizers and the color shows the best audio representa-
tion for each case. We used different perceptual metrics to mea-
sure how similar the sounds generated by the synthesizer were to
human-generated ones. We also include how the perceptual met-
rics behaved when predicting PT samples. These set up a bench-
mark to compare the upper limit that could be reached. Still, we
encourage readers to visit our website, where we have published
these audio files, and evaluate the quality themselves.

As shown in the table, CMA-ES and GA achieved superior re-
sults compared to other optimizers in terms of perceptual similarity
in most of the cases. It is important to note that the MOS (Mean
Opinion Score) equivalent results can still be considered low com-
pared to the scale, as the sounds are synthesized by a certain vocal
tract that may not correspond to the vocal tracts of the people who
generated the original sound. Therefore, we do not claim that we
can produce an exactly identical sound but an equivalent one.

For all types of signal, we used the strategy of dividing the sig-
nal into small windows and smoothing them out into full-length
signals. Systematically, PT-generated sounds are predicted with
better scores than human-generated sounds. Furthermore, in many
of the cases we found that yawns are perceptually recognized as
more similar than sustained vowels. This is because the timbre in
the sustained vowel has a much greater influence than in the yawn.
The PT has vocal characteristics that do not match those of the

Figure 9: Performance of the optimizers when Gaussian White
Noise was applied at the input. X-axis includes allaudio optimiz-
ers. Y-axis represents the MAE between the target and the recon-
structed audio file. Each bar is a different Signal-to-Noise ration.
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Table 2: Perceptual equivalent metrics of the real sounds. Type "PT" stands for "Pink Trombone" generated, "VW" for sustained "Vowel",
and "Y" for "Yawn". All metrics are in MOS scale (from 1 to 5) except STOI (from 0 to 1). We used a color code to indicate the best-
performing set of acoustic parameters per audio type and optimizer.

GA PSO TRF NM CMA-ES NN Best Result Legend
PT 2.2± 0.9 2.1± 1.2 1.8± 1.0 2.2± 1.0 2.6± 0.9 1.8± 0.9 CMA-ES 2.6± 0.9 mel
VW 1.8± 0.8 1.5± 0.4 1.6± 0.6 1.8± 0.7 1.5± 0.5 1.8± 1.2 GA 1.8± 0.8 mfccPESQ
Y 1.5± 0.4 1.3± 0.3 1.4± 0.2 1.3± 0.1 1.3± 0.2 1.5± 0.7 GA 1.5± 0.4 multiscale
PT 3.0± 0.6 3.2± 0.8 2.6± 0.6 3.0± 0.9 3.5± 0.7 3.0± 0.8 CMA-ES 3.5± 0.7 stft
VW 2.8± 0.7 2.2± 0.1 2.6± 0.7 2.5± 0.7 2.5± 0.6 2.6± 0.7 GA 2.8± 0.7PEAQ
Y 2.5± 0.8 3.0± 1.1 2.7± 0.7 2.6± 0.7 2.7± 1.0 2.8± 1.0 PSO 3.0± 1.1
PT 3.1± 0.9 3.4± 0.8 1.7± 0.5 3.3± 1.2 4.3± 0.7 3.0± 0.6 CMA-ES 4.3± 0.7
VW 1.9± 0.5 2.0± 0.2 2± 0.3 1.9± 0.3 2.1± 0.4 1.8± 0.4 CMA-ES 2.1± 0.4ViSQOL
Y 2.1± 0.1 2.1± 0.1 2.3± 0.3 2.3± 0.4 2.1± 0.1 1.9± 0.2 TRF 2.3± 0.3
PT 0.3± 0.2 0.4± 0.3 0.1± 0.1 0.5± 0.4 0.5± 0.3 0.2± 0.1 CMA-ES 0.5± 0.3
VW 0.1± 0.1 0.1± 0.0 0.1± 0.0 0.1± 0.1 0.1± 0.0 0.1± 0.0 CMA-ES 0.1± 0.0STOI
Y 0.3± 0.1 0.3± 0.1 0.3± 0.1 0.3± 0.1 0.3± 0.1 0.1± 0.1 - 0.3± 0.1

person who recorded the sounds. For this reason, it is more dif-
ficult to recreate a perfectly harmonic voice like the vowel than a
noisy sound like the yawn. This does not imply that our optimizers
are malfunctioning, as the goal is to create comparable sounds, not
exactly the same. The STOI metric in this regard is very represen-
tative of this situation, giving the yawn almost equal score to the
PT-generated values, while the vowel is perceived as different.

These experiments also yield two interesting insights. First,
one may identify optimizer-representation combinations that per-
form better than others. In particular, multiscale representation
works well for yawns, while for sustained vowels STFT represen-
tation can do the job. None performed well using MFCC. Thus,
one may need to take into account the type of signal to get good
results from the optimizer. Second, there is consistency among the
perceptual metrics. Those experiments that are more challenging
consistently score worse than simpler ones.

5. CONCLUSION

Optimization techniques effectively predict the parameters of the
Pink Trombone to produce human-like vocalisations. The selected
algorithms delivered tuned control parameters while operating on
different acoustic features and metrics. The resulting audio sam-
ples match the selected input sounds regarding the absolute error
and perpetual equivalent metrics. A similar trend was observed
on sustained vowels and yawnings; as well as under additive noise
conditions. Nonetheless, the lower performance levels for the col-
lected audio samples compared to the synthetic inputs, in absolute
error and according to the perceptual-equivalent metrics, may be
influenced by the limited ability of the Pink Trombone to match
sounds out of its standard tract setting.

We comprehensively evaluated some of the most commonly
used optimization algorithms in a black-box approach, predict-
ing their control parameters to synthesize non-speech sounds. We
tested different audio representations and conducted experiments
in different scenarios, ranging from simple single-parameter pre-
dictions to complex, time-varying parameters or non-speech human-
made sounds. Our results show that the Evolution Strategies (GA
and CMA-ES) and Particle Swarm Optimization with multireso-
lution representation are the most effective for predicting control
parameters with minimum error (MAE < 1%) and high quality
(ViSQOL 4.3 for PT, PEAQ 3.0 for yawns). Also, PSO achieved
the best performance vs. computational cost ratio.

According to our results, GA and PSO algorithms were su-
perior to the other optimization methods in most cases. The NM
algorithm struggled with local minima, and the TRF algorithm, al-
though fast, could not optimize the parameters satisfactorily. The
NN could predict the control parameters when the input was a
sound generated by the PT. However, it failed when confronted
with real sounds or noisy inputs. NN strategy can be useful for
certain scenarios since it is also very fast once trained, but it can
hardly reach the generalization of the GA.

Regarding audio representations, our experiments demonstrate
that all those that we tested, including MFCC, STFT, MEL, and
multiresolution decomposition, are suitable for optimizing indi-
vidual control parameters. However, the MFCC representation
showed poorer pitch prediction capability than other representa-
tions. This is consistent with what is expected from a cepstral
representation according to the literature.

Perceptual metrics validate that the optimizers are able to faith-
fully predict audio samples generated by the synthesizer itself.
Taking this benchmark, we can observe that real sounds do not
reach such a high performance. The conclusion is that our syn-
thesizer cannot achieve certain characteristics of real voices in the
given conditions (e.g. vocal tract size). Nevertheless, comparable
sounds have been achieved, which is the goal of our research.

Future research should explore new techniques that enhance
the prediction of time-varying signals. Further analysis is needed
to investigate the parameter’s flow, whether it aligns with the typ-
ical structures of a human vocal tract or the chosen optimization
strategy. Additionally, hierarchical optimizations can improve the
neural network’s performance. Predictions should be conducted in
two stages by initially narrowing the bounds and then fine-tuning.

Finally, future work should use this framework to benchmark
other solutions to the problem, including alternative optimization
methods, acoustic features, metrics, and subjective tests.
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ABSTRACT

Due to advances in computational power, physical modelling for
sound synthesis has gained an increased popularity over the past
decades. Although much work has been done to accurately sim-
ulate existing physical systems, much less work exists on the use
of physical modelling simply for the sake of creating sonically in-
teresting sounds. This work presents a mass-spring network, in-
spired by existing models of the physical string. Masses have 2
translational degrees of freedom (DoF), and the springs have an
additional equilibrium separation term, which together result in
highly nonlinear effects. The main aim of this work is to create
sonically interesting sounds while retaining some of the natural
qualities of the physical string, as opposed to accurately simulat-
ing it. Although the implementation exhibits chaotic behaviour
for certain choices of parameters, the presented system can create
sonically interesting timbres, including nonlinear pitch glides and
‘wobbles’.

1. INTRODUCTION

Mass-spring networks for sound synthesis have been investigated
for over 40 years. Originally introduced in a musical context by
Cadoz et al. [1, 2, 3], mass-interaction models have seen recent
developments by Leonard and Villeneuve in [4, 5]. The modular-
ity of mass-spring networks and their simple formulation make it
an attractive physical modelling technique for creating interesting
sounds relatively quickly.

As one is restricted to a finite number of nodes in space (i.e.,
the masses), other physical modelling techniques have been often
used to model the musical string. Over the past 50 years, the string
has been modelled using various methods, including physically-
inspired methods such as the Karplus-Strong algorithm [6] and
digital waveguides [7], as well as modal synthesis [8], and finite-
difference time-domain (FDTD) methods [9, 10]. For an ideal
string, the latter methods have an equivalent mass-spring formu-
lation as described in [11, Sec 6.1.1], but once one wants to add
stiffness, FDTD methods are a much more straightforward alter-
native.

The above models assume low-amplitude string vibration such
that the string can be approximated using a linear model. High-
amplitude string vibration results in an initial higher pitch of the
string after which it decreases due to an effect called tension modu-
lation [12]. To include this effect in the string model, it needs to be
extended to be nonlinear instead. One of the most recent works on
nonlinear string modelling is due to Ducceschi & Bilbao in [13],

Copyright: © 2023 Silvin Willemsen. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

who use a mixed FDTD/modal scheme and energy quadratisation
techniques, to model the geometrically exact string.

One could imagine that a proper implementation of the nonlin-
ear string requires a very involved mathematical formulation, and
quickly loses simplicity in implementation. As opposed to FDTD
methods, a mass-spring formulation treats the discrete nodes of
the implementation as separate connected entities, rather than as
part of a predefined system, which provides additional flexibility
in several aspects. One of these is the relatively easy extension to
additional degrees of freedom (DoF) per node. In most traditional
FDTD schemes, each node only has one degree of freedom, which
in the case of the string is the transverse displacement [11]. If we
allow for more degrees of freedom, this could potentially lead to
interesting nonlinear effects. Furthermore, every mass and spring
can be treated as a separate entity of which parameters can be set
independently of each other also potentially leading to interesting
sonic qualities.

The aim of this work is not to accurately simulate the nonlinear
stiff string, but instead to create a flexible model that can produce
string-like sounds with interesting nonlinear sonic qualities. To
this end, this work uses a mass-spring formulation due to its flex-
ibility and relatively simple formulation. The main additions with
respect to an FDTD implementation of the (damped) ideal string
are using 2 DoF for each mass and an equilibrium separation for
the springs connecting neighbouring masses. These two additions
together, result in pitch glides and interesting timbres not feasible
with linear models.

The rest of this paper is structured as follows: Section 2 de-
scribes the continuous-time model starting with the description of
the 2-DoF mass and extending this to a sequentially connected
network resembling a string. Section 3 discretises the model and
uses analogies to the FDTD formulation to determine the stability
and fundamental frequency of the system. Section 4 provides re-
sults and discusses several experiments done using the presented
schemes, and Section 5 concludes.

2. MODEL

2.1. Single mass

Before considering a network of masses and springs, first consider
a single mass u = u(t) with time t (in s), defined over two spatial
DoF,

u =
[
ux uy

]
. (1)

Here, ux = ux(t) and uy(t) describe the x and y-location of the
mass, respectively (in m). Using the ∂t operator to denote differ-
entiation with respect to time, the ODE describing the dynamics
of a 2-DoF mass-spring system connected to the origin is (such as
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Figure 1: The effect of l0 on the trajectory of a 2-DoF mass-spring
system. The mass will be pulled towards the origin ([0, 0]) if it is
outside of the red region. If the mass is in the red region instead, it
will be pushed away from the origin. Here, the mass is initialised
at [l0, l0] and given a small horizontal velocity in the negative x-
direction.

done in [4])

M∂2
t u = −Kf u

∥u∥ , with f = ∥u∥ − l0, (2)

massM > 0 (in kg), spring constantK > 0 (in N/m), equilibrium
spring separation l0 ≥ 0 (in m) and spring force f (in N). Further-
more, ∥u∥ describes the magnitude of u (in m), which when using
two DoF is defined as

∥u∥ =
√
u2
x + u2

y . (3)

The equilibrium separation l0, can be seen as introducing a zone
where the spring pushes the mass away from the equilibrium rather
than pulling it towards it. See Figure 1.

One can observe that if l0 = 0, Eq. (2) reduces to a mass-
spring system whose dimensions are uncoupled; in other words, l0
introduces coupling between the two dimensions.

2.2. Multiple masses

Going towards a string-like mass-spring network, one can create
a system of Nmass masses connected by Nspring springs, which are
related as follows:

Nmass = Nspring + 1. (4)

Subscript m = {0, . . . Nspring} will be used to index the masses,
i.e., mass m will be described by the state um = um(t). For a
system of length L (in m), the masses are initially placed along the
x-axis with no displacement in the y-direction according to

um(0) =
[
m∆0 0

]
, (5)

where ∆0 = L/Nspring is the initial distance between two consec-
utive masses. Connecting the masses such that the spring forces

between masses m and m + 1 positively affects mass m and the
force between masses m and m − 1 negatively affects mass m
yields

M∂2
t um = Kfm+1/2

um+1 − um

∥um+1 − um∥
−Kfm−1/2

um − um−1

∥um − um−1∥
,

(6)

where the spring force between masses m and m+ 1 is

fm+1/2 = ∥um+1 − um∥ − l0. (7)

Notice that M applies to all masses and K and l0 apply to all
springs in the network.

2.3. Boundaries

Although in a mass-spring context one does not usually speak of
boundary conditions, conditions for the first and the last mass still
need to be defined. These are set to the following states:

u0(t) =
[
0 0

]
, and uNspring(t) =

[
L 0

]
, ∀t. (8)

2.4. Damping

Similar to the damped stiff string (see e.g. [11]), one can add
damping terms to Eq. (6) according to

M∂2
t um = . . .− 2σM∂tum

+ 2zM∂t (um+1 − um)− 2zM∂t (um − um−1) ,
(9)

with mass damping σ ≥ 0 and spring damping z ≥ 0 (both in
s−1). The spring damping term acts as a frequency-dependent
damping term, analogous to the damped stiff string. As the im-
plementation of this damping term is also analogous to its imple-
mentation in the stiff string it can be shown to be passive under
similar conditions (see Sec. 3.1.2).

Using the following shorthand notation

Um+1/2 ≜ um+1 − um

∥um+1 − um∥
, (10)

one can simplify Eq. (9) to

∂2
t um =

K

M
(um+1 − 2um + um−1)

− Kl0
M

(Um+1/2 − Um−1/2)

− 2σ∂tum + 2z∂t (um+1 − 2um + um−1) .

(11)

Figure 2 illustrates possible stable states (initially excited and af-
ter damping) of the 2-DoF mass-spring network described in this
section for low and high values of l0.

3. DISCRETE TIME

One can discretise continuous time according to t = nk, with
time index n = 0, 1, . . ., time step k = 1/fs (in s) and sample
rate fs (in Hz). The position of mass m can then be discretised at

DAFx.2

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

38



Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

uNspring

<latexit sha1_base64="hq0kKxdKy12cff7t6ixvBVX7/18=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwVRKp6LLgxpVUsQ9oQ5hMp+3QySTM3IglZOvGX3HjQhFXgn/gzr9x0nahrQcu93DOHebeE8SCa3Ccb6uwtLyyulZcL21sbm3v2Lt7TR0lirIGjUSk2gHRTHDJGsBBsHasGAkDwVrB6CL3W3dMaR7JWxjHzAvJQPI+pwSM5Nu4G0Sip8ehaWmS+emV3wV2D6mOFZeDLPPtslNxJsCLxJ2RMpqh7ttf3V5Ek5BJoIJo3XGdGLyUKOBUsKzUTTSLCR2RAesYKknItJdOLsnwkVF6uB8pUxLwRP39IiWhzpc1kyGBoZ73cvE/r5NA/9xLuYwTYJJOP+onAkOE81hwjytGQYwNIVRxsyumQ6IIBRNeyYTgzp+8SJonFbdaOb2ulms3H9M4iugAHaJj5KIzVEOXqI4aiKIH9IRe0Kv1aD1bb9b7dLRgzSLcR39gff4A9qKccw==</latexit>

u0

<latexit sha1_base64="HFHYZK+qMvCW2NlPe3L8sOI8xD0=">AAAB+3icbVC7TsMwFL0pr1JeoYwsFhUSU5WgIhgrsTAWRB9SG0WO47ZWHSeyHUQV5VdYGECIlZ1vYONvcNoO0HIky0fn3CsfnyDhTGnH+bZKa+sbm1vl7crO7t7+gX1Y7ag4lYS2Scxj2QuwopwJ2tZMc9pLJMVRwGk3mFwXfveBSsVica+nCfUiPBJsyAjWRvLt6iCIeaimkbmyNPczJ/ftmlN3ZkCrxF2QGizQ8u2vQRiTNKJCE46V6rtOor0MS80Ip3llkCqaYDLBI9o3VOCIKi+bZc/RqVFCNIylOUKjmfp7I8ORKuKZyQjrsVr2CvE/r5/q4ZWXMZGkmgoyf2iYcqRjVBSBQiYp0XxqCCaSmayIjLHERJu6KqYEd/nLq6RzXncb9YvbRq159zmvowzHcAJn4MIlNOEGWtAGAo/wBC/wauXWs/Vmvc9HS9aiwiP4A+vjBwZWlb4=</latexit>

(a) Small value of l0.
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(b) Large value of l0.

Figure 2: Possible stable states for different values of l0.

time t according to um(t) ≈ un
m. To approximate the continuous-

time derivatives used in the previous section, the following finite-
difference (FD) operators need to be introduced:

∂tum ≊





δt+u
n
m ≜ 1

k

(
un+1
m − un

m

)
,

δt−u
n
m ≜ 1

k

(
un
m − un−1

m

)
,

δt·u
n
m ≜ 1

2k

(
un+1
m − un−1

m

)
,

(12a)

(12b)

(12c)

which are the forward, backward, and centred difference respec-
tively. The former two are first-order accurate, whereas the latter
is second-order accurate [11]. A second-order differentiation can
be approximated using

∂2
t um ≊ δttu

n
m ≜ 1

k2
(
un+1
m − 2un

m + un−1
m

)
, (13)

which is also second-order accurate.
Using these definitions, Eq. (11) can then be discretised to the

following scheme:

δttu
n
m =

K

M
(un

m+1 − 2un
m + un

m−1)

− Kl0
M

(Un
m+1/2 − Un

m−1/2)

− 2σδt·u
n
m + 2zδt− (un

m+1 − 2un
m + un

m−1) ,

(14)

where

Un
m+1/2 ≜ un

m+1 − un
m

∥un
m+1 − un

m∥
, (15)

is Eq. (10) discretised. Notice that the first-order FD operators are
chosen to yield the highest accuracy, while keeping the scheme ex-
plicit. Appendix 7 provides an alternative, implicit discretisation.

To implement scheme (14), it needs to be expanded to an up-

date equation, or recursion:

(1 + σk)un+1
m =

(
2− 2Kk2

M
− 4zk

)
un
m

+

(
Kk2

M
+ 2zk

)
(un

m+1 + un
m−1)

− Kl0k
2

M
(Un

m+1/2 − Un
m−1/2)

+ (σk + 4zk − 1)un−1
m − 2zk

(
un−1
m+1 + un−1

m−1

)
,

(16)

which, after division by (1 + σk), can be solved for un+1
m .

3.1. Analogies to FDTD schemes

If one is familiar with FDTD methods, it is easy to see the resem-
blance between scheme (14) and FDTD schemes of the (damped)
1D wave equation. Despite some differences (being the term in-
cluding l0 and the possibility for additional DoF), this resemblance
can still be used to find definitions for the fundamental frequency
and stability, as will be presented in this section. For completeness,
the FDTD scheme of the 1D wave equation is given here.

The transverse displacement of an ideal string of length L (in
m) can be described by state variable u = u(x, t) (in m), which is
defined over space x ∈ [0, L] (in m) and time t (in s). Space x is
subdivided into NFD equally sized intervals according to x = lh
with spatial index l = {0, . . . , NFD}, and grid spacing h (in m).
Time t is discretised according to the same definitions presented at
the beginning of this section. Using these definitions, u(x, t) can
be approximated by grid function un

l .
Introducing the following FD operator, which approximates a

second-order spatial derivative

∂2
xu ≈ δxxun

l ≜ 1

h2
(un

l+1 − 2un
l + un

l−1) , (17)

the discrete damped 1D wave equation can be described by the
following scheme [11]:

δttu
n
l = c2δxxu

n
l − 2σ0δt·u

n
l + 2σ1δt−δxxu

n
l . (18)

Here, c is the wave speed (in m/s), and σ0 and σ1 are the frequency-
independent (in s−1) and the frequency-dependent damping coef-
ficients (in m2/s), respectively.

3.1.1. Fundamental frequency

To obtain the fundamental frequency (in Hz) of a string of length
L (in m) fixed at the ends, one uses

f0 =
c

2L
. (19)

Ignoring the damping terms for now (as these do not influence f0),
one can compare the update equation of the 1D wave equation with
that of the mass spring network in Eq. (16):

un+1
l =

(
2− 2c2k2

h2

)
un
l − un−1

l +
c2k2

h2
(un

l+1 + un
l−1) ,

un+1
m =

(
2− 2Kk2

M

)
um − un−1

l +
Kk2

M
(un

m+1 + un
m−1) .
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One can observe that the following combination of variables is
analogous to each other:

c2

h2
⇐⇒ K

M
. (21)

As the mass-spring network does not make use of h we can use
h = L/NFD (in the case of the Courant number λ = ck/h = 1 for
the 1D wave equation), and substitute this to yield

c2N2
FD

L2
=
K

M
. (22)

As NFD describes the number of intervals (rather than the number
of grid points) in the FDTD scheme, this is analogous to the num-
ber of springs in the mass-spring networkNspring. Using its relation
to the number of masses Nmass in Eq. (4), rearranging Eq. (22) in
terms of c, and substituting this into Eq. (19) yields

f0 =

√
K/M

Nmass − 1
. (23)

It is interesting to note that the fundamental frequency is solely
determined by the spring constant, the mass, and the number of
masses in the system. Therefore, the length L no longer has an
influence on the fundamental frequency of the system.

3.1.2. Stability

The stability condition for Eq. (18) can be shown to be [14]

c2k2

h2
+

4σ1k

h2
≤ 1. (24)

Comparing Eqs. (14) and (18) again, an analogy between the fol-
lowing variables can be made

σ1/h
2 ⇐⇒ z,

which, after including Eq. (21), one can rewrite (24) the following
stability condition for the mass-spring network

Kk2

M
+ 4zk ≤ 1.

As is the case for the 1D wave equation, the closer this condition
is to being satisfied with equality, the higher the simulation band-
width. As we would like to have control over this condition later
on, this is rewritten to

Kk2

M
+ 4zk ≤ Λ, (25)

where 0 < Λ ≤ 1 determines the bandwidth limit of the simula-
tion.

3.2. Implementation

Assuming that the fundamental frequency is known, Eq. (23) can
be rewritten to

Nmass =

√
K/M

2f0
+ 1. (26)

Rewriting Eq. (25) in terms of K/M ,

K

M
≤ (Λ− 4zk)

k2
,

and substituting this into Eq. (26), yields

Nmass ≥
√

(Λ− 4zk)

2f0k
+ 1. (27)

AsNmass is an integer, a rounding operation needs to be performed
on Eq. (27) that also satisfies the condition. The following can
therefore be used to calculate the number of masses

Nmass =

⌊√
(Λ− 4zk)

2f0k

⌋
+ 1, (28)

where ⌊·⌋ is the flooring operation. Finally, either M or K can
be fixed to an arbitrary value, and the other can be calculated by
rewriting Eq. (26)

K =M(2f0(Nmass − 1))2. (29)

Here, M is kept fixed and K is changed, analogous to changing
the tension of a string and keeping the mass per unit length fixed.

3.3. Output

One can obtain the output of the system by selecting one mass and
following its state over time. For an interesting stereo effect, the
longitudinal (x) and transverse (y) dimensions, can be mapped to
the left and right channel, respectively. As un

x,m has an initial non-
zero location due to Eq. (5) this needs to be corrected for, resulting
in

oleft(n) = un
x,mo −mo∆0 and oright(n) = un

y,mo , (30)

where mo ∈ {0, Nspring} is the index of the mass selected for the
output.

3.4. Extension to anisotropic systems

Another advantage of using a mass-spring formulation as opposed
to a FDTD one, is that it is relatively straightforward to use differ-
ent parameter values for different parts of the network. Although
this subsection will not be further discussed in the next sections,
it is interesting to mention a simple extension of Eq. (14) to be
anisotropic.

One can rewrite Eq. (9) to allow for different values for M
and K along the network.1 Using Mm to denote the mass of mass
m, and Km+1/2 to describe the spring force between masses m
and m+ 1,

Mm∂
2
t um = Km+1/2fm+1/2Um+1/2

−Km−1/2fm−1/2Um−1/2

− 2σMm∂tum

+ 2zMm+1/2∂t (um+1 − um)

− 2zMm−1/2∂t (um − um−1) .

(31)

Here,

Mm+1/2 =
1

2
(Mm+1 +Mm) (32)

is the average mass of two neighbouring masses. Please note that
the fundamental frequency calculation in Eq. (23) does not hold
for an anisotropic system.

1In principle, σ, z, and l0 could also have been chosen to vary along
the network, but are left constant for the sake of brevity.
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3.4.1. Stability

In order to keep the system stable, the stability condition in Eq.
(25) needs to be adapted to challenge the condition most:

Kmaxk
2

Mmin
+ 4zk ≤ Λ, (33)

where

Kmax = max
m∈{0,...,Nspring}

Km+1/2 and Mmin = min
m∈{0,...,Nmass}

Mm.

(34)

4. RESULTS AND DISCUSSION

This section presents the results of several simulations using Eq.
(16) with different parameter values and discusses these. Sound
examples can be found online [15].

4.1. Simulation setup

As according to Eq. (23) the length of the system L does not
change the eventual behaviour of the system, we can set L =
Nspring such that ∆0 = 1 and Eq. (5) simplifies to

um(0) =
[
m 0

]
.

This way, the value of l0 can be seen as a ratio of the initial differ-
ence between two consecutive masses (i.e., l0 = 0.5 yields a rest-
ing length of half the initial distance between two masses). The
system is then excited by giving mass me ∈ {0, . . . , Nspring} an
initial displacement of e in both x and y directions:

u0
me = u1

me =
[
me + e e

]
. (35)

Notice that with this setup, the output in Eq. (30) has to be nor-
malised (divided) by e to yield output in the [−1, 1] range. Table 1
shows the other parameters used for the experiments and provides
usable ranges for some.

4.2. Chaotic behaviour

The first thing to note, is that for values of Λ close to 1 in Eq. (25),
non-zero values of l0 cause increasingly chaotic behaviour, which
causes the system to produce ‘buzzing’ output. This is in line with
what Bilbao mentions in [11, p. 229], stating that

“... for a nonlinear system, anomalous behavior may be observed
when the grid spacing is chosen close to the stability bound.”

The behaviour is most likely caused by a numerical integration
error of the nonlinear term, which is (most probably) why the
implicit implementation in Appendix 7 shows slightly improved
behaviour in this regard. It is important to note that the chaotic
behaviour does not imply that the implementation is unstable; al-
though the system might never fully decay, it does not exhibit ex-
plosive behaviour!

The system has been tested for different values of l0, z and Λ
to see whether it would either exhibit chaotic behaviour or decay
instead. These tests have been repeated at fs = 44100 and fs =
88200. A full overview of the results can be found in Figure 3. All
generated sounds can be found via [15] and were obtained through
Eq. (30).

Table 1: Parameter values divided into static parameters used to
generate the results and parameters that can be tweaked to gener-
ate different behaviour.

Parameter Symbol (unit) Value
Static parameters
Mass M (kg) 0.01
Fundamental freq. f0 (Hz) 100
Spring stiffness K (N/m) Eq. (29)
Mass damping σ (s−1) 1
Initial displacement e (m) 100
Initial inter-mass dist. ∆0 (m) 1
Excited mass me (-) me = ⌊0.63Nspring⌋
Output mass mo (-) 10
Number of masses Nmass (-) Eq. (28)
Altered parameters
Stability bound Λ (-) 0 < Λ ≤ 1
Spring damping z (s−1) z ∈ [0, 5∗]
Equilibrium sep. l0 (m) l0 ∈ [0, 2∗]
Sample rate fs (Hz) fs ∈ [44100, 88200]∗

∗these numbers are to determine usable ranges, but the parameters are not
bounded by these values.

The results indicate that lower values for Λ and l0 are the
main factors for preventing chaotic behaviour. Similar results are
obtained for both sample rates (even slightly in favour of fs =
44100). This is because the simulation is not actually oversam-
pled; more masses are added according to Eq. (28) due to a de-
crease in k. If one instead oversamples without changing any other
parameters, this automatically decreases Λ in Eq. (25) resulting in
reduced chaotic behaviour. Although this retains a high simulation
bandwidth, it does increase the computational cost.

If the eventual goal is to implement this algorithm in real time,
a better option would be to reduce Λ manually. Although this de-
creases the simulation bandwidth, it decreases chaotic behaviour
without increasing the computational complexity (even reducing it
by reducing the number of masses in springs through Eq. (28)!).
Results show that if one chooses z ≥ 3, values for λ ≤ 0.1 result
in non-chaotic behaviour for l0 ∈ [0, 2] (and probably higher).

The fact that an increase in the spring damping z decreases
chaotic behaviour follows from the fact that the chaotic oscillations
cause rapid extensions and contractions of the springs. This will be
more damped for higher values of z. Furthermore, a higher value
for z also increases the speed that the simulation reaches a stable
equilibrium.

4.3. Frequency-domain behaviour

Spectrograms of the simulation with parameters l0 = 0.75, z =
2, Λ = 0.1 can be seen in Figure 4. The results and discussion
below assume that Λ and z are chosen such that the system does
not behave chaotically.

All non-zero values of l0 have a tension-reduction effect on
the string in the transverse (y) direction. In the longitudinal (x)
direction, however, the effect of l0 on the frequency depends on its
value with respect to the initial distance between the masses ∆0.
For l0 ≤ ∆0, the equilibrium separation in the springs eventually
(after damping) cancel each other out, and the system will – after
a slight ‘wobble’ downwards in pitch – return to its original funda-
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<latexit sha1_base64="OdBdTpgrP6bQ/rPCJszt/dhHqaA=">AAACCnicbVC7TsMwFL3hWcorwMhiqJA6VQkqgrESCwNDkehDaqLKcdzWquME20EqUWcWfoWFAYRY+QI2/ga3zQAtV7J0dM659/qeIOFMacf5tpaWV1bX1gsbxc2t7Z1de2+/qeJUEtogMY9lO8CKciZoQzPNaTuRFEcBp61geDnRW/dUKhaLWz1KqB/hvmA9RrA2VNc+8q6NOcTIu0txiLwAk6HiWA1y4gF17ZJTcaaFFoGbgxLkVe/aX14YkzSiQhMzSXVcJ9F+hqVmhNNx0UsVTcwa3KcdAwWOqPKz6SljdGKYEPViaZ7QaMr+7shwpNQoCowzwnqg5rUJ+Z/WSXXvws+YSFJNBZkt6qUc6RhNckEhk5RoPjIAE8nMXxEZYImJNukVTQju/MmLoHlacauVs5tqqVbO4yjAIRxDGVw4hxpcQR0aQOARnuEV3qwn68V6tz5m1iUr7zmAP2V9/gDo2Jmw</latexit>

⇤ \ z

<latexit sha1_base64="OdBdTpgrP6bQ/rPCJszt/dhHqaA=">AAACCnicbVC7TsMwFL3hWcorwMhiqJA6VQkqgrESCwNDkehDaqLKcdzWquME20EqUWcWfoWFAYRY+QI2/ga3zQAtV7J0dM659/qeIOFMacf5tpaWV1bX1gsbxc2t7Z1de2+/qeJUEtogMY9lO8CKciZoQzPNaTuRFEcBp61geDnRW/dUKhaLWz1KqB/hvmA9RrA2VNc+8q6NOcTIu0txiLwAk6HiWA1y4gF17ZJTcaaFFoGbgxLkVe/aX14YkzSiQhMzSXVcJ9F+hqVmhNNx0UsVTcwa3KcdAwWOqPKz6SljdGKYEPViaZ7QaMr+7shwpNQoCowzwnqg5rUJ+Z/WSXXvws+YSFJNBZkt6qUc6RhNckEhk5RoPjIAE8nMXxEZYImJNukVTQju/MmLoHlacauVs5tqqVbO4yjAIRxDGVw4hxpcQR0aQOARnuEV3qwn68V6tz5m1iUr7zmAP2V9/gDo2Jmw</latexit>

⇤ \ z

<latexit sha1_base64="OdBdTpgrP6bQ/rPCJszt/dhHqaA=">AAACCnicbVC7TsMwFL3hWcorwMhiqJA6VQkqgrESCwNDkehDaqLKcdzWquME20EqUWcWfoWFAYRY+QI2/ga3zQAtV7J0dM659/qeIOFMacf5tpaWV1bX1gsbxc2t7Z1de2+/qeJUEtogMY9lO8CKciZoQzPNaTuRFEcBp61geDnRW/dUKhaLWz1KqB/hvmA9RrA2VNc+8q6NOcTIu0txiLwAk6HiWA1y4gF17ZJTcaaFFoGbgxLkVe/aX14YkzSiQhMzSXVcJ9F+hqVmhNNx0UsVTcwa3KcdAwWOqPKz6SljdGKYEPViaZ7QaMr+7shwpNQoCowzwnqg5rUJ+Z/WSXXvws+YSFJNBZkt6qUc6RhNckEhk5RoPjIAE8nMXxEZYImJNukVTQju/MmLoHlacauVs5tqqVbO4yjAIRxDGVw4hxpcQR0aQOARnuEV3qwn68V6tz5m1iUr7zmAP2V9/gDo2Jmw</latexit>

⇤ \ z

<latexit sha1_base64="OdBdTpgrP6bQ/rPCJszt/dhHqaA=">AAACCnicbVC7TsMwFL3hWcorwMhiqJA6VQkqgrESCwNDkehDaqLKcdzWquME20EqUWcWfoWFAYRY+QI2/ga3zQAtV7J0dM659/qeIOFMacf5tpaWV1bX1gsbxc2t7Z1de2+/qeJUEtogMY9lO8CKciZoQzPNaTuRFEcBp61geDnRW/dUKhaLWz1KqB/hvmA9RrA2VNc+8q6NOcTIu0txiLwAk6HiWA1y4gF17ZJTcaaFFoGbgxLkVe/aX14YkzSiQhMzSXVcJ9F+hqVmhNNx0UsVTcwa3KcdAwWOqPKz6SljdGKYEPViaZ7QaMr+7shwpNQoCowzwnqg5rUJ+Z/WSXXvws+YSFJNBZkt6qUc6RhNckEhk5RoPjIAE8nMXxEZYImJNukVTQju/MmLoHlacauVs5tqqVbO4yjAIRxDGVw4hxpcQR0aQOARnuEV3qwn68V6tz5m1iUr7zmAP2V9/gDo2Jmw</latexit>

⇤ \ z

<latexit sha1_base64="OdBdTpgrP6bQ/rPCJszt/dhHqaA=">AAACCnicbVC7TsMwFL3hWcorwMhiqJA6VQkqgrESCwNDkehDaqLKcdzWquME20EqUWcWfoWFAYRY+QI2/ga3zQAtV7J0dM659/qeIOFMacf5tpaWV1bX1gsbxc2t7Z1de2+/qeJUEtogMY9lO8CKciZoQzPNaTuRFEcBp61geDnRW/dUKhaLWz1KqB/hvmA9RrA2VNc+8q6NOcTIu0txiLwAk6HiWA1y4gF17ZJTcaaFFoGbgxLkVe/aX14YkzSiQhMzSXVcJ9F+hqVmhNNx0UsVTcwa3KcdAwWOqPKz6SljdGKYEPViaZ7QaMr+7shwpNQoCowzwnqg5rUJ+Z/WSXXvws+YSFJNBZkt6qUc6RhNckEhk5RoPjIAE8nMXxEZYImJNukVTQju/MmLoHlacauVs5tqqVbO4yjAIRxDGVw4hxpcQR0aQOARnuEV3qwn68V6tz5m1iUr7zmAP2V9/gDo2Jmw</latexit>

l0

<latexit sha1_base64="nndKGQ74Q7dVLcTlraeyjYbsa9A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIRY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQzcQbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+3LmlevXd3XK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP/KbjYE=</latexit>

l0

<latexit sha1_base64="nndKGQ74Q7dVLcTlraeyjYbsa9A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIRY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQzcQbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+3LmlevXd3XK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP/KbjYE=</latexit>

l0

<latexit sha1_base64="nndKGQ74Q7dVLcTlraeyjYbsa9A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIRY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQzcQbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+3LmlevXd3XK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP/KbjYE=</latexit>

l0

<latexit sha1_base64="nndKGQ74Q7dVLcTlraeyjYbsa9A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIRY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQzcQbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+3LmlevXd3XK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP/KbjYE=</latexit>

l0

<latexit sha1_base64="nndKGQ74Q7dVLcTlraeyjYbsa9A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIRY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQzcQbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+3LmlevXd3XK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP/KbjYE=</latexit>

l0

<latexit sha1_base64="nndKGQ74Q7dVLcTlraeyjYbsa9A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIRY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQzcQbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+3LmlevXd3XK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP/KbjYE=</latexit>

l0

<latexit sha1_base64="nndKGQ74Q7dVLcTlraeyjYbsa9A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIRY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQzcQbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+3LmlevXd3XK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP/KbjYE=</latexit>

l0

<latexit sha1_base64="nndKGQ74Q7dVLcTlraeyjYbsa9A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIRY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQzcQbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+3LmlevXd3XK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP/KbjYE=</latexit>

l0

<latexit sha1_base64="nndKGQ74Q7dVLcTlraeyjYbsa9A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIRY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQzcQbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+3LmlevXd3XK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP/KbjYE=</latexit>

l0

<latexit sha1_base64="nndKGQ74Q7dVLcTlraeyjYbsa9A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIRY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQzcQbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+3LmlevXd3XK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP/KbjYE=</latexit>

l0

<latexit sha1_base64="nndKGQ74Q7dVLcTlraeyjYbsa9A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIRY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQzcQbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+3LmlevXd3XK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP/KbjYE=</latexit>

l0

<latexit sha1_base64="nndKGQ74Q7dVLcTlraeyjYbsa9A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIRY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQzcQbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+3LmlevXd3XK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP/KbjYE=</latexit>

l0

<latexit sha1_base64="nndKGQ74Q7dVLcTlraeyjYbsa9A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIRY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQzcQbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+3LmlevXd3XK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP/KbjYE=</latexit>

l0

<latexit sha1_base64="nndKGQ74Q7dVLcTlraeyjYbsa9A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIRY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQzcQbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+3LmlevXd3XK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP/KbjYE=</latexit>

l0

<latexit sha1_base64="nndKGQ74Q7dVLcTlraeyjYbsa9A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIRY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQzcQbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+3LmlevXd3XK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP/KbjYE=</latexit>

l0

<latexit sha1_base64="nndKGQ74Q7dVLcTlraeyjYbsa9A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIRY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQzcQbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+3LmlevXd3XK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP/KbjYE=</latexit>

fs = 44100

<latexit sha1_base64="2QX8NCEOMj+3QoO6MVTUw15NC70=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lKRC9CwYvHCvYD0lA22027dLMbdidCCf0ZXjwo4tVf481/47bNQVsfDDzem2FmXpQKbsB1v53SxubW9k55t7K3f3B4VD0+6RiVacraVAmlexExTHDJ2sBBsF6qGUkiwbrR5G7ud5+YNlzJR5imLEzISPKYUwJWCuKBwbfY9z3XHVRrbt1dAK8TryA1VKA1qH71h4pmCZNABTEm8NwUwpxo4FSwWaWfGZYSOiEjFlgqScJMmC9OnuELqwxxrLQtCXih/p7ISWLMNIlsZ0JgbFa9ufifF2QQ34Q5l2kGTNLlojgTGBSe/4+HXDMKYmoJoZrbWzEdE00o2JQqNgRv9eV10mnUPb9+9eDXmo0ijjI6Q+foEnnoGjXRPWqhNqJIoWf0it4ccF6cd+dj2VpyiplT9AfO5w+/PY+O</latexit>

fs = 88200

<latexit sha1_base64="ribzKa3jgUBJxBH2k8CSxuvXxe8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKxV6EghePFWwttKFstpt26WYTdidCCf0ZXjwo4tVf481/47bNQVsfDDzem2FmXpBIYdB1v53CxubW9k5xt7S3f3B4VD4+6Zg41Yy3WSxj3Q2o4VIo3kaBkncTzWkUSP4YTG7n/uMT10bE6gGnCfcjOlIiFIyilXrhwJAb0mjUXHdQrrhVdwGyTrycVCBHa1D+6g9jlkZcIZPUmJ7nJuhnVKNgks9K/dTwhLIJHfGepYpG3PjZ4uQZubDKkISxtqWQLNTfExmNjJlGge2MKI7NqjcX//N6KYYNPxMqSZErtlwUppJgTOb/k6HQnKGcWkKZFvZWwsZUU4Y2pZINwVt9eZ10alWvXr26r1eatTyOIpzBOVyCB9fQhDtoQRsYxPAMr/DmoPPivDsfy9aCk8+cwh84nz/M/4+X</latexit>

Figure 3: Simulation results for Λ = {0.05, 0.1, 0.15, 0.2}, z = {1, . . . 5} and l0 = {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}. Simulations
lasted for 5 seconds and green cells indicate that the output decays within this time. Red cells indicate that the output does not decay within
this time, and the system is therefore considered to exhibit chaotic behaviour. Orange cells are boundary cases, where the decay is slightly
longer than usual, but the output decays within 5 s.
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Figure 4: Spectrograms of the left (longitudinal) and right (trans-
verse) output in Eq. (30) with parameters from Table 1 and
l0 = 0.75, z = 2, Λ = 0.1, and fs = 44100.

mental frequency. For l0 values larger than the initial equilibrium
separation (l0 > ∆0), the string will reach a stable ‘loose’ state
such as depicted in Figure 2b. These results are summarised in
Table 2.

Preliminary tests show that l0 ≈ 0.75∆0 causes a pitch glide
to f0/2 (the subharmonic) and l0 ≈ 0.94∆0 to f0/4. More work
needs to be done to find the exact relationship between l0 and f0.
As opposed to the nonlinear schemes presented in e.g. [11, Ch.
8], the pitch glides do not start higher than the original fundamen-
tal frequency, but instead move towards 0 Hz, due to the tension-
reduction effect of l0.

Table 2: Effect of equilibrium separation l0 on output (Eq. (30)) if
behaviour is not chaotic.

Value for l0 Effect on oleft(n) Effect on oright(n)
l0 ≤ ∆0 Glide down and back up. Glide to lower f0
l0 > ∆0 Glide to f0 = 0. Glide to f0 = 0

4.4. Note on only using the longitudinal direction

If one chooses to only excite the longitudinal direction, i.e.

u0
me = u1

me =
[
me + e 0

]
,

the following holds:

un
y,m = 0, ∀m, ∀n.

In other words, the system behaves as if there was no transverse
dimension. For l0 ≤ ∆0 pitch gliding effects still occur, but
chaotic behaviour already occurs for much lower values of l0. For
l0 > ∆0, due to the lack of the transversal dimension, the masses
effectively have “nowhere to go", resulting in chaotic behaviour at
all times.

4.5. Note on computational complexity

Compared to an implementation of the damped 1D wave equation,
the update equation in Eq. (16) introduces additional computa-
tions in two different ways. First is the obvious extension to 2

DoF, doubling the number of computations with respect to a 1-DoF
implementation. The second and more important contribution to
computational complexity comes from the calculation of U ; more
specifically the calculation of the Euclidian distance between two
neighbouring masses (∥·∥), which adds Nspring square-root opera-
tions every time step.

However, due to the already computationally inexpensive im-
plementation of the damped 1D wave equation, these additional
aspects should definitely not prevent a real-time implementation
of the model presented here.

5. CONCLUSION

This paper presents a mass-spring network configured like a string.
The masses in the network can move in 2 DoF and the springs con-
necting the masses have an equilibium separation. These proper-
ties cause nonlinear behaviour in the system, such as wobbles and
pitch glides.

Although parameters could be chosen that yield chaotic be-
haviour, results show that one can prevent this by choosing param-
eters away from the stability bound and including spring damping.
Future work includes to find a more precise definition for param-
eter ranges for which the implementation does not exhibit chaotic
behaviour, as well as a relationship for the fundamental frequency
and equilibrium spring separation. Finally, it would be interesting
to see how this model compares to other already existing models
of nonlinear strings or modular mass-spring networks, such as the
CORDIS-ANIMA software [3].
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7. APPENDIX A: AN ALTERNATIVE DISCRETISATION

Using the centred averaging operator

µt·u
n =

1

2

(
un+1 + un−1) , (36)

an alternative discretisation of the nonlinear term in Eq. (11) (as
opposed to Eq. (14)) can be written according to2

δttu
n
m =

K

M
(un

m+1 − 2un
m + un

m−1)

− Kl0
M

(µt·Un
m+1/2 − µt·Un

m−1/2)

− 2σδt·u
n
m + 2zδt· (u

n
m+1 − 2un

m + un
m−1) .

(37)

Although this makes the system fully implicit, preliminary results
show that this can reduce chaotic behaviour in some situations.
However, due to its implicit nature, this scheme takes much longer
to compute than the scheme in Eq (14).

2Notice that the last term in Eq. (37) now also uses a δt· operator.
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ABSTRACT

A method is proposed that allows finite-difference (FD) simula-
tion of room acoustics to incorporate extended-reacting porous el-
ements without adding major computational cost. The porous el-
ements are described by a rigid-frame equivalent fluid model and
are incorporated into the time-domain formulation through auxil-
iary differential equations. By using a local staggered grid scheme
for the boundaries of the porous elements, the method allows an
efficient second-order scalar approach to be used for the uniform
air and porous element interior regions that make up the major-
ity of the computational domain. Both the scalar and staggered
schemes are based on a face-centered cubic grid to minimize nu-
merical dispersion. A software implementation running on GPU
shows the accuracy of the method compared to a theoretical ref-
erence, and demonstrates the method’s computational efficiency
through a benchmark example.

1. INTRODUCTION

The acoustic simulation of enclosed spaces is important in many
applications, from the architectural design of performance halls
and recording studios to the production of synthetic audio effects
for music, cinema and virtual acoustics. In large rooms, such as
performance halls, these simulations are usually performed using
a geometrical acoustics approach such as ray or beam tracing [1].
In smaller rooms wave-based methods become necessary to accu-
rately represent diffraction and modal behavior, but unfortunately
such methods are computationally intensive. A range of wave-
based methods has been applied to this problem, with finite differ-
ence (FD) [2] [3] [4] amongst the most popular, thanks in part to
its suitability for implementation on GPU [5] [6] [7] [8].

One of the challenges in room acoustics is to accurately model
the impact of various absorptive elements and surfaces in a room.
This can include furniture and wall and floor coverings, as well as
treatment panels or modules that are purposely added to alter the
acoustics of the space. The behavior of such elements is often ap-
proximated with a locally reacting boundary assumption that sim-
plifies the analysis [9] [10], but which may introduce significant
errors. Problems appear for example when absorbing panels are
present that have significant air gaps [11] [12] [13]. A more ac-
curate approach is then to compute the 3-D acoustic propagation
inside of any porous media as part of the overall simulation.

FD methods have been described that calculate such extended
reaction in 2-D [14] and 3-D [15], making use of idealized models
for the porous medium and conventional staggered Cartesian grids.

Copyright: © 2023 Jan W. Smits. This is an open-access article distributed under the

terms of the Creative Commons Attribution 4.0 International License, which permits

unrestricted use, distribution, adaptation, and reproduction in any medium, provided

the original author and source are credited.

More recently, 3-D discontinous Galerkin methods have been de-
scribed that allow for a more general equivalent-fluid model (EFM)
[16] [17], whereas EFM-based FD methods have been shown in
up to two dimensions [18] [19]. Meanwhile, non-Cartesian FD ap-
proaches have been demonstrated that improve computational effi-
ciency [20] [21] [22], but these schemes have not yet been adapted
to allow the modeling of extended reaction.

The aim of this paper is to describe a FD method that extends
the non-Cartesian face-centered cubic (FCC) scheme to include
the simulation of porous media described by a general frequency-
dependent EFM, thus enabling the simulation of extended-reacting
elements with higher computational and memory efficiency than
previous approaches. To the author’s knowledge, this is the first
time that a wave-based room acoustics method incorporating ex-
tended reaction is demonstrated at full audio bandwidth.

The paper is organized as follows. Section 2 describes the
background of compact FD schemes, including a short discussion
on dispersion error and computational efficiency. Section 3 then
describes the internal porous volume update that is part of the new
approach, and this is followed by a description of the porous vol-
ume boundary updates in section 4.2. The latter section also details
the staggered FCC grid that is used at the boundaries. Section 5
shows results obtained through a GPU-based software implemen-
tation, and section 6 provides a short summary of conclusions.

2. FINITE-DIFFERENCE SCHEMES

2.1. Yee scheme

Room acoustics analysis usually starts with the linearized equa-
tions of continuity and conservation of momentum

∂tp = −ρ0c2∇ · v (1)

ρ0∂tv = −∇p (2)

where p represents the scalar pressure field, and v the velocity vec-
tor field. The constants ρ0 and c represent the static fluid density
(kg/m3) and propagation speed of sound (m/s) respectively.

To achieve satisfactory results at higher frequencies, viscother-
mal losses can be incorporated through a post-processing step as
described in [23] or [24], which avoids impacting the complexity
of the computations through addition of a loss term in (2).

A common approach to solving the first-order system of Eqs.(1)
(2) is to discretize them on a so-called Yee grid [25], where the
pressure and particle velocities are interlaced in both space and
time [4], [2]:

δt+p
n

i
= −ρ0c2(δx−)

Tv
n+ 1

2

i+ 1
2

(3)

ρ0δt−v
n+ 1

2

i+ 1
2

= −δx+p
n

i
(4)
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The underlined variables in these formulas denote grid functions
that approximate their continuous counterparts:

pn
i
≈ p(ih, nk) (5)

v
n+ 1

2

i+ 1
2

≈ v((ix+ 1
2
)h,(iy+

1
2
)h,(iz+

1
2
)h,nk) (6)

where k and h are the temporal and spatial grid steps respectively,
and i and n are discrete indices:

i := (ix, iy, iz) ∈ Z3, n ∈ Z+ (7)

The operators δt+ and δt− are first-order forward and backward
difference operators defined here as

δt+p
n :=

1

k

(
pn+1 − pn

)
, δt−p

n :=
1

k

(
pn − pn−1) (8)

and δx+ and δx− stand for spatial difference (vector) operators.
Throughout this paper, bold emphasis will be used to distinguish
vector quantitites and operators from scalar ones.

2.2. Standard leapfrog scheme

Eqs. (1) and (2) can also be combined to form a scalar wave equa-
tion for the pressure:

∂ttp = c2∆p (9)

This second-order equation can then be discretized as

δttp = c2δ∆p (10)

where δtt is a second-order time-difference operator defined as

δttp
n

i
=

1

k2
(pn+1

i
− 2pn

i
+ pn−1

i
) (11)

and δ∆ is a discrete Laplacian operator

δ∆p
n

i
=

1

h2

(
Qn

i − 6pn
i

)
(12)

with Qn
i representing the sum of the nearest neighbors of pn

i
:

Qn
i := pn

i+ex
+ pn

i−ex
+ pn

i+ey
+ pn

i−ey
+ pn

i+ez
+ pn

i−ez
(13)

Substituting (11) and (12) in (10) and using the Courant number
λ := ck/h, leads to the scalar update equation

pn+1

i
= −pn−1

i
+ (2− 6λ2)pn

i
+ λ2Qn

i (14)

This formula is often referred to as the "standard leapfrog" scheme
[26], abbreviated as SLF. In [27] it is shown that this scheme and
the Yee scheme are equivalent, and produce results that are identi-
cal to within machine precision. The SLF scheme is usually prefer-
able over the Yee scheme, because it requires less computer mem-
ory and fewer computational operations [27].

Figure 1: Pressure field positions of a face-centered cubic (FCC)
grid, shown in relation to an associated Cartesian grid.

2.3. Face-centered cubic scheme

Other schemes for the wave equation can be formulated by consid-
ering expanded stencils for the Laplacian operator [20]. A compact
stencil of particular interest for room acoustics is the face-centered
cubic (FCC) stencil [28] [21], so called because its nodes lie on a
non-Cartesian face-centered cubic grid, which is defined by:

i := (ix, iy, iz) ∈ {Z3 : (ix + iy + iz) (mod 2) = 0} (15)

From the illustration in Figure 1 it can be seen that each node
on the FCC grid is surrounded by twelve nearest neighbors, result-
ing in a 13-point compact Laplacian stencil. If we use the vector
lm to represent the relative coordinates of the nearest neighbors of
a given grid node, the Laplacian operator for the FCC scheme can
be written as:

δ∆p
n

i
=

1

4h2

(
12∑

m=1

pn
i+lm

− 12pn
i

)
(16)

By substituting Pn
i :=

∑12
m=1 p

n

i+lm
, this can be simplified to:

δ∆p
n

i
=

1

4h2

(
Pn

i − 12pn
i

)
(17)

Then, using the second-order time operator of (11), the update
equation for the FCC scheme follows as:

pn+1

i
=
λ2

4
(Pn

i − 12pn
i
) + 2pn

i
− pn−1

i
(18)

The principal benefit of the FCC scheme lies in the fact that
it exhibits higher computational efficiency than other compact FD
schemes, as shown by Hamilton and Bilbao in [21]. To achieve a
fair comparison, the analysis in the reference maximizes the grid
steps in each scheme for a given numerical dispersion error, while
also satisfying the stability constraint of each method.

A recent study [29] finds that the threshold of human percep-
tion lies around 2% dispersion error for spaces with shorter echo
times, as typically found in small acoustically treated spaces such
as mixing rooms. At this error level, the analysis in [21] finds
that the FCC scheme is 11.3 times more efficient than the SLF
scheme, and this ratio will be around double when FCC is com-
pared to the Yee scheme [27]. Because all previous FD methods
for extended reaction have been based on the Yee scheme [14] [15]
[18] [19], this provides clear motivation for the development of an
FCC-based approach .
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3. EXTENDED-REACTION FD SCHEME

3.1. Equivalent fluid model

For the purpose of room acoustics, the propagation of sound in
porous media is commonly described with a rigid-frame equivalent-
fluid model (EFM) [11]. In this approximation, the frame of the
material is assumed motionless, and the air inside it is replaced
macroscopically by an equivalent free fluid with a complex bulk
modulus and effective density that both depend on frequency. The
acoustic equations for the domain ΩP of the porous volume, can
then be formulated in the frequency domain as

jωp̂ = −K̂(ω)∇ · v̂, x ∈ ΩP (19)

jωv̂ = −R̂(ω)∇p̂, x ∈ ΩP (20)

Here, v̂ and p̂ denote Fourier-transforms of the corresponding time-
domain variables. The complex frequency-dependent quantities
K̂(ω) and R̂(ω) represent the EFM estimates for the medium’s
effective bulk modulus in N/m2 and the inverse of its effective
density in m3/kg respectively. Combining (19) and (20) leads to
the Helmholtz equation

ω2p̂ = −R̂(ω)K̂(ω)∆p̂, x ∈ ΩP (21)

A primary condition for the validity of the EFM is that wave-
lengths are much larger than the characteristic dimensions of the
pores [11].

A variety of EFMs have been proposed based on empirical
and/or phenomenological justifications; see for example sections
2.5, 5.4 and 5.5 of [11]. For the results in this paper, the Allard-
Champoux model was used, described in [30]. With ambient con-
ditions defined by a static pressure ρ0 = 1.2kg/m3, a Prandtl
number of 0.702, an adiabatic index of 1.40 and a static pressure
of 101,320 N/m2, Eqs. (5) and (6) of [30] provide the model
formulas as:

R̂(ω)−1 = 1.2 +
(
−0.0364X−2 − j0.1144X−1)1/2 (22)

K̂(ω) = 101320
j29.64 +

(
2.82X−2 + j24.9X−1

)1/2

j21.17 + (2.82X−2 + j24.9X−1)1/2
(23)

The intermediate variable X in these formulas is defined as X :=
ρ0f/σ, with f = ω/2π as the frequency in Hz, and σ representing
the flow resistivity of the material in Nm−4s.

3.2. Auxiliary differential equations (ADE) method

In order to solve either (21) or the combination of (19) and (20)
in the time domain, the method of auxiliary differential equations
(ADE method) will be used, described in [31] and previously ap-
plied in [16], [17], [32] and [19], amongst others.

The ADE method consists in approximating the inverse effec-
tive density and effective bulk modulus with limited-order rational
functions in the frequency domain, then formulating the inverse
Fourier-transformed system with a set of additional state variables
called accumulators, and determining these accumulators through
a set of auxiliary differential equations that are solved alongside
the acoustical equation(s). The benefit of this approach is that
it avoids computationally expensive convolutions in the time do-
main, instead performing a limited number of additional state vari-
able computations.

Due to the passive and non-resonant nature of conventional
porous materials, it is sufficient to approximate the equivalent fluid
properties with only real poles [32], such that the partial fraction
expansions can be written as follows

K̂ ≈ K̂∞ +

MK∑

m=1

AK,m

ηK,m + jω
(24)

R̂ ≈ R̂∞ +

MR∑

m=1

AR,m

ηR,m + jω
(25)

forMK andMR fractions respectively. The poles (−η), residues
A, and high-frequency limit values K̂∞, R̂∞ in this approxima-
tion are found through a fitting procedure such as the method of
vector-fitting [33] used here. For stability, the poles should be con-
strained to be negative or zero (η ≥ 0) 1

It will also be useful to approximate the product of R̂ and K̂,
in a similar manner:

R̂K̂ ≈ R̂∞K̂∞ +

MRK∑

m=1

ARK,m

ηRK,m + jω
(26)

Using this expression, an approximation for the inverse Fourier
transform of (21) can be obtained as

∂ttp(t) ≈ R̂∞K̂∞∆p(t) +

MRK∑

m=1

ARK,mϕRK,m(t) (27)

where ϕRK,m are accumulator variables that satisfy the auxiliary
differential equations defined as:

∂tϕRK,m + ηRK,mϕRK,m = ∆p,∀m ∈ [1,MRK ] (28)

3.3. Porous medium update in FCC scheme

Let us now define three non-overlapping sets of nodes for the finite-
difference grid. An interior porous volume set Pp is defined as the
set of grid nodes that are inside of the porous region and for which
all the nearest neighbors are also inside the region. The air interior
set Pa similarly contains all nodes that are in air and whose neigh-
bors are in air also. Finally, the boundary set Pb consists of all
nodes which are separated from at least one neighbor by a porous
volume boundary.

For the nodes in Pp, a finite-difference update can then be
derived in two steps. In the first step, grid functions ϕ

RK,m
are

computed to approximate the continuous accumulators ϕRK,m by
evaluating a discretization of (28) at each time step:

ϕn+ 1
2

RK,m,i
=

(2− kηRK,m)

(2 + kηRK,m)
ϕn− 1

2
RK,m,i

+
2k

(2 + kηRK,m)
δ∆p

n

i
, ∀m ∈ [1,MRK ] (29)

where δ∆ is the discrete Laplacian operator from (16), and ∂t has
been approximated with the δt+ operator defined in (8).

For the second step, an update formula of the pressure values is
derived from (27) by replacing pwith the grid function p, applying

1Note that the (e+jωt) time convention used here is opposite that of
the negative time convention used in [31], explaining the different sign
appearing in the fraction denominators in Eqs. (24) (25) (26).
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the second-order operators defined in (11) and (16), and interpolat-

ing between ϕ
n+ 1

2
RK,m,i and ϕ

n− 1
2

RK,m,i to ensure that the accumulator
term is centered at time index n:

pn+1

i
=
k2R̂∞K̂∞

4h2
(Pn

i − 12pn
i
) + 2pn

i
− pn−1

i

+
k2

2

MRK∑

m=1

ARK,m

(
ϕn+ 1

2
RK,m,i

+ ϕn− 1
2

RK,m,i

)
(30)

4. POROUS-VOLUME BOUNDARY UPDATE

4.1. Staggered FCC grid

Because the material properties are discontinuous across bound-
aries of the porous volume, the wave-equation based approach of
section 3.3 can not be used for the nodes in Pb. Instead, a stag-
gered scheme will be used that makes it possible to formulate a
finite-difference approximation of the first-order system of Eqs.
(19) (20). This scheme is part of a family of staggered formula-
tions that can be derived from a finite-volume framework for iso-
hedral cell shapes, described in [34].

For this study, the scheme will be described using a staggered
grid that is created by complementing an FCC pressure grid with a
set of six velocity subgrids. The velocity subgrids are each created
by translating the nodes i of the FCC grid with one of six grid
offset vectors jl, defined as

j1 :=
1

2



1
1
0


 , j2 :=

1

2



0
1
1


 , j3 :=

1

2



1
0
1




j4 :=
1

2




1
−1
0


 , j5 :=

1

2




0
1
−1


 , j6 :=

1

2




1
0
−1




(31)

Scalar velocity grid functions vl,i+jl
can be defined on each of

these six subgrids to approximate the value of the velocity field in
the direction of its associated grid vector:

vl,i+jl
≈ v(hi+ hjl) · (jl/∥jl∥) (32)

The staggered grid formed by the combination of these sub-
grids is depicted in Figure 2. Similarly to the Yee grid, the velocity
points are located at the midpoint between adjacent pressure nodes
and only a single component is stored for each velocity point.

Using this grid, we can now define a discrete velocity diver-
gence operator as

(δx− · v)i :=
1

2
√
2h

6∑

l=1

(
vl,i+jl

− vl,i−jl

)
(33)

and a discrete gradient operator for the pressure as

(
δx+p

i

)
l
:=

1√
2h

(
p
i+2jl

− p
i

)
(34)

Applying these operators to (1) and (2) results in a staggered FD
scheme as follows:

δt+p
n+1

i
= − ρ0c

2

2
√
2h

6∑

l=1

(
v
n+ 1

2
l,i+jl

− vn+ 1
2

l,i−jl

)
(35)

δt−v
n+ 1

2
l,i+jl

= − 1

ρ0
√
2h

(
pn
i+2jl

− pn
i

)
(36)

The equivalence derived more generally in [34] can be verified
by applying a δt− operator to (35) and substituting (36). This leads
to the following second-order FD expression:

δt−δt+p
n+1

i
=

c2

4h2

6∑

l=1

((
pn
i+2jl

+ pn
i−2jl

)
+ 12pn

i

)
(37)

which, upon substitution of (8) for the difference operators results
in the same expression as (18).

Figure 2: Depiction of the local staggered face-centered (FCC)
grid. The blue spheres denote the pressure subgrid, and different
colors are used to distinguish each of the six velocity subgrids. For
visual simplicity the plot only shows the twelve velocity nodes that
are directly adjacent to the central pressure node.

4.2. Staggered-scheme boundary update

The system to be solved on the boundary is obtained by applying
the ADE method to the inverse Fourier transforms of Eqs. (19) and
(20), with use of the rational approximations (24) and (25):

∂tp = −K̂∞∇ · v −
MK∑

m=1

AK,mϕK,m (38)

∂tv = −R̂∞∇p−
MR∑

m=1

AR,mϕR,m (39)

where

∂tϕK,m + ηK,mϕK,m = ∇ · v, ∀m ∈ [1,MK ] (40)

and
∂tϕR,m + ηR,mϕR,m = ∇p, ∀m ∈ [1,MR] (41)

A FD formulation can now be obtained for the pressure nodes
in Pb by applying the divergence and gradient operators from (33)
and (34) to Eqs. (38) thru (41), resulting in

pn+1

i
= pn

i
− kK̂∞

(
δx− · vn+ 1

2

)
i

− k

2

MK∑

m=1

AK,m

(
ϕn+1

K,m,i
+ ϕn

K,m,i

)
(42)
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v
n+ 1

2
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n− 1

2
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− kR̂∞
(
δx+p

n

i

)
l

− k

2

MR∑

m=1

AR,m

(
ϕn+ 1

2
R,m,i,l

+ ϕn− 1
2

R,m,i,l

)
(43)

and the associated accumulator updates

ϕn+1

K,m,i
=

(2− kηK,m)

(2 + kηK,m)
ϕn

K,m,i
+

2k

(2 + kηK,m)

(
δx− · vn+ 1

2

)
i
,

∀m ∈ [1,MK ] (44)

ϕn+ 1
2

R,m,i,l
=

(2− kηR,m)

(2 + kηR,m)
ϕn− 1

2
R,m,i,l

+
2k

(2 + kηR,m)

(
δx+p

n

i

)
l
,

∀m ∈ [1,MR] (45)

In these equations, the accumulator variables for the continuity and
momentum equations are shifted by k/2 from each other in time
in order to ensure that both updates remain centered.

Figure 3 depicts a 2-D cross section of the grid, illustrating
the transition between the regular FCC grids used in the air and
porous volume sections, and the staggered FCC grid used at the
boundaries. The local (staggered) grid needs to include at a min-
imum all pressure nodes that are separated from one or more of
their nearest neighbors by a porous-volume boundary. For each
of these pressure nodes, the evaluation of (42) requires that all the
adjacent velocity values are computed and stored as well.

Figure 3: 2-D cross section showing the local staggered grid at
the boundaries of a porous volume. The blue spheres indicate the
pressure nodes of the local grid (Pb), and the red and violet tri-
angles indicate the associated velocity nodes in the viewing plane.
The internal pressure nodes of the air (Pa) and porous volumes
(Pp) are shown in light and dark grey respectively. A raster in
the background shows how the nodes are positioned relative to the
Cartesian grid spacing (h).

4.3. Rigid boundary conditions

At the edges of the domain, rigid boundary conditions are applied
that enforce zero particle velocity normal to the boundary: v⊥ =
0. In the domain covered by the staggered grid this is implemented
simply by setting the corresponding velocity values resulting from
(43) to zero, prior to the evaluation of (42). In the air and porous
volume internal domains, the boundary condition is implemented
by modifying the Laplacian operator: any "ghost points" that are
located across from a boundary are removed from the summation
in (16), and for each removal, the constant factor 12 on the right is
reduced by 1.

5. PRACTICAL RESULTS

5.1. Implementation

The method described in this paper was implemented as a C++
computer program, making use of the CUDA programming inter-
face to access GPU compute capabilities. New CUDA Kernels
were developed for the updates (30) (29) on the porous volume in-
ternal domain and updates (35) (36) (44) (45) along with updates
for the rigid boundary conditions adjacent to porous volumes. Ker-
nels for the air update (18) and for rigid boundary conditions next
to the air domain were borrowed from Hamilton’s open-source FD
program named PFFDTD to save development effort [35].

In order to facilitate efficient GPU data access on the staggered
grid, linked data structures were constructed that avoid expensive
spatial search operations. The preparation of this data from input
geometry was implemented making use of the OpenVDB library
of sparse volumetric data structures and tools [36].

5.2. Comparison against theory

An absorber configuration is considered at normal and 45◦ angles
of incidence θ, as shown in Fig. 4. The configuration consists of a
10cm thick porous panel that is separated by a 20cm thick air gap
from a rigid boundary. The height and width of the domain are
both 16m, and its length is 5.3m for the case of normal incidence,
and 18.3m for the oblique incidence case. Initial conditions are set
up to generate a plane wave with a 4cm wide raised cosine shape,
starting at 10cm to the left of the left-most absorber edge. The
pressure is computed at the midpoint on the surface of the porous
panel and is truncated in time to avoid contamination by spurious
reflections due to the finite domain and absorber sizes. The grid
step (h) is 1 cm. The porous medium properties are defined by
Eqs. (22) (23) with ρ0 = 1.2kg/m3 and a flow resistivity value
of σ = 10, 000Nm−4s, which is situated in the typical range for
commonly used reticulated foams.

The coefficients of Eqs. (24) (25) (26) were found by using the
method of vector fitting [33], in which two poles were used to fit
each of R̂ and K̂, and three poles were used to fit the product R̂K̂.
It was found that for the above parameter values, these fit orders
were sufficient to fit the Allard-Champoux model within 0.32%
maximum relative error over a frequency range of 20 to 4,000 Hz.

In order to compute the surface impedance of the absorber, an
incident-wave pressure pi is first computed by removing the ab-
sorber from the simulation. This response is than subtracted from
the response with the absorber to yield the reflected-wave pressure
pr . By taking the FFT of both pr and pi and then dividing the
two, a frequency-domain reflection coefficient R̂ is found, from
which the surface impedance Ẑ and absorption coefficient α can
be computed through [11]:

Ẑ =
ρ0c
(
1 + R̂

)

cos θ
(
1− R̂

) (46)

and
α = 1− ||R̂||2 (47)

For comparison of the simulation against theory, an exact an-
alytical formulation is used for the surface impedance of multilay-
ered fluids at oblique incidence, provided in section 3.4 of [11].
The results along with the theoretical reference are shown in Figs.
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5 and 6 for the incidence angles of 0◦ and 45◦ respectively. In both
cases the absorption shows a close match to the theory.

A brief comment should be made here about errors due to the
non-conforming grid, also referred to as staircase errors. Gen-
erally, an issue arises due to staircasing when absorbing local-
reacting boundary conditions are applied, resulting in significant
angle-dependent errors in the energy absorption, that do not re-
duce when the grid step is refined [10]. These errors are due to
incorrect effective surface-area of the applied boundary condition.
Because the extended-reaction absorber modeling described here
is volumetric in nature, it does not exhibit this type of error, as
supported by the fact that both modeled angles yield absorptions
that are close to the theoretical values. On the other hand, a new
type of error may appear when modeling thin structures, because
the non-conforming grid can cause errors in the effective absorber
thickness. Further analysis of this limitation should be conducted
as part of follow-up work.

Figure 4: Geometry of the validation test with gapped absorber.
(a) Test case for normal incidence. (b) Test case for 45◦ incidence.
The porous absorber thickness (10cm) and air gap size (20cm) are
shown exaggerated four times for visual clarity. The thick lines
around the outside represent rigid boundary conditions. The red
vertical lines mark the position of the plane wave initialization,
10cm to the left of the left-most absorber dimension.

5.3. Efficiency results

As a benchmark case for the computational and memory efficiency
of the method, a configuration was used consisting of a rectangu-
lar room with a 10 cm thick porous panel hanging 20 cm below
the ceiling, as well as a vertical free-standing porous panel with di-
mensions of 1.8 m height by 1.2 m width and 20 cm thickness. Di-
mensions of the room are 5m×5m×4m yielding a total volume of
100 m3, and the simulation was run at resolutions of h = 10.0mm
and h = 3.07mm in terms of the Cartesian grid step, giving a max-
imum of 2% numerical dispersion for frequencies up to 6.2 kHz
and up to 20 kHz respectively.

Figure 7 shows an early-time visualization of the wavefront
propagation, where a point-source is used with a 20 cm wide single-
cycle sine excitation. Partial transmission, reflection, and refrac-
tion of the pressure signal are visible at the porous barriers as ex-
pected.

The performance results for this benchmark model are sum-
marized in Table 1 for impulse-response simulations with a du-
ration of 1s, executed on a RTX A5000 GPU with 24GB video
RAM. The timing data shows that the addition of the extended-
reaction modeling results in a moderate additional cost in compute,
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Figure 5: Simulated impedance and absorption coefficient at in-
terface of absorber for a normal incidence plane wave, with com-
parison to theory.

with 27% of the total GPU time being spent on porous medium
updates in the full-bandwidth simulation, and 45% in the 6.2 kHz
case. The results imply that, for smaller-sized rooms at least, it is
feasible with this method to perform simulations up to full audio
frequency range on a single workstation GPU.

Experimentally, the porous volume updates were found to be-
have in a stable manner at least up to the stability limit ck/h ≤ 1
of the FCC scheme in air. This result aligns with the fact that the
wave propagation velocity in porous volumes is lower than in air.
A formal analysis of the stability conditions should be undertaken
as follow-up work.

6. CONCLUSIONS AND FUTURE WORK

In this paper a new finite-difference (FD) method was described for
the computation of acoustical impulse responses in rooms that in-
clude rigid-frame porous media. By combining second-order face-
centered cubic (FCC) updates in the uniform subdomains with a
staggered grid formulation on the boundaries, the method makes it
possible to include extended-reaction effects at only a limited extra
computational cost.

An experimental GPU-based software implementation was de-
scribed, and results were presented. A theoretical test case was
shown to provide validation for the accuracy of the method and a
benchmark case was used to quantify the computational and mem-
ory performance. The benchmark results demonstrate that it is
possible to compute extended reaction in a small room up to full
audio-bandwidth on a single GPU.

The method behaved in a stable manner during the experi-
mental tests, however, a formal analysis of the stability condi-
tions should be performed as part of follow-up work. Future work
should also quantify the impact of stairstep error when modeling
thin absorber structures.
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Figure 6: Simulated impedance and absorption coefficient at in-
terface of absorber for a plane wave at 45◦ incidence angle, with
comparison to theory.
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ABSTRACT

Modal methods are a long-established approach to physical
modeling sound synthesis. Projecting the equation of motion of a
linear, time-invariant system onto a basis of eigenfunctions yields
a set of independent forced, lossy oscillators, which may be simu-
lated efficiently and accurately by means of standard time-stepping
methods. Extensions of modal techniques to nonlinear problems
are possible, though often requiring the solution of densely cou-
pled nonlinear time-dependent equations. Here, an application
of recent results in numerical simulation design is employed, in
which the nonlinear energy is first quadratised via a convenient
auxiliary variable. The resulting equations may be updated in time
explicitly, thus avoiding the need for expensive iterative solvers,
dense linear system solutions, or matrix inversions. The case of a
network of interconnected distributed elements is detailed, along
with a real-time implementation as an audio plugin.

1. INTRODUCTION

Modal methods are a well-known approach to physical modeling
synthesis. In this framework, akin to spectral-like techniques [1], a
distributed linear, time-invariant system is described as a superpo-
sition of spatial eigenfunctions called the “modes” of the system
[2]. These may be computed offline, along with a set of modal
weights depending on static parameters describing the input and
output (I/O) locations for the system. The resulting equations
take the form of a set of independent forced, damped oscillators.
Setting appropriate natural frequencies and frequency-dependent
damping ratios is simple in this framework. This structure lends
itself naturally to fast time-stepping implementations [3], which
can be made virtually dispersion-free by employing exact integra-
tors [4, 5]. These desirable numerical properties and the relative
ease of implementation made modal methods attractive in early ap-
proaches to physical modeling sound synthesis, when frameworks
such as Mosaic and Modalys emerged [6, 7]. Further simulation
methods, such as the Functional Transformation Method, share
some common features with modal synthesis [8, 9], though the
equations are here updated in time via inverse Laplace transforms.

In spite of many desirable properties, modal methods possess
some limitations. Most notably, the modes can be obtained analyt-
ically only in a few cases of interest in musical acoustics (though
the eigenvalue problem may still be solved numerically, using e.g.
finite differences or finite elements [10]). Furthermore, efficiency
quickly deteriorates when the I/O’s need to be rendered dynami-
cally. Finally, modal methods yield a rather cumbersome structure
Copyright: © 2023 Michele Ducceschi et al. This is an open-access article dis-
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cense, which permits unrestricted use, distribution, adaptation, and reproduction in

any medium, provided the original author and source are credited.

of densely nonlinearly coupled equations when applied to nonlin-
ear systems [11], the topic of this work. With regard to this latter
issue, exceptions exist, such as the Kirchhoff-Carrier string model
[4] (Chapter 8), or the case of strings colliding against a barrier
with a linear restoring force [12]. Perceptually-motivated assump-
tions may reduce the computational burden of nonlinear modal
systems, such as the simplified nonlinear model adopted in [13]
for the simulation of piano strings. More efficient direct numerical
methods, primarily finite differences, are often preferred in such
cases[4].

This work presents a fast implementation of modal techniques
in the case of nonlinearly coupled distributed elements. While
modularity in physical modelling has long roots (see e.g. [14, 15,
16, 17]), this work presents an efficient, energy-stable algorithm
for large, nonlinearly coupled modal systems. To this end, a nu-
merical method analogous to the Scalar Auxiliary Variable (SAV)
approach is employed [18]. Recently, this method was applied to
Hamiltonian systems with non-negative potential energy, yielding
computation times on par with simple explicit designs such as the
Störmer-Verlet method while conserving energy to machine accu-
racy and allowing the extraction of sufficient conditions for numer-
ical stability [19]. This is enabled by an appropriate “quadratisa-
tion” of the nonlinear potential energy, via an auxiliary state func-
tion to be updated independently. The resulting equations of mo-
tion may be updated explicitly, through fast linear system solution
techniques that exploit matrix structure. The numerical methods
described here form the basis for an efficient real-time audio plu-
gin.

The article is structured as follows: Section 2 introduces con-
tinuous models of the distributed canonical elements to be used to
construct the network. Useful identities for modal projections are
given alongside energy considerations. A model for the connec-
tions between elements is also detailed. Section 3 introduces the
equations for the network, as well as a suitable “quadratised” form
of the resulting modal equations, in state-space form. An energy-
stable, efficient time discretisation of the same system is described
in detail in Section 4, followed by several numerical examples. Fi-
nally, a discussion of the architecture of a real-time plugin, written
in C++ and suitable for use in commercial digital audio worksta-
tions is detailed in Section 5.

2. MODELS

In this section, the basic components of a modular network are
described: these are the resonators, including bars and plates, and
connections.
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Figure 1: Excitation functions of the form given in (4). Here, Te =
10 ms, fe,max = 1 N.

2.1. Resonators

The resonating elements considered here are α-dimensional dis-
tributed objects, with α ∈ {1, 2} (that is, α = 1 for a string or bar
and α = 2 for a membrane or plate). A model for such distributed
elements is given as [4]:

Gu = δefe(t), where G := ρ ∂2
t − L+ ρσ ∂t. (1)

Here, u(x, t) : V × R+
0 → R is the displacement of the element,

in m, measured transversely from the rest position. u is a function
of coordinates x = [x1, . . . , xα] ∈ V ⊂ Rα as well as time t ≥ 0.
For simplicity, it is assumed that V represents an α-dimensional
rectangular domain such that 0 ≤ xκ ≤ Lκ, with 1 ≤ κ ≤ α.
The dynamics of the element are encapsulated by the differential
operator G, where ∂t represents partial differentiation with respect
to time t. ρ is the α-dimensional density, in kg·m−α, and σ ≥ 0 is
a loss parameter, with units of s−1. Furthermore,

L = T∆−D∆2, (2)

where ∆ is the α-dimensional Laplace operator. Here, T , in N·
m1−α is a tension constant, and D, in N· m3−α is a rigidity con-
stant. Boundary conditions of simply-supported type are employed:

u = ∂2
nu = 0, for t ≥ 0,x ∈ B. (3)

Here, B is the boundary of V , and ∂n represents partial spatial dif-
ferentiation in a direction perpendicular to the boundary. Finally,
fe represents the excitation function, given here as a raised (or
half-raised) squared sine distribution, modeling either a strike or
pluck:

fe(t) = fe,max sin
2

(
ζπ (t− te)

2Te

)
(4)

for te ≤ t ≤ te+Te, and is 0 otherwise. Here te in s is the starting
time of the excitation, Te in s is the duration, and fe,max is the
maximum force, in N, and where ζ = 1 for a pluck and ζ = 2
for a strike, see Figure 1. Other forms for fe will be considered
subsequently here, including pure sinusoids or sawtooth waves.

The force is assumed to act over a distribution δe, here ideal-
ized as an α-dimensional Dirac delta function acting at the excita-
tion location x = xe:

δe := δ(x− xe). (5)

2.1.1. Energy balance of the isolated resonator

Under this choice of boundary conditions, model (1) satisfies the
following energy balance:

d(
∫
V H dx)

dt
= − ρσ

∫

V
(∂tu)

2dx

︸ ︷︷ ︸
Q

+ ∂tu(xe, t)fe(t)︸ ︷︷ ︸
P

, (6)

where the energy densityH is given as [3]:

H =
ρ

2
(∂tu)

2 +
T

2
|∇u|2 + D

2
(∆u)2. (7)

Under unforced conditions, the injected power P is zero and the
system is strictly dissipative (since Q > 0), leading to bounded-
ness of the solutions.

2.1.2. Modal expansion and identities

Consider now a modal expansion for the displacement, where each
mode is represented by a product of one spatial and one time com-
ponent:

u(x, t) = χ⊺(x)q(t). (8)
Here, χ, q are column vectors of length M . This is a finite in-
teger, to be specified in terms of the stability requirements of the
associated time-stepping scheme, as will be shown below. Let the
modal index bem ∈ [1, ...,M ]. With themth mode, there is asso-
ciated a set of integers {µm

1 . . . , µm
α } (the modal numbers). Since

simply-supported boundary conditions are assumed, one has

χm(x) :=
∏α

κ=1

√
2

Lκ
sin

µm
κ πxκ
Lκ

, µm
κ ∈ N. (9)

From (9), it immediately follows that
∫

V
χχ⊺ dx = I,

∫

V
χL(χ⊺) dx = −ρΩ2, (10)

where I is the M ×M identity matrix, and where Ω is a diagonal
M ×M matrix whose diagonal elements [Ω]mm are the natural
radian frequencies ωm, defined as:

ωm =

√√√√T

ρ

α∑

κ=1

(
µm
κ π

Lκ

)2

+
D

ρ

(
α∑

κ=1

(
µm
κ π

Lκ

)2
)2

. (11)

In the above, the modal indices µm
κ are found by sorting the eigen-

frequencies, such thatω1 ≤ ω2 ≤ ... ≤ ωM . In the one-dimensional
case, µm

1 = m. In the two-dimensional case, the modal indices
µm
1 , µ

m
2 associated with each mode m depend on the aspect ratio,

see Figure 2 for an example of this.

2.2. Connections

Connections here take the form of nonlinear springs transferring
vibrations across the network. These are energy-storing devices,
for which the resulting force may be given as the gradient of a
potential, as

f(η) = −dϕ
dη
, (12)

where η is the elongation of the spring. In this work, intermittent
contact is permitted, such that

ϕ(η) =
K

γ + 1
[|η| − β]γ+1

+ +
ϵ0
2
≥ 0. (13)
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Figure 2: First four modes of the membrane / plate, with aspect
ratio L1/L2 = 2. The corresponding modal indices µm

κ are given
in brackets.

Figure 3: Example of nonlinear potential (13) and corresponding
force (12). Here, K = 102, γ = 1.1, β = 0.1, ϵ0 = 0. The
shaded area, whose width is given by 2β, represents a dead zone
(no force exerted).

Here, K ≥ 0 is a stiffness constant, γ ≥ 1 is a nonlinear exponent
and β ≥ 0 is a gap. The gauge constant ϵ0 ≥ 0 is introduced to
shift the zero-point of the potential without affecting the force f
in (12) (the role of such constant will be briefly discussed below).
The potential and the resulting force are represented in Figure 3.
Note that no force is exerted by the spring when |η| < β, resulting
in a rattling-type force [12, 16]. When β = 0, linear and cubic
springs are recovered by setting γ = {1, 3}, respectively.

3. MODULAR NETWORKS

The resonators described above can now be interconnected in a
modular fashion, using groups of connections. Assume Nu such
distributed elements, with displacement u(j)(x(j), t) and described
by the linear operator G(j), defined over V(j), j ∈ [0, . . . , Nu].
The excitation of the jth element, of the form (4) is here denoted as
f
(j)
e , and is distributed according to δ(j)e . Assume furthermore to

have a number Nc of connections, indexed by ν = 1, ..., Nc. The
νth connection connects element jν to j′ν , for jν , j′ν ∈ [0, . . . , Nu]

Figure 4: Example of a network comprising Nu = 3 distributed
elements (here, one plate and two strings), occupying the domains
V(i), i = {1, 2, 3}. The total number of connections is Nc = 4,
including a connection to a fixed reference frame.

(the special case in either one of jν , j′ν is zero will be treated
shortly). The connection locations are xν ∈ V(jν) and x′

ν ∈
V(j′ν). The force experienced by the distributed elements jν , j′ν
due to connection ν is then of the form (12), so that:

f (ν)(η(ν)) = −dϕ
(ν)

dη(ν)
, (14)

with
η(ν) := u(jν)(xν , t)− u(j′ν)(x′

ν , t). (15)

Furthermore, define the index set:

I(j)c = {ν ∈ {1, . . . , Nc} | jν = j} (16a)

and let
δ(ν) := δ(x(jν) − xν), ν ∈ I(j)c . (17)

and Given these, the equation of motion of the j th element can be
given as

G(j)(u(j)) =
∑

ν∈I(j)c

δ(ν)f (ν) + δ(j)e f (j)
e , (18)

Note that, in this framework, the the special case j′ν = 0 refers to
a connection to a fixed reference frame, as seen in Figure 4, for
which

η(ν,j
′
ν=0) := u(jν)(xν , t). (19)

It is convenient to define a single scalar potential ϕ = ϕ(η) :
RNc → R+

0 , incorporating the potentials from all the connections
in the network. This is

ϕ =

Nc∑

ν=1

ϕ(ν). (20)

An energy balance for the network is obtained after multiply-
ing (18) by ∂tu(j), integrating, and summing all the equations in
the network. This yields:

d(
∑Nu

j=1

∫
V(j) H(j)dx(j) + ϕ)

dt
=

Nu∑

j=1

(
−Q(j) + P(j)

)
, (21)
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where Q(j), P(j) have expressions analogous to those in (6) for
the element in isolation. When P(i) = 0 ∀i, the energy is non-
increasing, leading to boundedness of the solutions.

3.1. Energy Quadratisation

Central to the time-stepping scheme presented below is the idea of
“quadratisation” of the potential energy. This techinque is often
referred to as the Scalar Auxiliary Variable (SAV) method, pro-
posed originally for dissipative phase-field models [18], and later
applied to Hamiltonian systems [19]. For that, define

ψ =
√

2ϕ. (22)

Under such definition, an application of the chain rule allows one
to write the forces in terms of ψ, as

f (ν) = −ψ ∂ψ

∂η(ν)
:= −ψ g(ν), (23)

and note thatψ, like ϕ is a scalar function of η := [η(1), ..., η(Nc)].
When ϕ = ψ2/2 is substituted in (21), the energy includes quadratic
terms only. Note as well that the auxiliary variable ψ evolves in
time according to

ψ̇ = g⊺ η̇. (24)

3.2. Modal Equations

A set of time-dependent modal equations is obtained from (18),
after left-multiplying by χ(j) and integrating over V(j). By virtue
of (10), one gets

Γ(j)(q(j)) =
∑

ν∈I(j)c

Y(ν)g(ν)ψ + χ(j)(x(j)
e )f (j)

e , (25)

where:

Γ(j)(q(j)) = ρ(j)
(
q̈(j) +C(j)q̇(j) + (Ω(j))2q(j)

)
. (26)

In the above, q(j) is the vector of modal coordinates of the jth

distributed element, of length M (j). Furthermore:

Y(ν) :=

∫

V(jν )

χ(jν)δ(ν) dx(jν), ν ∈ I(j)c . (27)

Above, the matrix C is a positive diagonal matrix whose diagonal
elements include the modal damping coefficients, thus generalis-
ing the simple (i.e. frequency independent) loss profile given in
(1). The modal equations of all the Nu distributed elements can
now be consolidated into a single system:

M
(
q̈+Cq̇+Ω2q

)
= −Ygψ + fe(t), (28)

where M is a fully diagonal mass matrix including the ρ(j)’s; C
and Ω are fully diagonal matrices including the losses and radian
frequencies, sorted accordingly. The vector fe is obtained by con-
catenating χ(j)(x

(j)
e )f

(j)
e , j = 1, ..., Nu. Finally, Y is a (gener-

ally dense) M × Nc matrix, where M =
∑Nu

j=1M
(j). Note as

well that, in modal form, (24) becomes

ψ̇ = (Yg)⊺ q̇. (29)

3.2.1. State-space form

In view of the numerical application presented below, it is worth
recasting (28) and (29) in state-space form. This is:

q̇ = M−1p, (30a)
ṗ = −Cp−Kq−Ygψ + fe(t), (30b)

ψ̇ = (Yg)⊺M−1p, (30c)

where the stiffness matrix was conveniently defined as K := MΩ2.
In this configuration, to a vector of inputs fe(t) corresponds a vec-
tor y(j)(t) of N (j)

o outputs of the j th element, defined as

y
(j)
i (t) = (χ(j)(x

(j)
i ))⊺q(j)(t). (31)

System (30) is linear in the state variables q,p, ψ. The nonlinear-
ities are now expressed solely via the vector g. Such linearity is
the key feature of the underlying numerical scheme, in that if g
is assumed known at all times, then the system may be solved by
a simple matrix inversion. Since here M is diagonal, the scheme
overall becomes explicit, as will be seen shortly.

An energy balance for the modal system may be obtained im-
mediately, after left-multiplying (30b) by

(
M−1 p

)⊺. Applying
simple identities, one gets:

d

dt

(
1

2
p⊺M−⊺p+

1

2
q⊺Kq+

ψ2

2

)
= −Q+ P, (32)

where Q = p⊺M−⊺Cp, P = p⊺M−⊺fe. One may of course
obtain the same results by carrying out the integrals directly in
(21), when the integration over all the V(i)’s is performed using
the eigenfunctions (9), and after quadratisation of the nonlinear
energy as per (22).

4. DISCRETE-TIME EQUATIONS

A discretisation of system (30) follows as a direct application of
the time-stepping procedure detailed in [19]. This method allows
us to update the discrete equations in time explicitly, while guar-
anteeing a passive form of the discrete energy balance. Time is
now discretised according to a sample rate fs := 1/k, where k is
the sampling period, in s. Then, n ∈ N defines the time index,
such that solutions are evaluated at the time tn := kn. An inter-
leaved time grid will also be employed, at half-integer steps, as
tn+1/2 := k(n + 1/2). Time difference operators are introduced
as follows, for a time series un defined on the integer time grid:

d+u
n =

un+1 − un

k
. (33)

An analogous definition holds for an interleaved time series vn−1/2,
such that d+vn−1/2 = (vn+1/2 − vn−1/2)/k. An averaging op-
erator for an interleaved time series is also given as

m+v
n− 1

2 =
vn+

1
2 + vn− 1

2

2
. (34)

Given these definitions, a discretisation of (30) is given as:

d+q
n = M−1pn+

1
2 , (35a)

d+p
n− 1

2 = −Cm+p
n− 1

2 −Kqn −Ygn m+ψ
n− 1

2 + fne , (35b)

d+ψ
n− 1

2 = (Ygn)⊺ M−1m+p
n− 1

2 . (35c)
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This discretisation is energy-passive, in that left-multiplying (35c)

by (M−1m+p
n− 1

2 )⊺ leads to [19]:

d+


1

2
(pn− 1

2 )⊺M−⊺pn− 1
2 +

1

2
qn−1Kqn +

(ψn− 1
2 )2

2


 =

− (m+p
n− 1

2 )⊺M−⊺Cm+p
n− 1

2 + (m+p
n− 1

2 )⊺M−⊺fne ,
(36)

which discretises (32). While the discrete energy comprises quadratic
terms only, numerical stability is guaranteed only under non-negativity
of the energy overall. Using (35a) to express the momenta p in
terms of q in the expression for the energy above, one may derive
the following bound on the time step [19]:

k <
2

λmax(M
− 1

2KM− ⊺
2 )

=
2

ωM
, (37)

where λmax denotes the largest eigenvalue, and ωM is the largest
eigenfrequency across all the Nu distributed elements, taking the
form (11). This condition arises solely as the particular discretisa-
tion adopted here for the linear part, and it guarantees non-negativity
of the discrete energy in (36).

The key feature of scheme (35) is the explicit form of g, de-
fined here as:

gn := ∇ηψ

∣∣∣∣
t=tn

=
1√
2ϕ
∇ηϕ

∣∣∣∣
t=tn

, (38)

where ϕ is as per (20). Note that the division by
√
2ϕ may be ill-

defined when the gauge constant ϵ0 = 0 in (13). Thus, it may be
useful to shift the potential upward. It is known that the gauge con-
stant has an influence on the convergence properties of the quadra-
tised schemes [20], though a thorough discussion on the role of
such constant is out-of-scope here. Using (35a) and (35c) in (35b),
one arrives at the following:

Anqn+1 = d

(
qn,qn−1,gn, ψn− 1

2

)
, with (39)

An := I+ ab⊺, a :=
k

2
M−1Ygn, b :=

k

2
Ygn.

Above, the vector d contains values of the state vector from previ-
ous time steps. As noted above, the update is in the form of a linear
system (a rank-1 perturbation of the identity matrix). However, the
inversion of A may be performed in O(M) operations, using the
Sherman-Morrison formula [21, 19], thus yielding a very efficient
algorithm, as shown below.

4.1. Numerical Examples

Numerical experiments are given in Figures 5 and 6. There, scheme
(35) is compared to the simple Störmer-Verlet method [22], ap-
plied directly to the second-order-in-time system (28). This is an
explicit method which, in the linear case, has the same stability
condition as (37). However, stability is not guaranteed under non-
linear conditions, and unpredictable numerical behaviour ensues
for sufficiently large stiffness values, as seen in Figure 6.

In spite of this, the compute times for method (35) are very
much on par with the Störmer-Verlet method, since these are both
explicit schemes. Remarkably, the computational bottleneck here
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Figure 5: Time evolution of a string under the influence of Ns = 2
nonlinear springs (represented as black lines). Solid blue: scheme
(35); dashed red: Störmer-Verlet. Here, the string has a funda-
mental frequency of 100 Hz, a mass of 1 g, and presents a to-
tal M = 128 modes between the fundamental and the limit of
stability. The string is activated using a strike with Te = 5 ms,
fe,max = 200 N. The springs are located at 0.2L, 0.8L, and have
K = 7.3 · 10−4, γ = 1.1, β = 0. For this simulation, ϵ0 = 109.
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Figure 6: Same as Figure 5, but here K = 730.
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Figure 7: Matlab compute times for the string of Figure 5. (a):
fs = 44100, Ns as indicated. (b): Ns = 1, fs as indicated. Solid
blue: scheme (35); dashed red: Störmer-Verlet.

is not in the the structure of the scheme itself, but rather in the al-
gebraic operations involving the (dense) product Ygn, as can be
seen from Figure 7. In the figure, it is seen that the slope of the
two schemes is identical (and the compute times are very similar)
when the number of connections is fixed, and the sample rate is
changed. However, when the sample rate is fixed, and the number
of connections is varied, scheme (35) presents a somewhat steeper
slope than Störmer-Verlet. In practice, though, only a handful of
such nonlinear connections is needed for expressive sound synthe-
sis, as will be shown in the examples below.

5. REAL-TIME IMPLEMENTATION

There are a number of considerations that have to be addressed in
order to create a real-time instrument in the form of an audio plug-
in. Computational expense, polyphonic behaviour and parameter
control are all key aspects in developing a usable system. Three
different configurations of models were tested: connected strings
(SS), strings connected to a plate (SP), and two connected plates
(PP), as shown in Figures 8 - 10. In the SS set-up the excitation
pluck is applied to string 1 (that is f (j)

e in (18) is identically zero
for j > 1), with the remaining strings acting as resonators. These
can be tuned to different fundamental frequencies as required, with
either semitone or fine tuning offsets (this is a trivial procedure in
the modal framework). In the SP configuration both strings are
plucked and the plate acts as a resonating device. In the final set-up
PP an excitation signal is applied to the top plate with the second
plate acting as the resonator. This excitation can be in the form of
a raised cosine as described above, or indeed some arbitrary signal
such as a sawtooth or other waveform.

Figure 8: System of four connected strings.

Figure 9: System of two strings connected to a plate.

Figure 10: System of two connected plates.

Combining all 3 configurations in a single unified instrument
provides a suitably wide palette of timbres, from harmonic string
tones and pads, percussive strikes and evolving soundscapes. An
example of the plugin capabilities is given in the companion page1].
Each of the configurations requires a different approach to poly-
phonic behaviour, as described in Section 5.2 below.

5.1. Computational Performance

The core elements of the system which have to be computed at
each time-step are mainly simple operations over one-dimensional
arrays such as cumulative sum reductions, and also dense matrix-
by-vector multiplication (Ygn in (35)). The compute performance
varies linearly according to the number of modes used in the sys-
tem and the number of connecting elements. Ensuring peak perfor-
mance in C++ requires all aspects of the computation to be fully
vectorized. Whilst the majority of the operations can be vector-
ized by the compiler with a suitable optimisation level (i.e. -Ofast
in Clang), some elements do require manual application of vector
intrinsics. These are either SSE/AVX intrinsics for Intel builds or
NEON intrinsics for native use on Apple Silicon machines. Note

1https://mdphys.org/DAFx23.html
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that double-precision was used throughout due to the high level of
nonlinearity in the system.

Initial testing was performed off-line to gauge general CPU
performance. The strings model was tested with all 4 strings tuned
to either C0 (which used 800 modes) or C3 (which used 184 modes),
and with 4 connecting elements. The string-plate model was tested
using 1,100 modes and 4 connections, and finally the dual-plate
model using 1,300 modes and 2 connections. Test machines were
a Mac Pro with a Xeon E5 processor, a MacBook Pro with a Core
i7, and Mac mini with Apple Silicon M1 processor. Table 1 shows
the resulting computation times.

Table 1: Computation times for optimised C++ simulations over
44100 time-steps.

Configuration Xeon E5 Core i7 Apple M1

Strings C0 0.20s 0.18s 0.11s
Strings C3 0.06s 0.05s 0.04s
Strings-Plate 0.27s 0.26s 0.15s
Plates 0.29s 0.26s 0.17s

These timings are all well within the bounds required for use in
a real-time environment, even considering the lower overall clock
frequencies which are obtained when running a plug-in inside a
Digital Audio Workstation.

5.2. Polyphonic Behaviour

Having tested the models in their basic off-line states, the next
stage is to decide how to use them to create a playable instrument.
The CPU-usage of the SS model decreases significantly as the fun-
damental frequency increases. Only the bottom 2 octaves use the
full 200 modes, and higher registers require much less. Therefore
using a standard voice-based approach is viable in this case, and
allows 5 to 6 note polyphony (holding one voice as being ready
for reset). At a Note-On event a damped voice is recalculated to
the given fundamental and tuning offsets of the connected strings,
along with the other parameters that define the state of the string.
A re-triggering system is also employed, so that a string may be
plucked multiple times without having to set up a new voice.

The SP model, however, requires a very different mechanism.
Due to the number of modes used in the plate the system will al-
ways use over 1,000 modes. Applying a voice-based system would
very quickly consume an entire CPU core, even with just 2 or 3
note polyphony. Instead, a hybrid mechanism was used consisting
of a single instance of the SP. In order to achieve multiple octaves
of playable notes the strings are disconnected from the plate and
retuned on-the-fly. So at a Note-On event the required state of a
string is calculated whilst it is disconnected from the system, and
it is then reconnected whilst applying the excitation pluck. At the
same time the opposing string is damped and disconnected ready
for the next Note-On, in a monophonic mode, or left to continue
sounding in duo-phonic mode.

Finally the behaviour of the PP configuration depends on the
type of excitation. Here again a single instance of the 2 plates
is used. Note-On events can trigger strikes, or multiple strikes,
for percussive sounds. Separately, a choice of sawtooth or sine
wave signals can be used as the forcing excitation, thus allowing
multiple octaves of polyphonic signals at very little computational
cost using a voice-based setup. Traditional elements such as VCF

and distortion units can be employed at this point in the signal
chain to give a more flexible soundscape.

5.3. Parameter Control and Modulation

Parameter control of physical modelling systems is always a com-
plicated process. In an optimal case all parameters would contin-
uously affect the sound as the engine is being computed. How-
ever, this is often made difficult due to parameters that change the
setup of the system state, and for example the mass of a plate or
the stiffness of a string. During prototyping 3 different types of
parameter control were used; real-time continuous, Note-On, and
system-reset.

The core principle of these models is the ability to connect
strings and plates together to form systems of sympathetic reso-
nance. The parameters for the connecting elements, such as their
strength and rattle gap, can be directly manipulated in real-time.
The only requirement is some level of smoothing of the parameter
movement to avoid unwanted noise.

Parameters that define the state of a string, such as stiffness
(i.e., harmonicity), are defined as Note-On controls. Their value is
picked-up from the control at a new Note-On event and the string
state is calculated appropriately. This system works well for both
the connected strings configuration where it fits naturally into the
voice-based mechanism, and for the string-plate where we are dis-
connecting and reconnecting strings on-the-fly.

A further aspect of parameter control is modulation. One es-
sential example is being able to perform pitchbend and vibrato
on the strings. In a modal system this is straightforward as one
has access to the modal frequencies and their weights directly in
the sound engine. By computing a vector of frequencies at pitch-
bend up, and another at pitchbend down, a simple linear interpo-
lation can be used to obtain the correct frequency during run-time.
Further modulation effects can be obtained by varying the modal
weights over time.

Figure 11: Prototype of a connected strings model running as a
VST3 plug-in.

Parameters that control the state of a plate are more compli-
cated as the objects are acting as continuous resonators in both
configurations. One possible approach would be to store multiple
tables of modal frequencies and weights for various control set-
tings and interpolate between them. This approach has been used
in our previous work on plate reverberation [3] to allow the plate
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size to be dynamically adjusted without resetting the plate and dis-
rupting the audio signal. A simpler method is to perform a fast
damp and reset of the system when these parameters change, and
then re-exciting the model with the new settings. This was used in
prototyping due the number of plate controls which are available.

6. CONCLUDING REMARKS

This work has illustrated an application of newly devised schemes
for the fast simulation of mechanical systems with non-negative
potential energy. The schemes were applied to the modal equa-
tions of a nonlinearly coupled network of distributed elements,
forming the basis of an advanced physical modelling synthesizer.
The proposed schemes yield compute times close to those of sim-
pler, though numerically unstable designs such as Störmer-Verlet.
A working real-time plugin, suitable for use in most current digital
audio workstations, has also been illustrated. It has been shown
that this fast mathematical model allows the simulation of thou-
sands of nonlinearly coupled modes, while keeping the CPU us-
age low enough for real-time performance. The wide sonic palette
of the synthesizer, in conjunction with the flexibility of the modal
approach, makes the plugin an attractive choice for musicians and
sound designers alike.
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ABSTRACT

In physical modelling synthesis, articulation and tuning are ef-
fected via time-variation in one or more parameters. Adopting
hammered strings as a test case, this paper develops extended forms
of such control, proposing a numerical formulation that affords on-
line adjustment of each of its scaled-form parameters, including
those featuring in the one-sided power law for modelling hammer-
string collisions. Starting from a modally-expanded representation
of the string, an explicit scheme is constructed based on quadratis-
ing the contact energy. Compared to the case of time-invariant
contact parameters, updating the scheme’s state variables relies on
the evaluation of two additional analytic partial derivatives of the
auxiliary variable. A numerical energy balance is derived and the
numerical contact force is shown to be strictly non-adhesive. Ex-
ample results with time-variant tension and time-variant contact
stiffness are detailed, and real-time viability is demonstrated.

1. INTRODUCTION

The manipulation of variables is intrinsic to musical instrument
performance. For example, to produce a specific sound with a vi-
olin the musician controls the speed, normal force, and angle of
the bow as well as the position of fingers that press the string to
the fingerboard. In hammered string instruments, which is the tar-
get of the current study, such articulation is normally restricted to
the acceleration of keys that drive the hammer motion and the ad-
justment of tension during the tuning process, although in certain
instrument families, such as dulcimers, the striking position on the
string can also be varied.

In musical instrument modelling, articulation and tuning are
accomplished through variation over time of the relevant physical
parameters. This is exploited in physics-based synthesis for the ex-
ploration of the sound of acoustic instruments (of both existing and
modular design) across their parameter spaces [1]. Recently, spe-
cific attention has been given to on-line tuning of parameters that
are normally considered to remain constant [2, 3]. To contribute
towards facilitating such extended synthesis control, this paper sets
out to numerically model the interaction between a hammer and a
stiff string under time-variance of a non-redundant set of model
parameters. For the resulting algorithm to be of practical use, it
should be computationally efficient, numerically stable, and free
of audible artefacts. In addition, the response to driving forces

Copyright: © 2023 Maarten van Walstijn et al. This is an open-access article dis-
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and parameter manipulations should ideally be similar to what can
be expected in that regard from the underlying physical laws, and
parameter time-variance should not necessarily lead to large am-
plitude swings in the chosen output signal.

Solutions to various similar and related problems can be found
across the literature. Most notably, simulation of string vibrations
under time-varying tension (or an equivalent string length adjust-
ment) has been reported using digital waveguides [4], mass-spring-
damper systems [5], finite-difference methods [3], and modal syn-
thesis [6]. The challenge increases when nonlinearities are intro-
duced, perhaps most tellingly so when one-sided forces are in-
volved. For example, models in which a finger or other object
can be dynamically brought in contact with a string while also its
position along the string axis can be varied over time (e.g. [7, 8])
typically rely on an iterative solver to update the state variables,
which severely reduces the scope for parallelisation and real-time
implementation [9]. Similarly, in [2] all 29 parameters of a modal-
form string-bridge-plate model with nonlinear spring connections
were made tunable, but the use of an iterative solver meant that
for real-time audio rendering the parameter space and the rate of
change in parameters had to be empirically constrained to avoid
instability issues and artefacts. In [10] this issue was side-stepped
by casting the update equations in analytic form, but so far this
has been made to work only for a small subset of cases in which a
unity contact power law exponent applies.

Originating separately in Port-Hamiltonian form [11], the re-
cent emergence of energy quadratisation approaches, including the
Invariant Energy Quadratisation (IEQ) method [12] and the Scalar
Auxiliary Variable (SAV) method [13], has paved the way for nu-
merical simulation of nonlinear musical instruments vibrations with-
out the use of iterative solvers [14, 15], with specific scheme vari-
ants introduced for modelling collisions [16, 17]. The current pa-
per extends energy quadratisation to modelling lumped conserva-
tive nonlinearities under parameter time-variance, taking hammer-
string interaction as a case study. For completeness, additional
innovations that improve the handling of tension time-variance in
modal-form algorithms are introduced.

The paper is structured as follows. The hammer-string system
equations are outlined in Section 2, including a scaled form that is
modally expanded. The discretisation of the resulting equations is
presented in Section 3, with the update equations provided and also
featuring analyses of the key properties of the resulting algorithm.
The proposed formulation is then explored, exemplified, and tested
in Section 4 via a number of numerical experiments, followed by
concluding remarks in Section 5. Sound examples are available on
the accompanying github page1.

1https://github.com/mvanwalstijn/Tunable-Collisions
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2. HAMMER-STRING MODEL

In the following, ∂ty and ∂xy denote the partial derivatives with
respect to time t and string axis position x, respectively, and the to-
tal time derivative is written as dty. Considering a string of length
L, mass density ρ, cross section A, Young’s modulus E, moment
of inertia I interacting with a hammer of mass mh striking from
above, the equations governing the transversal string displacement
u = u(x, t) and hammer position uh = uh(t) can be written as
[18]:

ρA∂2
t u = T∂2

xu− EI∂4
xu+ θ(x)Fc, (1)

dt
{
mhdtuh

}
= Fe − Fc. (2)

The driving of the hammer is represented here with the excitation
force Fe = Fe(t), the specific form of which depends on the type
of instrument. For example, a simplified form of modelling Np

successive piano hammer strikes at time instants t = τl is:

Fe(t) =

Np∑

l=1

mhVe,l︸ ︷︷ ︸
pe,l

δ(t− τl) + Fstop,l(t), (3)

where Ve,l < 0 is an externally supplied hammer velocity param-
eter. In the absence of gravity, we emulate the hammer coming to
rest at uh = umax after bouncing back from the string, which is
represented in (3) by the forces Fstop,l(t) < 0; in practice, one
may achieve this by simply capping the hammer displacement at
uh = umax. Modelling the driving of the hammer in dulcimers or
clavichords would require different formulations of Fe(t).

The contact force in (1,2) is assumed to be non-hysteretic un-
der parameter constancy, and is defined with a power-law:

Fc = −κ [y]α+ ≤ 0, (4)

where [y(t)]+ = max(0, us(t)−uh(t)) is the effective inter-object
compression. For simplicity, the contact force is applied at a single
point, using θ(x) = δ(x−xh). Correspondingly, the displacement
of the string as ‘seen’ by the hammer is us(t) = u(xh, t). Simply
supported boundary conditions are assumed:

u(0, t) = ∂2
xu(0, t) = 0, u(L, t) = ∂2

xu(L, t) = 0, (5)

and initial conditions are set as

uh(0)=umax, dtuh(0)=0, u(x, 0)=0, ∂tu(0, x)=0.
(6)

As in previous studies (e.g. [10]), the force at the end of the string
is chosen as an appropriate output variable:

Fs(t) = −T∂xu(L, t) + EI∂3
xu(L, t). (7)

2.1. Scaled Form

The parameters ρ,A, andL are considered to remain constant over
time. To obtain a form of the system equations with fewer param-
eters, the following non-dimensional variables are introduced:

x̄ =
x

L
, ū =

u

L
, ūh =

uh

L
. (8)

Then, after substitution, the system can be written as

∂2
t ū = T̄

[
∂2
x̄ū− π−2B∂4

x̄ū
]
+ θ̄(x̄)F̄c, (9)

dt
{
m̄hdtūh

}
= F̄e − F̄c, (10)

Scaled-Form H-S Model DAC
Gout

7Fe

7Fs
7mh 7xh K ,

6f1 B 20 21 22 23

Figure 1: Schematic diagram of the scaled-form hammer-string
model.

where

F̄c = κ̄
[

ȳ︷ ︸︸ ︷
ūs − ūh

]α
+
, F̄e =

Np∑

l

p̄e,l︷ ︸︸ ︷
pe,l
ρAL2

δ(t− τl), (11)

m̄h =
mh

ρAL
, T̄ =

T

ρAL2
, B =

EIπ2

TL2
, (12)

κ̄ =
κLα−2

ρA
, x̄h =

xh
L
, θ̄(x̄) = δ(x̄− x̄h). (13)

The new parameter B is the inharmonicity factor [19], m̄h is the
hammer/string mass ratio, and ūs(t) = ū(x̄h, t). Analogously, we
may define

F̄s(t) =
Fs

ρAL2
= T̄

[
π−2B∂3

x̄ − ∂x̄
]
ū(1, t). (14)

2.2. Energy Quadratisation

The scaled-form contact force in (11) can be expressed as:

F̄c = −∂ȳΦ̄, Φ̄(ȳ) =
κ̄

α+ 1
[ȳ]α+1

+ , (15)

where the actual contact potential Φ (in Joules) relates to its scaled-
form counterpart as Φ = ρAL3Φ̄. Taking a split-potential energy
quadratisation approach [15], the scaled-form contact potential is
written in quadratic form with Φ̄ = 1

2
ψ2. Making use of the chain

rule, this allows writing the contact force as

F̄c = −ψ
gȳ︷︸︸︷
∂ȳψ = −ψdtψ − dtκ̄

gκ̄︷︸︸︷
∂κ̄ψ−dtα

gα︷︸︸︷
∂αψ

dtȳ
. (16)

Defining the auxiliary variable ψ as the positive square root of 2Φ̄,
the gradient variables gȳ , gα, and gκ̄ can be expressed directly as
functions of ȳ, α, and κ̄ as follows:

gȳ =
√

1
2
κ̄(α+ 1) [ȳ]α−1

+ , gκ̄ =

√
[y]α+1

+

2κ̄ (α+ 1)
(17)

gα =

√
1
2
κ̄ [ȳ]α+1

+

α+ 1

[
log
(
[ȳ]+ + ε

)
− 1

α+ 1

]
, (18)

where a positive constant of the size of the machine epsilon has
been included within the log term in (18) for handling the case
where [ȳ]+ approaches zero. Following similar principles as ap-
plied in IEQ and SAV methods, the numerical scheme will be con-
structed in explicit form by directly discretising the equations con-
tained within (16) and making use of the analytic expressions in
(17,18) to evaluate the gradient variables. A novel aspect is the
emergence of the additional gradient terms gα and gκ̄ due to time
variance in the power law parameters. It is worth noting that if ψ is
defined as −

√
2Φ̄, for consistency the terms gȳ , gκ̄ and gα would

also have to have a minus sign in front of the square root symbol.
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2.3. Parameter Control

Figure 1 shows the inputs and outputs of the scaled-form model.
The output gain Gout is needed to scale F̄s to the [−1, 1] input
range of the digital-to-analog converter. Each of the ten control
parameters in Figure 1 is considered to be adjustable on the fly, and
as such is treated as time-dependent. Four of those parameters (B,
m̄h, x̄h, and α) readily appear in the scaled-form model equations
(9-13). The parameters η0,1,2,3 are damping coefficients that will
be introduced in Section 2.4. This subsection explains how the
remaining two parameters (f̆1, K) are related to the scaled-form
model parameters. The tension parameter (T̄ ) can be calculated
directly from the string’s fundamental frequency f̆1 (in Hz) in the
absence of stiffness as T̄ = 4f̆2

1 . To enable independent control
of the effective stiffness (throughK) and the ‘contact nonlinearity’
(through α), κ̄ has been re-parameterised as follows:

κ̄ = (α+ 1)K
( K
Φ̄r

)α

. (19)

where Φ̄r denotes a (constant-over-time) scaled-form reference po-
tential that represents the amount of contact energy that can ap-
proximately be expected2. This is exemplified in Figure 2. Exam-
ple values for the control parameters, which were transcribed from
[20], are listed in Table 1. Where needed, the string constants ρA
and L are used for un-scaling displacements, forces, or energies,
but they do not otherwise feature within the scaled-form model
that forms the basis for numerical simulation.

7y

7 )

(a)

, = 1
, = 2
, = 4

7y

7 )

(b)

K = 1
2Kr

K = Kr

K = 2Kr

Figure 2: Contact potential curves for (a): a range of α values
with K = Kr and (b): a range of K values and α = 2. In both
subfigures, the horizontal dashed line indicates the scaled-form
reference potential (Φ̄r).

2.4. Modal Expansion

For the boundary conditions in (5), we may expand the string dis-
placement as

ū(x̄, t) =

M∑

i=1

√
2 sin(iπx̄(t))︸ ︷︷ ︸
vi(x̄(t))

ũi(t) = [v(x̄)]Tu, (20)

where vi(x̄(t)) and ũi(t) are the modal shape function and the
modal displacement for the ith mode, and v(x̄) and u are the
respective column vector representations (with time dependence
dropped in the notation). Substituting (20) into (9), multiplying
with the basis functions, and spatially integrating from x̄ = 0 to

2The K values in Table 1 have been transcribed using Φ̄r ≈ 0.75/L2,
which is a representative value of the average piano key, derived from set-
ting the unscaled version Φr equal to the kinetic energy of a hammer with
m̄h = 0.75 and dtuh = −1.41 m/s.

Table 1: Scaled-form model parameter values (transcribed from [20]).

piano C2 piano C4 piano C7
f̆1 [Hz] 65.4 262 2093
B 7.4× 10−5 3.77× 10−4 8.6×10−3

η0 [s−1] 0.5 0.5 0.5
η1 [s−1] 0.01 0.01 0.1
η2 [s−1] 0.0 0.0 0.0
η3 [s−1] 10−6 10−6 10−4

m̄h 0.14 0.75 4.71
K [s−2] 335 2560 4.3×104

α 2.3 2.5 3.0
x̄h 0.12 0.12 0.0625
ρA [kg m−1] 18.4×10−3 6.3×10−3 5.2×10−3

L [m] 1.90 0.62 0.09

x̄ = 1 then leads to a set of coupled ordinary differential equations
which may be expressed in vector form as

d2tu+Rdtu+Ku = hF̄c, (21)

where h = v(x̄h) and K is an M ×M diagonal matrix with the
non-zero elements

Ki,i = i2π2T̄
(
1 + Bi2

)
. (22)

Initally, since there is no string damping in (9), the M ×M damp-
ing matrix R contains only zeros. String damping can be intro-
duced in polynomial form by setting the diagonal elements of R
to:

Ri,i = 2
(
η0 + η1iπ + η2i

2π2 + η3i
3π3) . (23)

Of particular relevance is the case where η2 = 0, which can be
shown (see [2]) to align well with the experimentally validated
damping formulation by Woodhouse [21]. The ith mode frequency
for free vibration (i.e. F̃i = 0) then is

ωi =

√
Ki,i − 1

4
R2

i,i, (24)

which takes on an imaginary value in case of overdamping. In
modal form, the string displacement at the contact point can be
written as us = hTu, and the string force in (14) becomes

F̄s(t) = −
M∑

i=1

iπT̄ (t)
[
1 + B(t)i2

]
(−1)i

︸ ︷︷ ︸
wi(t)

ũi(t) = −wTu.

(25)
The direct dependence of wi on T̄ can lead to large swings in the
output amplitude when time-varying the string tension. The need
for output gain adjustments can be significantly reduced by replac-

ing wi(t) with the adjusted output weights ẇi(t) =
√

T̄ (0)

T̄ (t)
wi(t).

2.5. Energy Balance and Conserved Quantities

An energy balance equation can be obtained by pre-multiplying
(21) with (dtu)

T, multipling (10) with dtūh, and adding the re-
sulting equations, yielding

dtH̄ = 1
2
uT(dtK)u− (dtu)

TR dtu− (dth)
TuF̄c + dtūhF̄e

− (dtūh)
2dtm̄h + ψ (gκ̄dtκ̄+ gαdtα) , (26)

in which the scaled-form Hamiltonian H̄ takes the form :

H̄ =
(dtu)

Tdtu

2
+

uTKu

2
+
m̄h(dtūh)

2

2
+
ψ2

2
≥ 0. (27)
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From (10) and (26), it is immediately clear that the scaled-form
hammer momentum p̄h = m̄hdtūh and system Hamiltonian H̄
are conserved under specific conditions:

dtp̄h = 0 if
(
F̄e, F̄c = 0

)
, (28)

dtH̄ = 0 if
(
F̄e, η0, η1, η2, η3 = 0,

∂tT̄ , ∂tB, ∂tm̄h, ∂tκ̄, ∂tα, ∂tx̄h = 0
)
. (29)

The numerical scheme will be constructed such that the discrete
counterparts of H̄ and p̄h are conserved under the same conditions.

3. NUMERICAL FORMULATION

3.1. Difference and Averaging Operators

The numerical model will evaluate variables and parameters at
discrete-time instants tn = n∆t. The usual form un is employed
to denote the approximation to u at time t = n∆t. The following
shift operators are defined:

ϵt+u
n = un+1

2 , ϵt−un = un−12 . (30)

Elemental temporal difference and averaging operators can then be
constructed as

δt =
ϵt+ − ϵt−

∆t
, µt =

ϵt+ + ϵt−
2

, δt· =
ϵ2t+ − ϵ2t−
2∆t

, (31)

δt+ =
ϵ2t+ − 1

∆t
, δt− =

1− ϵ2t−
∆t

µt· =
ϵ2t+ + ϵ2t−

2
. (32)

where we can identify several equivalences (e.g. δt· = δtµt).
Finite-difference approximations are achieved by either combin-
ing or directly applying these elemental operators, e.g.

δ2t u
n =

un+1 − 2un + un−1

∆2
t

= ∂2
t u(n∆t) +O(∆2

t ), (33)

µ2
tu

n =
un+1 + 2un + un−1

4
= u(n∆t) +O(∆2

t ), (34)

δt·u
n =

un+1 − un−1

2∆t
= ∂tu(n∆t) +O(∆2

t ). (35)

The following product identities can be derived for arbitrary grid
functions un, qn:

δt
{
(δtu

n)2
}
=2δt·u

nδ2t u
n, δt

{
(µtu

n)2
}
=2δt·u

nµ2
tu

n, (36)

δt{µtq
nδtu

n} δtun= 1
2
δt
{
µtq

n(δtu
n)2
}
+ δt·q

nδt+u
nδt−un,

(37)
which is useful for the purposes of numerical energy analysis.

3.2. Discretisation

Let un be a column vector holding the modal displacements ũn
i ,

i = 1, 2, · · ·M . The size of this vector (i.e. M ) will not be varied
on-line. Taking into account the need to avoid both numerical dis-
persion and mode aliasing, the mode dynamics in (21) with time-
varying parameters can be discretised in vector form as follows:

δ2tu
n + R̂nδt·u

n + µ2
t K̂

nµ2
tu

n = F̄n
c µt·h

n, (38)

where the non-zero elements of the adjusted diagonal matrices R̂n

and K̂n are
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Figure 3: The mode frequency soft-clipping function F(ω) (left)
and the suppression weight function W(ω) (right) for ∆t =
1/44100. The dashed line indicates the Nyquist frequency
(π/∆t), and the dotted line represents the cut-off frequency (ωa).

R̂n
i,i =

2bni
∆t

, K̂n
i,i =

4

∆2
t

ani . (39)

The real-valued coefficients in (39) are:

ani =
1−

(
Υn

+,i +Υn−,i
)
+Υn

+,iΥ
n−,i

1 +
(
Υn

+,i +Υn−,i
)
+Υn

+,iΥ
n−,i
, (40)

bni =
2− 2Υn

+,iΥ
n−,i

1 +
(
Υn

+,i +Υn−,i
)
+Υn

+,iΥ
n−,i
, (41)

featuring the complex-conjugate pair

Υn
±,i = exp

{
±jF(ωn

i )∆t − 1
2
Rn

i,i∆t

}
, (42)

where j =
√
−1 and

F(ω) =
{

ω : ω2 < ω2
a

ζ arctan[ζ−1(ω − ωa)] + ωa : otherwise
(43)

is a function that ‘soft-clips’ the mode frequencies (see the plot on
the left-hand side of Figure 3), as such preventing aliased mode
frequencies. Here ωa is an appropriate ‘cut-off frequency’ chosen
below the Nyquist frequency (ωa = 0.9π/∆t is used throughout
the paper), and ζ = 2/∆t − 2ωa/π. Since the ‘out-of-range’
modes will have incorrect resonance frequencies, they need to be
suppressed in the calculation of both ūs and F̄s. This can be
achieved by calculating the elements of the vectors hn and wn as
hn
i =W(ωn

i ) ·vi(x̄nh) andwn
i =W(ωn

i ) ·wi(n∆t), respectively,
whereW(ω) is a smooth weight function

W(ω) =
1

1 + [Re(ω)/ωa]200
, (44)

which strongly suppresses frequencies larger than ωa (see the plot
on the right-hand side of Figure 3). Using (24), it can be shown
that |Υn

±,i| ≤ 1 for both under- and over-damped modes. It fol-
lows from (40,41) that ani ≥ 0 and bni ≥ 0, meaning that the di-
agonal elements of R̂n and K̂n are guaranteed non-negative. For
constancy in the mode frequencies ωn

i , the above discretisation re-
sults into a scheme free of numerical dispersion and attenuation,
similarly to the modal-form schemes proposed in previous studies
[22, 2]. Expanding (38), one may derive the update form

un+1 = un−1 +Cnµt·h
nF̄n

c − 2zn, (45)

with
zn = 1

2

[
Bnun−1 −Anun

]
, (46)
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where the elements of the diagonal matrices An, Bn, and Cn are:

An
i,i =

2− 2µ2
ta

n
i

1 + µ2
ta

n
i + µ2

t b
n
i

, (47)

Bn
i,i =

2 + 2µ2
ta

n
i

1 + µ2
ta

n
i + µ2

t b
n
i

, (48)

Cn
i,i =

∆2
t

1 + µ2
ta

n
i + µ2

t b
n
i

. (49)

The hammer dynamics in (10) are discretised with:

δt
{
µtm̄

n
hδtū

n
h

}
= F̄n

e − F̄n
c . (50)

Setting ξnh = ∆2
t/µtm̄

n+1
2

h and γn = µtm̄
n−12
h /µtm̄

n+1
2

h , this can
be written as

ūn+1
h = ūn−1

h − ξnh F̄n
c − 2znh , (51)

where
znh = 1

2
(1 + γn)

(
ūn−1
h − ūn

h

)
− 1

2
ξnh F̄

n
e . (52)

By pre-multiplying (45) with (hn)T and subtracting (50), the fol-
lowing scalar equation is obtained:

ȳn+1− ȳn−1

︸ ︷︷ ︸
sn

=
[
(hn)TCnµt·h

n+ ξnh

]

︸ ︷︷ ︸
ξn

F̄n
c − 2

[
(hn)Tzn− znh

]

︸ ︷︷ ︸
zn

.

(53)
The contact force F̄n

c as written in quadratised form in (16) is dis-
cretised with:

F̄n
c = −(µtψ

n) · gnȳ ,
δtψ

n − gnκ̄δt·κ̄n − gnαδt·αn

δt·ȳn
= gnȳ ,

(54)
where we can substitute 2∆tδt·ȳ

n = sn. From the second equa-
tion, a separate update of the auxiliary variable is found as

ψn+1
2 = ψn−12+ 1

2
gnȳ s

n+ 1
2

[
gnκ̄ (κ̄

n+1− κ̄n−1)+ gnα(α
n+1− αn−1)

]
︸ ︷︷ ︸

χn

.

(55)
Substituting the first equation in (54) into (53) we then can, making
use of (55), obtain the explicit solution

sn = −
2zn + ξn

(
ψn−12 + 1

2
χn
)
gnȳ

1 + 1
4
ξn(gnȳ )

2 , (56)

where it is seen that the denominator in (56) is guaranteed posi-
tive, hence solution existence is ensured. Under the assumption
that the auxiliary variable remains non-negative during simulation,
the gradient variables gnκ̄ and gnα can be calculated directly as per
equations (17,18). The remaining gradient variable gnȳ then has to
be constrained such that ψn+1

2 ≥ 0, which in the time-variant case
translates to satisfying the quadratic inequality

1
4
ψn−12 ξn(gnȳ )2 + zngnȳ −

(
ψn−12 + χn

)
≤ 0. (57)

This leads to the evaluation of gnȳ in branched form as given in
the Appendix. Once sn has been calculated, the auxiliary variable
is updated with (55). The [.]+ operator is subsequently applied to

ensure that the value of ψn+1
2 does not become ever so slightly

negative due to finite-precision errors. Next, the contact force F̄n
c

is calculated with (54), after which the state variables u and uh

can be updated with (45) and (50), respectively. Finally, the output
signal is calculated with F̄n

s = (wn)Tun. Note that the matrices
K̂n and R̂n are not calculated within the algorithm; this is needed
only in instances where one wants to track the evolution of the
system energy. The update of the modal displacements requires
only the elements expressed in (47-49).

3.3. Non-Adhesive Contact Force

For the explicit scheme presented above, guaranteed non-adhesion
can be shown starting from the inequality ψn+1

2 ≥ 0 for all n,
from which it follows that µtψ

n ≥ 0. From (61) we have that
g̀nȳ ≥ 0 by definition. Further, given that the numerator of (62) is
non-negative, it follows that ġnȳ ≥ 0. Seen together with (60) this
means that gnȳ ≥ 0, and therefore that F̄n

c = −µtψ
n gnȳ ≤ 0.

3.4. Energy Balance and Conserved Quantities

From (50) it is immediately clear that the numerical hammer mo-

mentum p̄
n+1

2
h = µtm̄

n+1
2

h δtū
n+1

2
h is conserved when no forces act

upon the hammer. A discrete energy balance can be derived by
pre-multiplying (38) with (δt·u

n)T, (50) with δt·un
h and adding

the resulting equations:

δtH̄
n= 1

4
(µtu

n+1
2 )Tδt·K̂

nµtu
n+1

2 + 1
4
(µtu

n−12 )Tδt·K̂nµtu
n−12

− (δt·u
n)TR̂nδt·u

n + δt·ū
n
h F̄

n
e − δt·m̄n

hδt+ū
n
hδt−ūn

h

− F̄n
c (δt·h

n)Tµt·u
n+ µtψ

n(gnκ̄δt·κ̄
n+ gnαδt·α

n) , (58)

H̄n+1
2 = 1

2
(δtu

n+1
2 )Tδtu

n+1
2 + 1

2
(µtu

n+1
2 )TµtK̂

n+1
2 µtu

n+1
2

+ 1
2
µtm̄

n+1
2

h (δtū
n+1

2
h )2 + 1

2
(ψn+1

2 )2 ≥ 0. (59)

Here we made use of the product identities in (36-37). It follows
directly that the numerical energy H̄n+1

2 is conserved for constant
parameters and no damping or external force. Further, the terms on
both sides of (58) are consistent approximations to the correspond-
ing terms in (26), so we can expect the simulation to exhibit en-
ergy behaviour under parameter time-variance that approximates
that of the underlying continuous-domain model (see Figure 6 for
a numerical verification).

3.5. Blockwise Parameter Updates & Linear Interpolation

Under the assumption that the control parameters vary over time
relatively slowly, they can be updated every Nb samples, such that
the control rate is Nb times lower than the audio sampling rate,
in which case the parameter signals are assumed to be bandlim-
ited in the sense of containing no frequency components above
f = 1/(2Nb∆t). Given that one round of updating of the model
parameters is computationally more expensive than one time step
of updating the state variables, such a blockwise parameter update
form yields significant computational savings. To alleviate audible
artefacts, the following parameters and coefficients are linearly in-
terpolated over each block, at very low cost: m̄h, κ̄, α, hi, ai, bi.
The coefficients ξh and γh as well as the diagonals of A, B, and
C are updated at each time step using the aforementioned linearly-
interpolated values.
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4. NUMERICAL EXPERIMENTS

4.1. Contact Force Signals with Static Parameters

Before exploring parameter time-variance, we first verify the cor-
rectness of the algorithm and its implementation for the case of
constant parameters. Figure 4 shows the contact force signal for
three hammer striking velocities, using a standard audio rate (i.e.
∆t = 1/44100 s). The resulting waveforms are similar to those
obtained in previous studies (e.g. [20]).

1 2 3 4 5 6 7 8 9 10 11
time (ms)

0

5

10

15

!
F

c
(N

)

7pe = !3:5 s!1 [dtuh = !2:89 m/s]
7pe = !1:4 s!1 [dtuh = !1:16 m/s]
7pe = !0:8 s!1 [dtuh = !0:66 m/s]

Figure 4: Contact force signals for a C4 string with static param-
eters. For each hammer velocity, the black dashed line indicates
the exact solution as approximated with 24 times oversampling.

4.2. String Tuning

Of special interest is the behaviour of the algorithm under time-
varying tension, because this involves string modes moving out of
and into the normal frequency range of interest. Figure 5 shows
the amplitude normalised spectrograms of four simulation output
signals. In each simulation, the string was excited with a hard
hammer (K = 100000 s−2, α = 1.2) at t = 0.2 s, and the pa-
rameter f̆1 was subsequently increased upwards in a linear fashion
by a factor of 1.5, and then linearly decreased back to its origi-
nal value. The time step is ∆t = 1/(OF · 44100) s, where OF
is the oversampling factor. The top left plot, obtained with two
times oversampling, can be considered as the nominally correct
result. For wider comparison we also include the result obtained
with the dynamic grid model [3], for which Nb = 1. Visible in
the top right plot (Nb = 1) is the suppression of the out-of-range
modes according to the weight function W(ω). High-frequency
artefacts appear with Nb = 128 (bottom left plot), but these are
generally more than 60 dB below the level of the partial tones, and
as such barely or not audible. A noticeable difference with the
FD dynamic grid result is that the mode frequencies evolve in a
more regular fashion, and as such the proposed methodology does
not rely on frequency-dependent damping and/or oversampling to
mask audible artefacts. Secondly, with the modal-form algorithm
the modes that drift out of range when the tension increases are
‘pulled back’ into range once the tension is reduced.

4.3. Energy and Output Amplitude

A similar experiment is conducted here, this time with no string
damping, to investigate the behavour of the output amplitude and
the numerical energy under time-varying tension. Figure 6(b) shows
the output signal as calculated with wi and ẇi, respectively, con-
firming that the use of adjusted output weights helps reducing out-
put amplitude swings. Figure 6(c) compares the corresponding nu-
merical energy evolution as calculated with oversampling factors

Figure 5: Spectral evolution of the string force signal under time-
varying tension. The model parameters are f̆1 = 1000 Hz, B =
2.55×10−6, η0 = 0.5 s−1, η1 = 0 s−1, η2 = 0.0001 s−1, η3 = 0
s−1, m̄h = 0.3, x̄h = 1/23.

OF = 1 and OF = 24, in both cases using M = 60. The close-
ness of these two curves demonstrates that the numerical energy
balance remains approximately correct in the presence of mode-
frequency soft-clipping (which occurs only for OF = 1 here) and
other approximation errors.

4.4. Time-Varying Contact Parameters

Among less conventional forms of parameter time-variance, the
terrain of on-the-fly adjustment of the contact parameters seems
particularly uncharted. To investigate how the algorithm handles
such time-variance, single hammer-string collisions were simu-
lated in which the effective stiffness parameter K was set to either
rapidly increase (see the left-hand side plots of Figure 7) or rapidly
decrease (see the right-hand side plots of Figure 7) during contact.
As can be seen in the bottom plots, time-variance in K leads to
hysteresis in the force-vs-compression curve. For increasing K,
the hysteresis is ‘inverted’ (i.e. in the opposite direction to what is
normally observed with hysteresis in piano hammers due to loss
mechanisms). The main take-away from these results is that fast
time-variance in K – and indeed in α, which was also tested but
not shown here – can be simulated without artefacts.

4.5. Computational Efficiency

To asses the viability of real-time implementation, the real-time
factor (RTF), which is defined here as a measure of how much real
time passes with the computation of one second of audio output,
was recorded for a range of Nb and M values. The piano C2 pa-
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Figure 6: Simulation with time-varying tension and no damping.
Top: fundamental frequency profile. Middle: output waveforms
for OF = 1. Bottom: system energy. The parameters are those for
a piano C4 string, with ∆t = 1/(OF · 44100) s and Nb = 32.

rameters listed in Table 1 were used in the simulations, applying
regular hammering with randomised hammer velocities across 0.5
s simulation time. For each set (Nb, M ), the RTF was calculated
as an average over 50 simulations. The computations were per-
formed in Matlab on an Intel i7-6700 CPU. As can be seen from
the results presented in Figure 8, the RTF remains below 0.75 for
block sizes of 32 and above with up to 1000 string modes. For ref-
erence, the number of modes needed to cover the audio range for
an A0, which is the lowest key on standard pianos, is about 300.
Because of the uncoupled structure of the modal update form, sig-
nificant efficiency gains compared to Matlab implementations can
be made utilising parallel processing methods in optimised C++
implementations. Examples include the use of Advanced Vector
Extensions (see, e.g. [2]).

5. CONCLUSION

A numerical scheme for simulating hammer-string interaction with
time-varying parameters has been formulated in modal form. As
part of adapting the energy quadratisation approach to modelling
collisions under parameter time variance, two new gradient vari-
ables were introduced. The physical correctness of the algorithm
is underpinned by the numerical contact force being provably non-
adhesive and by the existence of a numerical energy balance, the
form of which directly mirrors that of the continuous-domain model.

With respect to handling time-varying string tension, modes
with frequencies that exceed the available frequency bandwidth
for a given time step remain active within the numerical model,
with their frequencies adjusted to fall into a narrow frequency band
just below the Nyquist frequency. These out-of-range modes con-
tinue to contribute to the overall system energy (hence a numerical
energy balance exists) but are suppressed in the calculation of the
output signal and of the string displacement at the hammer position
and as such do not interfere with the sound synthesis process while
they are out of range. In addition, a pragmatic form of re-scaling
of the output force signal under time-variance in the string tension
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Figure 7: Simulation with time-variation in the contact stiffness
parameter (K). Left: increasing stiffness. Right: decreasing stiff-
ness. In each subplot, the dashed line indicates the simulation with
constant K. The parameters are those for a piano C4 string, with
∆t = 1/44100 s and Nb = 32.

was introduced to avoid large amplitude fluctuations, meaning a
much reduced need to make adjustments to the output gain.

The off-line numerical experiments conducted within this work
indicate that the algorithm’s computational load is sufficiently small
for real-time implementation and that no audible artefacts arise
under parameter time-variance. More exhaustive testing on the
latter point is still required though, and this is perhaps best done
through on-line control. A real-time controlled implementation
will also provide better opportunities to explore the possibilities
that the proposed model can offer as the sound engine of a (live-
performable) virtual-acoustic musical instrument.
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8. APPENDIX: BRANCHED EVALUATION OF gnȳ

For the update equations (55,56), the gradient variable gnȳ is calcu-
lated as

gnȳ =





min(g̀nȳ , ġ
n
ȳ+) : ȳn > 0

ġnȳ+ : ȳn < 0 & ȳn−1 > 0
0 : otherwise

, (60)

where g̀nȳ denotes the nominal value according to (17):

g̀nȳ = gȳ(ȳ
n) =

√
1
2
κ̄n(αn + 1) [ȳn]α

n−1
+ . (61)

The term ġnȳ+ is the positive root of the quadratic term on the left-
hand side of (57) that needs to remain non-positive to ensure that
ψn+1

2 ≥ 0:

ġnȳ+ = 2

−zn +

√
(zn)2 + ξnψn−12

[
ψn−12 + χn

]
+√

εξn(zn)2 + (ξnψn−12 )2
. (62)

The inclusion of the term εξn(zn)2 in the denominator, where
ε > 0 is of the order of the machine epsilon, helps ensure that
the correct solution is found for ψn−12 → 0. The operator [.]+ is
applied within the square root to ensure a real root and that ġnȳ ≥ 0.
The middle branch in (60) effectively sets ψn+1

2 to zero at the end
of contact, as such altogether avoiding any spurious non-zero con-
tact force values at time instances where there is no contact.
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ABSTRACT

This work presents a physical model of the yaybahar, a recently
invented acoustic instrument. Here, output from a bowed string is
passed through a long spring, before being amplified and prop-
agated in air via a membrane. The highly dispersive character
of the spring is responsible for the typical synthetic tonal qual-
ity of this instrument. Building on previous literature, this work
presents a modal discretisation of the full system, with fine control
over frequency-dependent decay times, modal amplitudes and fre-
quencies, all essential for an accurate simulation of the dispersive
characteristics of reverberation. The string-bow-bridge system is
also solved in the modal domain, using recently developed non-
iterative numerical methods allowing for efficient simulation.

1. INTRODUCTION

The yaybahar is an acoustic musical instrument, recently invented
by Turkish artist Görkem Şen 1. It consists of a neck, with two
strings and a fretboard, to which two long springs are attached;
each spring is in turn connected, on its opposite end, to a tensioned
membrane. The instrument, depicted in Figure 1, is played by ei-
ther bowing and plucking the strings, or by hitting the springs and
the membranes with a mallet. The yaybahar can be described as
a cello-like instrument, where amplification is provided by springs
and membranes, and not by a resonant body. This structure pro-
vides a distinctive reverberant sound, mainly due to the character-
istic sound transmission of springs [1]. Given its modular design,
the yaybahar lends itself well to physical modeling simulation:
in fact, all its components are widely studied systems in physi-
cal modeling literature [1, 2, 3]; therefore, a model can be imple-
mented by first simulating the different modules, and by then con-
necting them together appropriately. A first physical model of the
yaybahar was recently proposed by Christensen et al. [4]. There,
the strings and membranes are described by the Kirchhoff-Carrier
and the Berger models respectively [2, Chapters 8, 13], thus incor-
porating mild nonlinear effects, while the spring is modeled by a
linear stiff bar, following [5]. The components are then coupled
by lumped, spring-like connections, and the full model is simu-
lated by using finite-difference-time-domain (FDTD) methods.

1https://www.gorkemsen.com/
gorkem-sen-s-yaybahar

2https://commons.wikimedia.org/wiki/File:
Yaybahar.jpg

Copyright: © 2023 Riccardo Russo et al. This is an open-access article distributed
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permits unrestricted use, distribution, adaptation, and reproduction in any medium,
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Figure 1: The yaybahar (Source 2)

In this work, a different approach is proposed, based on a
modal decomposition of the subsystems. The bowed string, in
particular, is simulated in the modal domain following the non-
iterative procedure developed in [6], and building on the results
presented in [7]. The spring and the membrane, acting as rever-
beration units, can be simulated efficiently in the modal domain,
incorporating refined loss profiles for realistic reverberation [8, 9].
Here, the interconnection between subsystems is performed in an
energy-consistent framework via boundary forces, rather than us-
ing additional spring-like connections as in [4]. To this end, a
novel model for the coupling between a vibrating string and a dis-
tributed bridge is presented, in the modal domain, which serves as
an emulation for the neck. Given the low amplitude of vibration in
the subsystems, linear models for the resonators are adopted with-
out compromising the realism of the sound synthesis overall, as the
nonlinear bowing mechanism is largely responsible for the typical
drone-like sound of the instrument.

The paper is structured as follows: Section 2 presents the math-
ematical models of the instrument subcomponents, Section 3 de-
scribes the semi-discretisation in the modal domain, Section 4 il-
lustrates the time-stepping algorithms, Section 5 presents the re-
sults of a case study and, finally, Section 6 concludes the paper.

2. MODELS

In this section, continuous models for the various components of
the yaybahar are presented. A diagram of the instrument’s sub-
systems (bow, string and bridge) and their couplings is as shown
in Figure 2. The resulting bridge force is fed to the spring, and
the spring sets the membrane into vibration. As shown below,
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Figure 2: A scheme of the instrument model and the elements con-
nections.

the string-bridge coupling modifies significantly the distribution
of the eigenfrequencies compared to the isolated string. On the
other hand, the spring and the membrane, acting as reverberant
units characterised by a large modal density, are less affected by
couplings at the boundaries. This justifies their inclusion as non-
interacting subsystems, thus considerably simplifying the modal
approach. This design shares some similarities with the commuted
synthesis approach [10].

For simplicity, in this section, the models are presented
here with no damping, except for friction losses induced by the
bow. Viscous-type and radiation damping will be introduced in a
frequency-dependent manner in the modal domain, as illustrated
in Section 3.4.

2.1. Bowed Stiff String and Distributed Bridge

The equations for the coupled bowed string/bridge system are
given here as follows:

ρs∂
2
t us = Ts∂

2
xus − κ2

s∂
4
xus − Fbδ(x− xb)ϕ(η), (1a)

ρp∂
2
t up = −κ2

p∂
4
zup + δ(z − zs)Fs(t). (1b)

Here, subscripts s,p, b refer, respectively, to the string, the bridge
(“ponticello”) and the bow. In the system above assumes that the
string and the bridge vibrate in a single, vertical polarisation, thus
neglecting the rocking motion observed in instruments such as the
violin [11]. In (1a), us = us(x, t) : [0, Ls]× R+

0 → R represents

-1 0 1
-1

0

1

(
)

-1 0 1
-1

0

1

(
)

-0.5 0 0.5
-1

0

1

(
)

-1 0 1
-1

0

1

(
)

(a)

(c)

(b)

(d)

Figure 3: Some friction characteristics: (a) Coulomb dry friction;
(b) the curve by Woodhouse and Smith [12]; (c) the curve by Gal-
luzzo [13]; (d) the continuous curve defined in equation 3, with
a = 10 (dashed line) and a = 100 (solid line). For the mathemat-
ical expressions of the four friction characteristics refer to [6].

the transverse displacement of a string of length Ls in a single
polarisation, as a function of spatial coordinate x and time t. ρs
is the string linear density in kg m−1; Ts is the string tension in
N, and κs is a rigidity constant in N1/2m (κ2

s is typically given

as the product of Young’s modulus times the moment of inertia).
Analogous definitions hold for (1b), the equation describing the
displacement up = up(z, t) : [0, Lp] × R+

0 → R of the bridge.
Here and elsewhere the nth partial derivative with respect to the
variable α is denoted by ∂n

α .
In (1a), the string is coupled with a bow model, following [6].

The bow excitation is assumed to act pointwise downward at xb,
according to the dimensionless friction coefficient ϕ, as seen in
[14]. Various choices for this coefficient are available, see e.g. [12,
13, 2] and also Figure 3. Note that all the four curves displayed in
Figure 3 satisfy:

η ϕ(η) ≥ 0, lim
|η|→0

ϕ(η)/η <∞ , (2)

allowing a non-iterative time stepping procedure to be used, fol-
lowing recent results in [7]. Here, for illustrative purposes, the
“soft” characteristic defined in [2] was chosen, defined as:

ϕ(η) =
√
2a η e−aη2+

1
2 , η := ∂tu(xb, t)− vb. (3)

The input bow parameters are the bow force Fb, in N, and the bow
velocity vb in m s−1. Furthermore, in (3), a is a free parameter of
the model adjusting the slope of the curve.

The coupling between the string and the bridge takes place at
the string’s right boundary, and is expressed as an input force Fs

in the bridge equation (1b). The string is assumed to be in contact
with the bridge at zs along the bridge’s domain. The string’s left
boundary, as well as the bridge’s endpoints, are all assumed to be
simply-supported. The complete set of boundary conditions to be
imposed is:

up(0, t) = ∂2
zup(0, t) = up(Lp, t) = ∂2

zup(Lp, t) = 0, (4a)

us(0, t) = ∂2
xus(0, t) = ∂2

xus(Ls, t) = 0, (4b)

Fs(t) = −T0∂xus(Ls, t) + κ2
s∂

3
xus(Ls, t), (4c)

up(zs, t) = us(Ls, t). (4d)

The relations above are assumed to hold ∀t ≥ 0. Note that (4d)
represents a rigid contact condition between the string and the
bridge.

2.1.1. Energy Balance

An energy balance for the bridge is obtained after multiplying (1b)
by ∂tup and integrating over [0, Lp]. After integration by parts,
and owing to (4a), one obtains:

d

dt

∫ Lp

0

(
ρp
2
(∂tup)

2 +
κ2
p

2
(∂2

zup)
2

)

︸ ︷︷ ︸
Hp

dz = u̇p(zs, t)Fs. (5)

The string energy balance is obtained analogously, by multiplying
equation (1a) by ∂tus and integrating. After suitable integration
by parts, and taking into account the boundary conditions (4b) and
(4c), one obtains:

d

dt

∫ Ls

0

(
ρs
2
(∂tus)

2 +
Ts

2
(∂xus)

2 +
κ2
s

2
(∂2

xus)
2

)

︸ ︷︷ ︸
Hs

dx =

= −Fsu̇s(Ls, t)− Fb u̇(xb, t)ϕ(u̇(xb, t)). (6)
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Finally, owing to the contact condition (4d), and by means of (5),
one may express (6) as:

d

dt

(∫ Ls

0

Hs dx+

∫ Lp

0

Hp dz

)
= −Q+ P, (7)

where the dissipated and supplied power are defined as, respec-
tively, Q := Fb η ϕ(η), P := −Fb vb ϕ(η). Owing to property
(2), in the combined system the energy is non-increasing when the
bow velocity vb (and, therefore, the supplied power P) is identi-
cally zero, leading to boundedness of the solutions.

Finally, the output force exerted by the bridge onto the spring
is then computed at the desired location zo as:

Fp(t) = −κ2
p∂

3
zup(zo, t). (8)

2.2. Spring

A model of a thin spring that takes into account the helical struc-
ture is here implemented, following [3]. In fact, the “bar" model
of a spring holds for specific geometries [5], and cuts the low-
frequency echoes that are characteristic of spring reverberators [1].
The system is developed starting from Wittrick’s equations [15],
under the assumption that the wire radius-helix radius ratio rc/Rc

is small [16] (see Figure 4). This allows the model to be reduced
to a system of four equations, which relate the displacement in the
transverse and longitudinal directions to the moments along the
same directions:

A∂2
t v = R ∂sm+ δ(s− sp)αpFp, Dm = R∂sv. (9)

Here, v := [vτ (s, t), vλ(s, t)]
⊺ : [0, Lc] × R+

0 → R2 is the vec-
tor of displacements, where the subscripts τ and λ refer to the
transverse and longitudinal directions, respectively. Analogously,
m := [mτ ,mλ]

⊺ is the vector of moments. Above, s expresses
the arclength of the coil, such that 0 ≤ s ≤ Lc. The input force
Fp, computed in equation (8), is applied pointwise at s = sp,
while the vector αp is a unit vector that indicates the amount of
force exerted in both polarisations. The matrices A, D ∈ R2×2

are diagonal, and given by:

A = ρc

[
1 0
0 1− l2∂2

s

]
, D = κ−2

c

[
1 0
0 1 + νc − l2∂2

s

]
. (10)

Above, ρc is the linear density of the coil, in kg m−1, κc is a
rigidity constant in N1/2m, and νc is the Poisson ratio of the coil.
R ∈ R2×2 is a symmetric matrix, of the form:

R =

[
−2µ/l (1− µ2)/l + l∂2

s

0 2µ(l∂2
s + 1/l)

]
. (11)

The symbol l denotes the ratio Rc/ cos
2(θ), where θ is the pitch

angle, Rc the coil radius, and µ is shorthand for tan(θ). A graph-
ical representation of the spring physical quantities is provided in
Figure 4.

2.2.1. Energy Analysis

The energy balance and boundary conditions may be obtained, in
the zero-input (Fp = 0) case, as follows. First, left-multiply the
first equation in (9) by ∂tv⊺. Then, take a time derivative of the

(a) Directions. (b) Wire/helix radius. (c) Tilt angle.

Figure 4: Spring physical quantities.

second equation in (9), and left-multiply by m⊺, where ⊺ is the
transposition operator. Integrating the resulting equations gives:

∫ Lc

0

∂tv
⊺A ∂2

t v ds =

∫ Lc

0

∂tv
⊺R ∂sm ds, (12a)

∫ Lc

0

m⊺D ∂tm ds =

∫ Lc

0

m⊺R(∂s∂tv) ds. (12b)

Integrating by parts to the right-hand side of (12b), one is able to
express the right-hand side of (12a), which, in turn, can be rewrit-
ten as:

∫ Lc

0

(
∂tv

⊺A ∂2
t v +m⊺D ∂tm

)
ds = (B0 +m⊺R ∂tv)

∣∣Lc

0
.

Here

B0 := l∂s∂tvλ (∂smτ + 2µ∂smλ) + ∂tvλ(2µl∂
2
smλ − l∂2

smτ )

− l∂s∂tvτ (∂smλ)− ∂tvτ (l∂2
smλ). (13)

By further applying integration by parts, one derives the energy
balance:

d

dt

∫ Lc

0

Hc ds = (B0 + B1 +m⊺R ∂tv)
∣∣Lc

0
:= Bc

∣∣Lc

0
. (14)

Here, the energy density is:

Hc =
ρc
2

(
(∂tvτ )

2 + (∂tvλ)
2 + l2(∂t∂svλ)

2)+

+
κ−2
c

2

(
m2

τ + (1 + νc)m
2
λ + l2(∂smλ)

2) ; (15)

while B1 is:

B1 = l2ρc(∂tvλ)(∂s∂
2
t vλ) + l2κ−2

c mλ(∂s∂tmλ). (16)

It is useful to write the boundary terms in terms of the conjugate
variables forces / velocities and moments / angular velocities [3].
To that end, rearranging the boundary terms in (14) allows to write:

Bc = Fτ∂tvτ + Fλ∂tvλ + Fσ∂tvσ +mτϕτ +mλϕλ +mσϕσ.
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Here, the σ denotes the direction perpendicular to the (τ, λ)-plane.
Denoting g := −µ2

l
+ 1

l
+ l∂2

s , one has

Fτ = gmλ − 2µmτ/l, (17a)

Fλ = gmτ + 2µ
(
l∂2

s + 1/l
)
mλ + l2ρc∂s∂

2
t vλ, (17b)

Fσ = −∂s(mτ + 2µmλ), (17c)

ϕτ = l∂2
s∂tvλ, (17d)

ϕλ = 2µl∂2
s∂tvλ + l2κ−2

c ∂s∂tmλ + l∂2
s∂tvτ , (17e)

ϕσ = −∂s∂tvτ , (17f)
mσ = l∂smλ, (17g)
vσ = l∂svλ. (17h)

Setting boundary displacements, forces and moments to zero leads
to a generalisation of the classic beam boundary conditions of free,
simply-supported or clamped type. Here, a variant of free bound-
ary conditions along τ, λ will be used, combined with clamped
conditions along σ. Hence:

Fτ = Fλ = mτ = mλ = vσ = ϕσ = 0. (18)

These are intended to hold at the boundary points s = {0, Lc},
and ∀t ≥ 0. An output signal Fc(t) may be then be extracted by
computing the sum of the forces Fτ , Fλ, Fσ at a so, close, but not
equal, to the boundary Lc. Thus:

Fc(t) = Fτ (so, t) + Fλ(so, t) + Fσ(so, t). (19)

2.3. Membrane

A model for the membrane is given by the 2D wave equation [2,
Chapter 11]:

ρm∂
2
tw = Tm∇2w + δ(X −Xc)δ(Y − Yc)Fc(t). (20)

In the above, the two dimensional Laplacian was introduced as
∇2 := ∂2

X + ∂2
Y . For simplicity, and to avoid the introduction

of further symbols, the membrane is supposed to be defined over
a square, of side length Lm. Thus, w = w(X,Y, t) : [0, Lm] ×
[0, Lm] × R+ → R describes the displacement of the membrane
in the transversal direction, ρm is the material surface density in
kg m−2, and Tm is the tension applied at the edges in N m−1. An
energy analysis for this system can be found in [2, Chapter 11].
Boundary conditions of fixed type will be considered here, such
that:

w(0, Y ) = w(Lm, Y ) = w(X, 0) = w(X,Lm) = 0. (21)

3. SEMI-DISCRETISATION

The equations presented in Section 2 will be now semi-discretised
in space using a modal approach. While the spring and the mem-
brane possess an analytical form for the modes of vibration, this is
not true in the case of a string coupled with a distributed bridge on
one end. For this reason, the modal expansion for the latter system
will be performed by solving the eigenvalue problem numerically.

3.1. Bowed Stiff String and Distributed Bridge

First, it is convenient to introduce spatial difference operators. The
string domain is divided into Ms subintervals of length h, the grid
spacing. This yields Ms + 1 discretisation points, including the

end points. Analogously, the bridge is divided into Mp subinter-
vals of length h. The continuous functions us(x, t) and up(z, t)
are then approximated by grid functions um

s (t) ≈ us(mh, t) and
un
p(t) ≈ up(nh, t), for integer m,n. In light of the numerical

boundary conditions given below, one has m ∈ [1, ...,Ms − 1],
n ∈ [1, ...,Mp − 1]. In vector notation, the grid functions will be
denoted us, up.

Basic forward and backward difference operators, approxi-
mating the first spatial derivative, and acting on um

s , are:

δ±x u
m
s = ±(um±1

s − um
s )/h. (22)

Analogous definitions hold for the grid function un
p , thus, for in-

stance, δ+z un
p = (un+1

p − un
p)/h. The second and fourth spatial

derivatives are approximated by difference operators obtained by
combining the operators above, as:

δ2x := δ+x δ
−
x , δ4x := δ2xδ

2
x, (23)

with similar definitions holding for δ2z , δ4z . Discrete versions of the
Dirac deltas in (1) are also needed. To that end, δ(x− xb) in (1a)
is approximated by the column vector db, of length Ms − 1, as:

dνb = (1− α)/h, dν+1
b = α/h, (24)

where ν := floor(xb/h), α := xb/h−ν. An analogous definition
holds for ds, approximating δ(z − zs) in (1b).

3.1.1. Semi-Discrete Formulation

Given the definitions above, a semi-discrete approximation of (1)
is given as:

ρsü
m
s = Tsδ

2
xu

m
s − κ2

s δ
4
xu

m
s − Fbd

m
b ϕ(η), (25a)

ρpü
n
p = −κ2

bδ
4
zu

n
p + dns fs(t). (25b)

Here, η = hd⊺
bu̇s − vb. A discrete version of the boundary con-

ditions and contact condition (4) ensuring numerical stability is:

u0
p = δ2zu

0
p = u

Mp
p = δ2zu

Mp
p = 0, (26a)

u0
s = δ2xu

0
s = δ2xu

Ms
s = 0, (26b)

fs(t) = −Tsδ
+
x u

Ms
s + κ2

s δ
+
x δ

2
xu

Ms
s , (26c)

hd⊺
sup = uMs

s . (26d)

By expanding the operators and applying the boundary conditions,
the semi-discrete equations can be arranged in vector form. To
that end, define u⊺ := [u⊺

s ,u
⊺
p]. System (25) can be then written

in compact form as:

Mü = −Ku− FbJbϕ(η). (27)

Here, Jb is a vector obtained by concatenating db with a zero-
vector of dimension Mp−1, and η = hJ⊺

bu̇ − vb. M is positive-
definite, symmetric, square diagonal block matrix, with diagonal
blocks given as:

M11 = ρsIs, M22 =
(
ρpIp + ρsh

2dsd
⊺
s

)
. (28)

Here, Is and Ip are identity matrices, of dimension (Ms − 1) ×
(Mp − 1) and (Mp − 1) × (Ms − 1) respectively. Furthermore,
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the stiffness matrix is a positive-definite, square block matrix, with
blocks:

K11 = −TsD
2
x + κ2

sD
2
xD

2
x,

K12 = K⊺
21 K21 =

[
0,

κ2
s

h3ds,−
(

Ts
h2 +

2κ2
s

h3

)
ds

]
,

K22 = κ2
pD

2
zD

2
z +

(
Ts +

2κ2
s

h2

)
dsd

⊺
s ,

(29)

where D2
x and D2

z are the second difference operators with
Dirichlet end conditions of dimensions, respectively, (Ms − 1) ×
(Ms − 1), and (Mp − 1) × (Mp − 1) (for the explicit form
of these matrices, see [2, Chapter 5]). K21 has dimension
(Mp − 1)× (Ms − 1), and is a composition of a zero-matrix of
dimension (Mp − 1)× (Ms − 3) with two vectors.

An energy balance in the modal domain is readily available
from (27), after left-multiplying by hu̇⊺. When vb = 0, one has:

d

dt

(
h

2
u̇⊺Mu̇+

h

2
u⊺Ku

)
= −ηϕ(η) ≤ 0. (30)

Since both M, K are non-negative, the energy is non-negative, and
decays over time.
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Figure 5: Eigenfrequencies of the coupled system and the ones of a
simply supported stiff string in isolation, under two different values
of κp. The left value is typical of steel, while the right one was
chosen arbitrarily low for demonstration purposes. Other physical
parameters, on common between the two cases, were: Ls = 0.69
m; Ts = 147.7 N; ρs = 0.0063 Kg m−1; κs = 0.4835 N1/2

m; Lp = 0.07 m; ρp = 0.0251 Kg m−1. The contact point was
set to: zs = 0.03 m. The top figures report the frequencies in
log scale, while the bottom figures display the difference in cents
between frequencies with the same index.

3.1.2. Modal Expansion

A modal expansion of system (27) is now performed by solving the
generalised eigenvalue problem. For that, consider the following:

KU = MUΩ2
u. (31)

Figure 6: Modes of the coupled string-bridge system, which were
normalized, and plotted orthogonal one to another for visualisa-
tion purposes. The letter i gives the mode index. The blue line
represents the string, and red one the bridge, while the projection
of the contact point on the z-axis is highlighted with a black dot.
The physical parameters were the same listed in Figure 5, with
κp = 3.0619 N1/2 m.

Here, U is a matrix of real eigenvectors, and Ω2 is a diagonal ma-
trix of real, positive eigenvalues. Note that, while both K and M
are symmetric, the product M−1K generally will not be. How-
ever, since M is positive definite, the eigenvalues are then real
[17], and they must also be non-negative since so are the eigen-
values of K. Then, define u = U−1u. System (27) may then be
written as:

ü = −Ω2
uu− Fbξbϕ(η), η = ξ⊺

η u̇− vb, (32)

with ξ⊺
η := hJ⊺

bU, ξb := (MU)−1Jb. This a modal system
with a diagonal linear part, with modal coordinates u. One may of
course solve the numerical eigenvalue problem (31) using a very
fine grid (i.e., using a small grid spacing h), though only a number
Nu is kept in (32), fixed by Nyquist requirements.

Before proceeding, it is useful to compare the eigenfrequen-
cies of the string in isolation against those of the coupled string-
bridge system. Figure 5 shows two such comparisons, under two
different values of κp. These are computed for a bar of circular
cross section, with a diameter of 5 mm. The first value (κp ≈ 3)
is typical of steel, while the second value (κc ≈ 0.1) was selected
to artificially amplify the effects of the coupling. The top panels
report the frequencies in a log scale: it is seen that the reduced
stiffness shifts the eigenfrequencies downwards by up to two oc-
taves in the lowest range, as seen in the bottom panels. With suf-
ficiently large values of κp, as is the case of steel, the frequency
gap remains contained around the fundamental, as expected, but
it increases up to two semitones for larger modal indices. These
results underline the importance of considering the string-bridge
coupling for in the distribution of the eigenfrequencies.
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The eigenmodes are represented in Figure 6, for a steel bridge.
Here, the first four modes are displayed, along with the 10th and
the 12th. It is possible to see that the bridge eigenmodes start
exhibiting a third node only after the 10th mode.

3.2. Spring

A modal version of the thin spring model was originally proposed
by van Walstijn [18]. In van Walstijn’s model, the modal expansion
is carried out numerically, by first performing a semi-discretisation
in space, and then computing the eigenvalues of the resulting ma-
trix. Such model found practical application in [19], where a vir-
tual analogue simulation of a spring reverb is developed. In this
work an analytic form for the modes is available under a choice
of the boundary conditions as per (18). To that end, consider the
following:

v(s, t) =
√

2/Lc cos (γs) v̄(t),

m(s, t) =
√

2/Lc sin (γs) m̄(t),
(33)

where v̄, m̄ are the time modal coordinates, and the factor√
2/Lc is just a useful normalisation constant. It is immedi-

ate to see that these satisfy the boundary conditions (18) when
γ = {π/Lc, 2π/Lc, ..., nπ/Lc, ...}.

Let now γn := nπ/Lc, for integer n. A solution to the
equation of motion is obtained using the quantised expressions
of the modes to solve an eigenvalue problem. Left-multiplying
the first equation in (9) by

√
2/Lc cos (γns), and the second by√

2/Lc sin (γns) and integrating, one is able to express (9) as:

Ā¨̄v = γnR̄m̄+
√

2/Lc cos(γnsp)αpFp(t), (34a)

D̄m̄ = −γnR̄v̄. (34b)

Here, the transformed matrices are obtained by applying the
derivatives to the modal functions, and have the form (10), (11)
under the replacement of ∂2

s by −γ2
n. Then, (34b) is used to ex-

press m̄ is terms of v̄, and this is substituted in (34a). One gets:

¨̄v = −VΩ2
nV

−1v̄ +
√

2/Lc cos(γnsp)Ā
−1αpFp.

where it was set:

VΩ2
nV

−1 := γ2
nĀ

−1R̄D̄−1R̄. (35)

Here V is a 2× 2 matrix of eigenvectors for the wavenumber γn,
and Ωn is a diagnoal 2 × 2 matrix of eigenfrequencies. Figure 7
reports the solution to the eigenvalue problem for a typical spring.
The eigenfrequencies lay on the yellow an purple lines.

Then, define vn := (V)−1v̄. Thus, one gets:

v̈n = −Ω2
nv+

√
2/Lc cos(γnsp)(ĀV)−1αpFp(t). (36)

Assume now n = 1, ..., Nv. The modal equations for the spring
are then a system of 2Nv equations, of the form:

v̈ = −Ω2
vv+ ξpFp(t), (37)

where v is a vector of length 2Nv, Ωv is a 2Nv × 2Nv di-
agonal matrix, whose diagonal elements are the 2 × 2 diag-
onal blocks Ωn, n = 1, ...Nv defined in (35), and ξp is
a 2Nv vector made composed by stacking the 2 × 1 blocks:√

2/Lc cos(γnsp)(ĀV)−1αp, n = 1, ..., Nv.
Output (19) is extracted by substituting the solution (33) into

the boundary forces (17c) (17b) and (17a) computed at a position
close to Lc.

Figure 7: Plot of the dispersion relation of a thin spring. Physical
parameters were chosen to be coherent with a possible yaybahar
spring: Rc = 9 mm, rc = 1 mm, θ = 2°, Lc = 40 m, κc = 9.9
and νc = 0.3. These values yield Nv = 2812 within the hearing
range.

3.3. Membrane

A particular solution to equation (20) with fixed boundary condi-
tions (21) is given by:

w(X,Y, t) =
2

Lm
sin

βj
XπX

Lm
sin

βj
Y πY

Lm
wj(t), (38)

for integers βj
X , βj

Y [20]. The associated modal frequency is:

ωj =
π

Lm

√
Tm

ρm

(
(βj

X)2 + (βj
Y )2
)
. (39)

The modal system for the membrane is then given by:

ẅ = −Ω2
ww+ ξcFc(t), (40)

where w is a Nw × 1 vector, Ωw is a Nw × Nw diagonal matrix
where the jth diagonal element is ωj given above. The frequencies
should here be sorted in ascending order, such that ωj−1 ≤ ωj ≤
ωj+1, j = 2, ..., Nw − 1. This allows to find the corresponding
modal indices βj

X , βj
Y . Above, ξc is a Nw × 1 vector whose jth

component is 2
Lmρm

sin
β
j
X

πXc

Lm
sin

β
j
Y

πYc

Lm
.

Output is extracted as:

wo(t) =

Nw∑

j=1

2

Lm
sin

βj
XπXo

Lm
sin

βj
Y πYo

Lm
wj(t), (41)

though for synthesis purposes it may be convenient to use ẇo(t)
instead.

3.4. Modal Equations of the Full System with Loss

The full system in the modal domain can thus be written as an
augmented version of (32), (37) and (40). This is:

ü(t) = −Ω2
uu(t)−Cuu̇(t)− ξbFbϕ(η), (42a)

v̈(t) = −Ω2
vv(t)−Cvv̇(t) + ξpFp(t), (42b)

ẅ(t) = −Ω2
ww(t)−Cwẇ(t) + ξcFc(t), (42c)
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where Cu, Cv, Cw are, respectively, Nu × Nu, 2Nv × 2Nv,
Nw × Nw positive, diagonal matrices containing the modal loss
coefficients in s−1. System (42) depends on time only, and a suit-
able time stepping routine is offered below. Here, the input pa-
rameters are the bow force Fb, velocity vb and position along the
string xb, which may be time-varying. The output is given by the
membrane displacement at the output location, as per (41).

4. TIME DISCRETISATION

Now, time is discretised with a time step k, yielding a sample rate
fs = 1/k. Then, a continuous function u(t) is approximated at
time step t = nk by the time series un. Time difference operators
are then introduced, as:

δ±t u
n := ±(un±1−un)/k, δ◦t u

n := (un+1−un−1)/2k. (43)

The second time difference is defined by combining the operators
above: δ2t un := δ+t δ

−
t u

n. Finally, a time averaging operator is
defined as:

µ+
t u

n := (un+1 + un)/2. (44)

4.1. String-Bridge System

It is now possible to adapt the numerical solver proposed in [7,
6] to numerically integrate equation (42a) in time. To that end,
(42a) is first turned into a 2Nu×2Nu system of first-order-in-time
equations. Thus, define q := Ωuu, p := u̇. Therefore, (42a)
becomes:
[
q̇
ṗ

]
=

[
0 Ωu

−Ωu −Ω−1
u Cu

]

︸ ︷︷ ︸
G

[
q
p

]
−
[

0
Ω−1

u ξb

]
Fbϕ(η),

η =
[
0, ξ⊺

η

] [q
p

]
− vb.

(45)

A second-order accurate, non-iterative numerical scheme is given
as:

σn

[
δ+t qn

δ+t pn

]
= G

[
µ+
t q

n

µ+
t p

n

]
−
[

0
Ω−1

u ξb

]
Fb
ϕ(ηn)

ηn
µt+η

n. (46)

The form of σn, adapted from [6], is:

σn = I+
kFb

2

(
dϕ

dη
− ϕ

η

)

t=kn

[
0

Ω−1
u ξb

] [
0, ξ⊺

η

]
, (47)

and is well-defined, owing to (2). Here, Jb and U are as per Sec-
tion 3.1.1 and 3.1.2, respectively. Expanding out the operators in
(46), one is able to compute qn+1, pn+1 as the solution of a single
linear system, thus avoiding entirely the need for iterative nonlin-
ear root finders. The update equation in this case is:
(
I+

kFb

2

(
dϕ

dη

)[
0

Ω−1
u ξb

] [
0, ξ⊺

η

]
− k

2
G

)[
qn+1

pn+1

]
= bn,

where bn is known from previous time steps. It is seen that the
update matrix is in the form of a block matrix with fully diagonal
blocks, plus a rank-1 perturbation. This can be solved efficiently,
via the Sherman-Morrison formula [21], as detailed in [6].

Stability of scheme (46) is somewhat harder to prove, though
partial results are available in [7]. Provided one chooses a num-
ber Nu of modes lower than the Nyquist limit, empirical evidence

suggests that the proposed scheme greatly outperforms simpler
explicit designs such as forward Euler or Runge-Kutta-type al-
gorithms [22] in terms of stability, while keeping compute times
within reference bounds for efficient simulation.

4.2. Spring & Membrane

The numerical integration of (42b), (42c) may be performed sim-
ply as:

δ2t v
n = −Ω2

vv
n −Cvδ

◦
t v

n + ξpF
n
p , (48a)

δ2tw
n = −Ω2

ww
n −Cwδ

◦
tw

n + ξcF
n
c . (48b)

Various other designs are possible, varying greatly in terms of sta-
bility and spectral accuracy. An attractive alternative is represented
by exact integrators [23, 2], though the schemes above yield a per-
ceptually reasonable reverberation characteristic [8]. Note that sta-
bility conditions arise as: Ωv,w < 2/k. These set upper limits for
the modal frequencies.

5. OUTPUT SIGNALS

Figure 8 displays the spectrograms of the normalised signals ex-
tracted from the three subsystems. The string physical values were
the ones of a C2 cello string, taken from [14], while the bridge
parameters were the same listed in Figure 5. The bow pressure
was Fb = 0.02 N, and the input and output positions were set to
0.73 ·Ls and 0.34 ·Lp respectively. The latter values were chosen
empirically to obtain a Helmholtz motion-shaped output sound [2,
Chapter 7]. The damping profile applied was the one proposed by
Valette [24]. The spring parameters were the ones detailed in Fig-
ure 7. Finally, the membrane physical values were: Lm = 0.5
m, Tm = 3000 N m−1 and ρm = 1.26 Kg m−2, and the out-
put point was (Xo, Yo) = (0.47, 0.62) · Lm. A damping profile
was chosen, for the spring and the membrane, which consists of
a frequency-independent (F-I) and a frequency-dependent (F-D)
part; as proposed by Bilbao [2, Chapter 7] the latter depends on
the square of the mode number. The damping coefficients for the
spring were taken from [18]; in the mebrane case, the F-I coeffi-
cient was set to 10, while the F-D one to 5×10−5, both chosen em-
pirically. Only a few seconds-long portion of data was analysed,
in order to avoid including too many signal variations. The spring
and the membrane act here as reverberant components. Panel (b)
from Figure 8 clearly exhibits cross stripes which correspond to
the spring chirps. The membrane, on the other hand, introduces
a broadband signal, which mimics late reflections. This is clearly
visible in Panel (c) from Figure 8. Sound samples can be found at
the following Github link3.

6. CONCLUSION

This paper presented a physical model of the yaybahar in the
modal domain. To this end, a modal decomposition of its subcom-
ponents was offered, including a model for the coupling between
a vibrating string and a distributed bridge, and the analytic modal
expansion of a helical spring. In addition, an energy-consistent
method for connecting the instrument components was here pre-
sented, making use of boundary forces.

This work focused on the development of a yaybahar physical
model; nevertheless, different aspects were overlooked, and will be

3https://github.com/Nemus-Project/yaybahar-nit
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Figure 8: Spectrograms of the three subsystems outputs after the
initial transient. Panel (a) displays the spectrogram of the ex-
tracted force Fp, panel (b) shows the spectrogram of the force
signal Fc, and panel (c) represents the output signal ẇo at the
output position (Xo, Yo).

subject of future work. The physical values for the spring and the
membrane were empirically tuned, while running proper measure-
ments on a real instrument would significantly improve the sound
quality. This is valid for the damping profiles as well. In addition,
the membrane was considered to be rectangular, while an accurate
reproduction would employ a circular model. Further future work
will also include a real-time implementation.
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ABSTRACT

Analog subtractive synthesizers are generally considered to provide
superior sound quality compared to digital emulations. However,
analog circuitry requires calibration and suffers from aging, tem-
perature instability, and limited flexibility in generating a wide
variety of waveforms. Digital synthesis can mitigate many of these
drawbacks, but generating arbitrary aliasing-free waveforms re-
mains challenging. In this paper, we present the +−synth, a hybrid
digital-analog eight-voice polyphonic synthesizer prototype that
combines the best of both worlds. At the heart of the synthesizer
is the big Fourier oscillator (BFO), a novel digital very-large scale
integration (VLSI) design that utilizes additive synthesis to generate
a wide variety of aliasing-free waveforms. Each BFO produces
two voices, using four oscillators per voice. A single oscillator
can generate up to 1024 freely configurable partials (harmonic or
inharmonic), which are calculated using coordinate rotation digital
computers (CORDICs). The BFOs were fabricated as 65 nm CMOS
custom application-specific integrated circuits (ASICs), which are
integrated in the +−synth to simultaneously generate up to 32 768
partials. Four 24-bit 96 kHz stereo DACs then convert the eight
voices into the analog domain, followed by digitally controlled
analog low-pass filtering and amplification. Measurement results
of the +−synth prototype demonstrate high fidelity and low latency.

1. INTRODUCTION

Digital sound synthesis has many advantages over implementations
with analog circuitry. Most notably, digital implementations are
able to produce a wide variety of waveforms and do not suffer from
temperature instabilities, aging, and component variations. How-
ever, aliasing is a ubiquitous nuisance in digital sound synthesis
and specialized signal processing techniques are often necessary
to combat such artifacts. For example, the work in [1] proposes
low-complexity methods to generate aliasing-free waveforms of
classical analog synthesizers (e.g., rectangle, sawtooth, and trian-
gle). Nonetheless, this method is unable to generate more complex
waveforms. In stark contrast, direct digital synthesis (DDS) [2]
enables the generation of nearly arbitrary waveforms at very low
complexity. Unfortunately, naïve DDS implementations generally
suffer from aliasing. While aliasing can be reduced to a certain
extent with oversampling followed by low-pass filtering, such an
approach diminishes the complexity advantages of DDS. The work
in [3] presents a method that is able to generate arbitrary alias-
free single-period wavetable waveforms. This method, however,
requires intricate trigonometric functions that must be calculated

Copyright: © 2023 Jonas Roth et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

at high precision and is, thus, not well-suited for efficient software
and hardware implementations.

An alternative sound-synthesis approach that eliminates alias-
ing altogether is to use additive synthesis [4], without ever gener-
ating partials that exceed half the sampling rate. Many software
synthesizers support additive synthesis and benefit from the flexi-
bility and user-interface capabilities that software brings. However,
relying on general-purpose processors, such implementations have
to balance signal quality and computational complexity, which lim-
its the amount of partials that can be generated and affects their
purity.1 To overcome the limitations of additive synthesis software
implementations, the work in [6] proposes a specialized hardware
design, which is able to generate a large number of partials (up to
1200) with a single application-specific integrated circuit (ASIC).
Such an implementation would enable the generation of a wide
variety of complex and aliasing-free waveforms, but, to the best of
our knowledge, no working system was demonstrated.

In recent years, a number of commercially available hybrid
digital-analog instruments emerged, which can generate a broad
range of high-quality waveforms. Specific instances are the Arturia
Freak Series [7], Sequential Prophet X [8], Udo Super 6 [9], and
Waldorf Quantum [10]. Unfortunately, only very little is known
about the inner workings of these instruments and, thus, it remains
largely a mystery how the waveforms are synthesized.

1.1. Contributions

We present the +−synth, an eight-voice polyphonic hybrid digital-
analog synthesizer prototype that combines digital oscillators with
analog filtering and amplification. Each voice consists of four
digital oscillators, each able to generate a wide range of aliasing-
free waveforms using an additive synthesis approach2 with up to
1024 partials (harmonic, inharmonic, or subharmonic); in total,
the instrument can generate 32 768 partials simultaneously. The
oscillators are implemented using a custom ASIC, the big Fourier
oscillator (BFO), which generates two voices. To arrive at high
hardware efficiency of the BFO ASIC implementation, we present
a range of algorithm-level optimizations and a very-large scale
integration (VLSI) architecture that utilizes CORDICs (short for
coordinate rotation digital computers) to generate partials of high
purity. We show how the BFO ASICs are integrated into the +−synth
hardware prototype, including the analog section that incorporates
voltage controlled filters (VCFs) and voltage controlled amplifiers
(VCAs) based on commercial integrated circuits (ICs). Finally, we

1The maximum number of partials varies significantly across different
plugins and depends on several parameters, such as the number of voices,
signal quality, and others. Alchemy from Apple’s Logic Pro X, for example,
supports up to 600 partials [5], while others support less than a dozen.

2Thus the name +−synth, where + represents the additive synthesis
approach and − the subtractive architecture of the instrument.
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Figure 1: Overview of the synthesizer setup. Top left: custom power
supply; top middle: +−synth hardware prototype; top right: MIDI
controller; bottom: MIDI keyboard.

present implementation results of the BFO ASIC and measurement
results at various output stages in the instrument. A photo of the
+−synth hardware prototype, including the external MIDI keyboard
and controller, is shown in Figure 1.

2. SYNTHESIZER ARCHITECTURE

Figure 2 shows a photo of the +−synth hardware prototype consist-
ing of a main board (with audio, MIDI, and power connectors),
an STM32 Nucleo development board (in white), with a custom
printed circuit board (PCB) on top hosting four BFO ASICs, and
four analog voice PCBs plugged into the main board (top right).
The key components of the hardware design are discussed next.

2.1. System Overview

A system architecture overview of the +−synth is given in Figure 3.
The instrument relies on a hybrid digital-analog version of sub-
tractive synthesis with digital oscillators, analog filters, and analog
amplifiers. The +−synth is digitally controlled by a microcontroller
unit (MCU), which receives user inputs from an external MIDI key-
board and a universal MIDI controller with rotary encoders. The
MCU generates all of the control signals for the digital oscillators
as well as for the analog filters and amplifiers. The instrument is
able to generate eight independent voices, where each BFO ASIC
implements two voices and each voice consists of four digital os-
cillators. The digital voices are converted into the analog domain
using four stereo DACs and each voice is separately processed
by a VCF and a VCA; an analog voice PCB houses these analog
components required for two voices. The control voltages (CVs)
are generated using CV-DACs, which are digitally controlled by
the MCU. The analog voices are summed to create the instrument’s
output signal, which can be either mono (eight voices) or stereo
(four voices per channel); this is controlled by relays. The +−synth
offers stereo line-level and headphone outputs. A custom power
supply derives all of the required voltages for both the analog and
digital domains from an off-the-shelf 24V DC power supply.

Figure 2: Photo of the +−synth hardware prototype.
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Figure 3: Architecture overview of the +−synth.

2.2. Digital Control and Interfaces

Digital control of the instrument is carried out on an STM23 Nucleo
development board (STM32F722ZE), which was chosen to bypass
the recent chip shortage. Received MIDI messages are used to com-
pute the control signals for the audio path (e.g., oscillator pitch and
volume, filter cutoff-frequency and resonance, and amplifier gain).
The MCU also implements the attack, decay, sustain, and release
(ADSR) envelope generators as well as low-frequency oscillators
(LFOs). The MCU generates and transmits the control signals to the
digital oscillators using a serial parallel interface (SPI) bus. The os-
cillators then generate eight voices that are converted to the analog
domain via inter-IC sound (I2S) interfaces and four 24-bit stereo
DACs. A second SPI bus on the MCU interfaces with the CV-DACs
that control the analog voice processing paths. The details of the
digital oscillators and analog voice PCBs are discussed next.

2.3. Aliasing-Free Digital Oscillator

At the heart of the +−synth are digital aliasing-free oscillators, which
utilize additive synthesis, each generating up to K = 1024 par-
tials.3 Each voice is composed of four digital oscillators, which can
be mixed together arbitrarily with configurable gains. Our custom
ASIC, the BFO, implements two voices, and the +−synth consists of
four BFO ASICs to provide eight-voice polyphony. Each oscillator

3With up to K = 1024 partials per oscillator, we can generate, for
example, a sawtooth wave with a base frequency f = 20Hz and the highest
harmonic at 20 480Hz, which is at the edge of the audible spectrum.
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Figure 4: Block diagram of an analog voice PCB.

calculates its samples x[ℓ] using the following Fourier series:

x[ℓ] =

K∑

k=1

ak cos

(
2π
fnk

fs
ℓ

)
+ bk sin

(
2π
fnk

fs
ℓ

)
. (1)

The oscillator parameters {ak, bk, nk}Kk=1, together with the oscil-
lator’s base frequency f and the system’s sampling rate fs, fully
determine the waveform to be generated. Note that each oscillator
has its own set of parameters. In order to avoid aliasing altogether,
we only sum the terms in (1) indexed by the set4

K(f) = {k = 1, . . . ,K : fnk < fs/2}, (2)

i.e., we replace k = 1, . . . ,K with k ∈ K(f) in (1). Section 3
details how this additive synthesis approach is implemented in our
custom BFO ASICs.

Remark 1. We emphasize that (1) is, strictly speaking, not a
Fourier series, as we also allow the multipliers nk ∈ Q, k =
1, . . . ,K, to be nonnegative rational numbers represented in the
chosen fixed-point format (see Section 3.1 for the details). This
flexibility enables us to generate waveforms with harmonics, inhar-
monics, and subharmonics, which implies that a single oscillator
cannot only generate standard analog synthesizer waveforms, but
also arbitrary wavetable sounds or bell-like timbres.

Each of the four oscillators of a voice generates samples ac-
cording to (1), which are weighted and summed. Then, the two
BFO voices can be further mixed before being passed to the I2S
output. Details on the mixing stage are provided in Section 3.5.

2.4. Analog Voice Boards

The +−synth features four analog voice PCBs, which can be seen
at the top-right of Figure 2. Each of these PCBs carries out analog
signal processing for two voices; a block diagram is depicted in
Figure 4. The audio DAC receives the samples from the two voices
generated by a BFO ASIC at a sampling rate of 96 kHz. We used a
CS4350 24-bit stereo DAC from Cirrus Logic [11], which contains
an integrated phase-locked loop (PLL) that derives its master clock
from the I2S clock. This eliminates the need to route a separate
25MHz clock signal to each analog voice PCB.

The VCFs are implemented using the SSI2144 IC from Sound
Semiconductor [12], which implements a fourth-order low-pass
ladder filter. The cutoff frequency and resonance (Q-factor) are
set by CVs. The VCAs are implemented using the SSI2162 IC
from Sound Semiconductor [13], which is used to apply the enve-
lope determined by another CV. Finally, the analog voice signal is

4We note that aliasing can still occur if one reconfigures the oscillator
parameters {ak, bk, nk}Kk=1 at too fast rates.

buffered before leaving the PCB to the final summing stage on the
main board that produces headphone and line outputs. Note that
some CVs are low-pass filtered, scaled, and offset in order to avoid
crosstalk to the audio path and to match the required voltage range;
this is implemented using operational amplifiers.

3. VLSI DESIGN OF THE BIG FOURIER OSCILLATOR

In order to develop an efficient VLSI design that is able to imple-
ment multiple aliasing-free oscillators, each with a large number
of high-quality partials, we leverage a range of algorithm- and
hardware-level tricks which are discussed next.

3.1. Fixed-Point Arithmetic

Our VLSI design exclusively uses fixed-point arithmetic, mostly
with 32-bit fixed-point precision, which enables the generation of
extremely pure partials with low harmonic distortion at high hard-
ware efficiency. The fixed-point number format is designated by the
notation {□, qi, qf}, where qi is the number of integer bits, qf is the
number of fractional bits, and □ is either s or u if the fixed-point
number is signed or unsigned, respectively. The coefficients ak
and bk in (1) use the format {s, 0, 31}, which gives precise con-
trol over the partials’ amplitudes and phases. The multipliers nk

use the format {u, 16, 16}, which enables harmonic, inharmonic,
and subharmonic partials with fine frequency resolution. The base
frequency is normalized as f/fs and uses the format {u, 0, 32},
which results in a frequency resolution of 22.4µHz at fs = 96 kHz.
While the generated samples have an internal resolution of 32 bits,
the I2S output is reduced to the DACs’ resolution of 24 bits.

3.2. Algorithm-Level Optimizations

To improve the hardware efficiency of our VLSI design, we use the
following algorithm-level optimizations that reduce the complexity
of calculating the samples as in (1).

Reparametrization from Radians to Turns Instead of directly
computing the arguments ϕk[ℓ] ≜ 2π fnk

fs
ℓ of the cosine and sine

functions in (1), which are in the unit of radians, our VLSI de-
sign calculates the two functions co(θ) ≜ cos(2πθ) and si(θ) ≜
sin(2πθ) instead. Here, the arguments θk[ℓ] ≜ fnk

fs
ℓ are repre-

sented in what is known as turns, which has several advantages.
First, the arguments θk[ℓ] are in the range [0, 1), which requires
one to pass arguments to the co(·) and si(·) functions of the form

θk[ℓ] =
fnk

fs
ℓ mod 1. (3)

The modulo-1 operation can be obtained in hardware for free by
simply discarding the integer part of θk[ℓ] when represented by
unsigned fixed-point numbers. Second, one can directly calculate
the functions co(·) and si(·) in a hardware-friendly manner using
CORDICs; see Section 3.3 for the details.

Sequential Calculation of Arguments For each sample ℓ =
0, 1, . . . and partial k = 1, . . . ,K, two multiplications are required
to calculate the argument θk[ℓ] in (3). First, the argument increment
δk ≜ fnk/fs is computed by multiplying the normalized base
frequency f/fs by the frequency multiplier nk. Second, the argu-
ment increment δk is multiplied by the sample index ℓ. While this
last multiplication occurs in modulo-1 arithmetic, it still requires
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a high dynamic range, as the sample index ℓ is represented with a
large number of bits to avoid unwanted resetting in the oscillators.
Hence, every sample ℓ requires K = 1024 of these high-resolution
θk[ℓ] = δkℓ mod 1 products. This complexity could easily be
reduced by tracking the argument θk for each partial k = 1, . . . ,K
with an addition instead of a multiplication. In specific, one can
update the argument θk for every new sample ℓ as

θk ← (θk + δk) mod 1. (4)

The arguments are initialized as θk = 0 at sample index ℓ = 0.
We reiterate that the modulo-1 operation is free in hardware by
discarding the integer part of the arguments θk, k = 1, . . . ,K.

Single Argument for All Partials The remaining disadvantage
of the above method is that one must keep track of the arguments θk
for every partial k = 1, . . . ,K. This requires additional storage for
all arguments in a two-port memory that supports one simultaneous
read and write per update of (4). To avoid an additional memory,
we keep track of a single base-frequency argument θ ≜ f

fs
ℓ from

which all arguments θk can be derived as follows:

θk = θnk mod 1, k = 1, . . . ,K. (5)

Unfortunately, unlike the arguments θk in (4), the base-frequency
argument θ cannot be accumulated modulo-1 since the property

θnk mod 1 = (θ mod m)nk mod 1 (6)

with m = 1 does not hold for every nk. For example, for θ = 1
and nk = 1.5, (θ mod 1)nk mod 1 = 0 is different from the
desired θnk mod 1 = 0.5. Indeed, to calculate θk for an arbitrary
frequency multiplier nk from the base-frequency argument θ, the
quantity θ needs to be represented with an infinite number of integer
bits (i.e., without using a modulo operation). Nevertheless, provided
that the multipliers nk are represented with a finite number of
fractional bits qf, it is sufficient to represent θ using a finite number
of integer bits. This key insight is made rigorous by Lemma 1.

Lemma 1. θn mod l = (θ mod m)n mod l if mn mod l = 0.

Proof. Let Θ = θ mod m, so that we want to show θn mod l =
Θn mod l. We rewrite Θ = θ mod m and mn mod l = 0 as

θ = am+Θ, and (7)
mn = bl, (8)

where a, b ∈ Z. Multiplying both sides of (7) by n, we get

θn = amn+Θn = abl +Θn, (9)

where (9) follows from (8). Since ab ∈ Z, taking the modulo-l of
both sides of (9) results in θn mod l = Θn mod l.

By applying Lemma 1 with n = nk and l = 1, we can deter-
mine the value of m so that (6) is satisfied for the multipliers nk

used in the BFO. In words, Lemma 1 is telling us that, instead of
keeping track of θ with infinite precision, we can just keep track of
its modulo-m equivalent and any multiplication by the frequency
multipliers nk will be correct in modulo-1 arithmetic as long as
mnk ∈ Z. Given that nk has qf = 16 fractional bits, we can satisfy
this last requirement by setting m = 2qf . Therefore, we keep track
of the base-frequency argument θ with the recursion

θ ← (θ + δ) mod 2qf , (10)

where δ = f/fs. The modulo-2qf operation is easily implemented
in hardware by using only qf bits to represent the integer part of θ
and letting the result wrap-around once the maximum representable
number is reached. We note that, if all nk ∈ Z, then θ could
be tracked in modulo-1 arithmetic—thus, the recursion in (10) is
required as we also support inharmonic and subharmonic partials.

We observe that, while this approach requires K = 1024 mul-
tiplications per sample ℓ as in (5), it avoids (i) storing arguments
per partial and (ii) additional K = 1024 multiplications per sam-
ple that would be required to compute the frequency increments
δk = δnk. Thus, our approach leverages a trade-off between the
high complexity of naïvely computing θk[ℓ] as in (3) and the large
memory overhead of a per-θk-argument accumulation as in (4).

3.3. Computing Cosines and Sines with CORDICs

To calculate cosine and sine functions at high precision and in a
hardware-friendly way, we utilize CORDICs [14], which essentially
calculate two-dimensional Givens rotations of the following form:

[
p′1
p′2

]

︸ ︷︷ ︸
p′

=

[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]

︸ ︷︷ ︸
=G(ϕ)

[
p1
p2

]

︸ ︷︷ ︸
=p

. (11)

Evidently, by setting ϕ = 2π fnk
fs
ℓ, p1 = ak, and p2 = −bk, the

output p′1 is exactly one term of the Fourier series in (1).
We now outline the idea behind CORDICs—the interested

reader is referred to [15] for more details. First, one approximates
the desired rotation angle ϕ ≈∑M−1

m=0 ϕm by summing M prede-
fined micro-rotation angles ϕm, m = 0, . . . ,M − 1; see below
for a concrete choice of these angles. Second, the Givens rotation
in (11) is approximated by G(ϕ) ≈ ∏M−1

m=0 G(ϕm) with M so-
called micro-rotations G(ϕm), which are simply Givens rotations
by the angles ϕm. Third, one rewrites each micro-rotation as

G(ϕm) = κm

[
1 − tan(ϕm)

tan(ϕm) 1

]
, (12)

where κm = (1 + tan2(ϕm))−
1
2 . Fourth, one restricts the micro-

rotation angles ϕm to tan(ϕm) = dm2−m with dm ∈ {−1,+1}.
With this, the Givens rotation in (11) is approximated as

p′ ≈ κ
M−1∏

m=0

[
1 −dm2−m

dm2−m 1

]
p. (13)

Here, the scaling factor κ =
∏M−1

m=0 κm depends only on the
number of micro-rotations M and not on the choices of dm. Fifth,
one needs to determine the micro-rotation angles ϕm that well-
approximate the target angle ϕ. The standard procedure iteratively
determines ϕm from the target angle ϕ, i.e., by first taking the angle
ϕ0 = d0atan(2

−0) that brings ϕ closer to zero. One then updates
the target angle as ϕ← ϕ− d0atan(2−0) and takes a new angle
ϕ1 = d1atan(2

−1) that brings the updated ϕ closer to zero. This
procedure is repeated for the remaining M − 2 micro-rotations.

We note that every additional micro-rotation provides roughly
one additional bit of precision [15]; this implies that the approxima-
tion error in (13) can be made arbitrarily small. In our application,
we use a quadrant correction followed by M = 26 micro-rotations,
which leads to a precision of qf = 24 fraction bits (see Section 4
for measurements). Furthermore, instead of representing the micro-
rotation angles ϕm in radians, we represent them in turns; this
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Figure 5: BFO architecture. Figure 6: ASIC micrograph.

enables us to directly calculate the functions co(·) and si(·) with a
CORDIC. Finally, it is crucial to realize that each micro-rotation in
(13) only involves shifts, additions, subtractions, and a multiplica-
tion by the constant κ; this implies that the Givens rotation in (11)
can be approximated in a hardware-friendly manner, generating
samples of cosine and sine functions with extremely high purity.

3.4. VLSI Architecture

Figure 5 depicts the VLSI architecture of our BFO ASIC, which
consists of two voices, referred to as L and R, each one with four
oscillators. Each oscillator features a 1024 × 96-bit register file
to store the oscillator coefficients {ak, bk, nk}, k = 1, . . . , 1024,
an argument accumulator, a fully unrolled CORDIC module that
calculates one pair of sine and cosine values per clock cycle, and a
sample accumulator. The configuration registers and register files
of the BFO are addressed using a memory map and are configured
via SPI. Each SPI command uses 48 bits: 16 bits for the address
and 32 bits for the data. The SPI interface runs at a baud rate of
13Mb/s, with which a new waveform with K = 1024 partials
could be reprogrammed in less than 12ms—nevertheless, this task
is currently completed in 315ms as our firmware does not yet fully
exploit the MCU’s capabilities.

To generate samples x[ℓ] as in (1) with K = 1024 partials at
a sampling rate fs = 96 kHz, each oscillator operates at a clock
frequency of Kfs = 98.304MHz and calculates one sample of
one partial every clock cycle. The argument accumulator uses the
base frequency f/fs, stored in a configuration register, to track the
base-frequency argument θ, which is updated every K = 1024
clock cycles as in (10). In each of the K clock cycles that the base-
frequency argument θ remains fixed, one word of the register file
is read to obtain {ak, bk, nk}. Then, the argument θk is computed
by multiplying θ and nk as in (5). With {ak, bk, θk} available, the
CORDIC computes one partial in (1), which is then accumulated to
the current sample x[ℓ] if aliasing will not occur, i.e., if fnk < fs/2
is met. After K = 1024 clock cycles, the four samples generated
by the four oscillators are added to create one voice sample, and
the L and R voice samples are then mixed using a programmable
2× 2 matrix to support, e.g., stereo and mono processing. The two
mixed samples are then streamed to the DACs via I2S.

Figure 6 shows a micrograph of the 3mm2 BFO ASIC, which
was fabricated in TSMC 65 nm LP CMOS technology. At the nom-
inal 1.2V core supply and room temperature, the ASIC achieves a
maximum measured clock frequency of 154MHz, exceeding the

required 98.304MHz, while consuming only 178mW.

3.5. Bells and Whistles

The BFO includes a number of additional features, which further
improve its versatility and flexibility. These features are as follows.

Subwave Mixing Per default, each oscillator accumulates 1024
partials together to compute one sample x[ℓ] as in (1). We also
support a subwave mixing mode, in which the 1024 partials are split
into up to four disjoint groups (or subwaves) that are accumulated
independently. By doing so, a single oscillator can blend various
wavetable sounds with the same base frequency, each one with
fewer partials; e.g., an oscillator can generate four subwaves of 256
partials each instead of a single waveform with 1024 partials. Each
subwave xi[ℓ], i = 1, . . . , 4, has a corresponding weight vi, so that
the output of one oscillator is y[ℓ] =

∑4
i=1 vixi[ℓ]. Thus, with the

four oscillators per voice, subwave mixing can arbitrarily blend up
to 16 different wavetables in a single voice.

Aliasing Control Per default, only partials for which fnk/fs <
0.5 holds are accumulated; see (2). The BFO includes a mode that
accumulates partials for which the following condition is met

fHP ≤ fnk/fs < fLP, (14)

which realizes an ideal band-pass filter with the lower and upper
cutoff frequencies fHP and fLP, respectively. These frequencies can
be configured in the range [0, 1); the default values are fHP = 0
and fLP = 0.5 (no aliasing allowed). Having these frequencies
programmable can be used, e.g., to intentionally allow for aliasing
(by setting fLP > 0.5), or to apply low- and high-pass filtering.

Bit- and Rate-Crusher Each oscillator output includes (op-
tional) bit-crusher and rate-crusher distortion effects. The bit-
crusher forces certain bits of the output sample y[ℓ] to zero; the
zero bits are determined by a programmable bit-mask. This feature
can be used to reduce the bit-resolution by zeroing a certain number
of least-significant bits; other, more complicated masking patterns
are also possible. The rate-crusher is a simple sample-and-hold
sub-sampling circuit that lowers the rate at which the output sam-
ples y[ℓ] are updated. The sub-sampling rate is set in the range
(0, fs) and is stored in a configuration register. This feature can
be used to emulate lower sampling rates or, for example, cause
intriguing aliasing artifacts that depend on the base frequency f .

PDM Output As an alternative to the I2S interface, each BFO
ASIC also includes two pulse density modulation (PDM) outputs.
The 1-bit PDM signal is generated from a digital first-order sigma-
delta modulator running at an oversampling rate of 1024, which
corresponds to the BFO’s clock frequency. This output could be
useful for cost-sensitive applications (as no DACs are required), but
at reduced sound quality; see Section 4.1 for measurement results.
Note that the PDM outputs are not used in the +−synth prototype.

Clipping Indicators At certain stages in the digital signal pro-
cessing path, sample values must be clipped to a certain maximum
range to reduce their word lengths. This occurs at the output of each
oscillator and after the mixer stage. Thus, we included a number of
clipping indicator outputs that are raised if clipping occurred; these
are tied to LEDs on the +−synth prototype.
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Figure 7: Power spectrum comparison for a 1 kHz sine wave at a
sampling rate of fs = 96 kHz between a MATLAB floating-point
reference, the BFO output, and the method described in [6].

3.6. Comparison

To the best of our knowledge, only the ASIC design reported in [6]
is comparable to our BFO implementation. The design in [6] uti-
lizes a marginally stable infinite-impulse response (IIR) filter to
recursively generate samples of a single sinusoid only with the
help of a multiply-accumulate unit. While the algorithm itself is
competitive to our approach in complexity per generated sample,
the recursive calculations together with fixed-point arithmetic suf-
fer from error propagation, particularly at low frequencies (in the
order of tens of Hz). To mitigate this issue, the recursion must be
restarted periodically (the authors recommend restarting every 128
samples), which requires one to retrieve two sinusoids from two
consecutive sample instants from a memory or a CORDIC. The
design in [6] assumes that these initial sine values are generated
externally. Moreover, their circuit assumes that the magnitudes
and phases are stored externally and streamed into the ASIC. Thus,
their design would require additional (external) logic and memory,
whereas our BFO ASIC is fully self-contained.

A direct comparison between the hardware implementation
characteristics of our BFO ASIC and the design in [6] is challeng-
ing due to missing details. Nonetheless, we re-implemented their
method in MATLAB using the fixed-point parameters of [6] and
compared it to a double-precision floating-point MATLAB refer-
ence and the BFO output for a 1 kHz sine at fs = 96 kHz. Our
simulations reveal that the method in [6] achieves a total harmonic
distortion plus noise (THD+N) of −94.27 dB, which is 42.7 dB
worse than what is achieved by our BFO ASIC (see also Table 1).
The corresponding power spectra5 are shown in Figure 7 and it is ev-
ident that our CORDIC-based approach generates sine waves with
significantly higher purity than the ASIC design reported in [6].

4. MEASUREMENT RESULTS

In order to quantify the performance of the +−synth prototype, we
now present a number of measurement results.

5We analyze 960 k samples (10 s) using Welch’s method with a Hann
window, a 214-point FFT, 50% overlap, and a normalized peak value of 1.
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Figure 8: Measured power spectra (in decibels) for a 1 kHz sine
wave at a sampling rate of fs = 96 kHz.

4.1. Signal Quality

We first assess the quality of a single partial at different stages of
the instrument: (i) the BFO output (I2S output, digital domain),
(ii) the DAC output (after reconstruction filter, analog domain),
and (iii) the +−synth output (line-level output, analog domain). We
generate a 1 kHz sine wave with −6 dBFS amplitude (with respect
to the I2S interface) in the BFO at a sampling rate fs of 96 kHz. The
digital BFO output is captured using a logic analyzer to extract raw
I2S data; the analog signals are captured using a Focusrite Scarlett
18i20 (3rd gen.) audio interface [16] with a sampling rate of 96 kHz.
Figure 8(a) shows the power spectrum of the three signals. The
corresponding THD+N values are reported in Table 1. We see that
the test signal (sinusoidal) at the BFO output has extremely high
purity and the quality is essentially limited by the DAC. We can
also see that analog processing through the VCF and VCA circuitry
further reduces the THD+N, which is not unexpected.

We also measured the filtered PDM output, which consists of
a passive second-order low-pass filter with a −3 dB frequency of
31 kHz. This output achieves a THD+N of −75 dB, which is 13 dB
higher than that of the DAC output (see Table 1); the associated
spectrum is shown in Figure 8(b). Clearly, the PDM output is
inferior to the DAC output, but would enable the use of our BFO
ASICs with less expensive external circuitry.
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Table 1: THD+N measurements for a f = 1 kHz sine.

Measurement THD+N [dB]

+−synth output (analog) −51.0
PDM output (analog) −75.0
DAC output (analog) −88.2
BFO output (digital) −137.0
reference: function generator (analog) −89.5

Table 2: SINAD for different waveforms at f = 20Hz.

Waveform SINAD [dB]

sine 134.0
triangle 133.3
sawtooth 135.3
super-saw 131.3
rect-saw 131.0
pulse 109.4

Remark 2. The audio interface [16] specifies a THD+N below
0.002% (≈ −94 dB) for the line inputs. As a reference, we mea-
sured a 1 kHz sine wave generated with an SRS DS360 ultra-low
distortion function generator [17], which resulted in a THD+N
or −89.5 dB (cf. Table 1); the associated spectrum is shown in
Figure 8(b). Since this THD+N result is close to that of the DAC
output, our measurements are likely affected by the audio interface.

Table 2 shows the signal-to-noise and distortion ratio (SINAD)
between a MATLAB floating-point model and the digital BFO
output for different waveforms generated at a base frequency of
f = 20Hz. Most waveforms achieve a SINAD exceeding 131 dB
except for the pulse waveform, which yields 109.4 dB. The reason
is that since the pulse waveform has the ak-coefficients of all 1024
partials set to the same value, that value has to be reduced substan-
tially to avoid clipping. Thus, the signal power of this waveform
is much lower compared to the other waveforms, which results in
lower SINAD.

4.2. Latency

As any digitally controlled instrument, the +−synth exhibits non-
negligible latency between a keystroke (or parameter change) and
a change in the synthesizer’s output. To assess the prototype’s
latency, we measure the delay between the reception of a note-
on MIDI message at the +−synth and the change in signal at the
line-level output; this ignores external delays, e.g., caused by the
MIDI keyboard. The measurements are repeated 34 times using an
oscilloscope probing two signals: (i) the opto-coupler’s output in
the MIDI receiver circuit and (ii) the hot signal of the line-output.
Our measurements show a mean latency of 2.09ms (minimum
1.60ms; maximum 2.76ms; standard deviation 0.33ms). The
latency is mainly caused by the MCU firmware, i.e., processing
the UART data (MIDI receiver), computing new control signals,
transmitting parameter data over SPI, etc.

4.3. Power Consumption

The +−synth’s power consumption is measured for two cases: (i) idle
mode (default state after power-up) and (ii) playback (all voices
playing). The supply current is measured at 499mA during idle
mode and up to 522mA during playback. This corresponds to a
power consumption of approximately 12W to 13W. Since there
are many factors influencing the instrument’s power (e.g., filter
resonance, load at audio outputs, etc.), these measurements should
be taken with a grain of salt.

5. LIMITATIONS AND FUTURE WORK

The +−synth prototype, in its current form, has a number of lim-
itations, which we now summarize. First, the BFO ASICs are
currently unable to perform oscillator synchronization, which is a
direct consequence of the additive-synthesis approach discussed
in Section 2.3. To mitigate this limitation, one could load in oscil-
lator parameters {ak, bk, nk}Kk=1 of a synchronized oscillator, but
this approach is limited by the rate at which all of the parameters
can be rewritten (see Section 3.4). Also, such a workaround might
no longer be aliasing-free. Developing hardware-friendly solutions
to implement true oscillator synchronization without aliasing, e.g.,
inspired by the works of [18, 19], is part of ongoing work. Second,
the BFO ASICs do not provide hardware support for true additive
synthesis with separate envelopes per partial. Such functionality
could readily be implemented in hardware, but comes at the cost
of additional memory and logic to store and update the envelope
parameters. A potential compromise would be to use the linear
updates put forward in [6]. Third, the BFO does not provide a noise
generator. We are planning to include such missing functionality
in a future version. Fourth, the quality of the BFO is currently
limited by the used 24-bit DAC, and our audio interface may affect
our measurements; in the future, we will use a better DAC to fully
exploit the BFO’s high purity and also use better measurement
equipment. Fifth, we are currently using an off-the-shelf external
keyboard and controller—developing a dedicated user interface for
the +−synth would be quite exciting.

6. CONCLUSIONS

We have shown the implementation details of the +−synth, an eight-
voice hybrid digital-analog music synthesizer prototype that uses
aliasing-free digital oscillators followed by analog filtering and am-
plification. By implementing the oscillators on custom ASICs, we
are able to generate a wide variety of waveforms with up to 1024
freely programmable partials per oscillator, which includes not
only classical waveforms of analog synthesizers, but also wavetable
sounds or bell-like timbres. The +−synth is able to generate a total
number of 32 768 partials at a sampling rate of 96 kHz, and mea-
surement results have demonstrated high fidelity and low latency.

While a range of commercial hybrid digital-analog synthesizers
became available recently, virtually nothing is known about their
inner workings. In contrast, every implementation detail of our
hardware prototype is known and well-documented, and every
aspect of the instrument can be modified easily. We therefore
believe that the +−synth will be an excellent research platform for
future real-time audio synthesis experiments.
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ABSTRACT

This paper is concerned with the design of efficient and control-
lable filters for sound synthesis purposes, in the context of the
generation of sounds radiated by nonlinear sources. These filters
are coupled and generate tonal components in an interdependent
way, and are intended to emulate realistic perceptually salient ef-
fects in musical instruments in an efficient manner. Control of
energy transfer between the filters is realized by defining a ma-
trix containing the coupling terms. The generation of prototypical
sounds corresponding to nonlinear sources with the filter bank is
presented. In particular, examples are proposed to generate sounds
corresponding to impacts on thin structures and to the perturbation
of the vibration of objects when it collides with an other object.
The different sound examples presented in the paper and avail-
able for listening on the accompanying site tend to show that a
simple control of the input parameters allows to generate sounds
whose evocation is coherent, and that the addition of random pro-
cesses allows to significantly improve the realism of the generated
sounds.

1. INTRODUCTION

Modal synthesis operates according to the decomposition of the
complex dynamic behavior of a vibrating object into contributions
from modes, each oscillating independently at a single frequency.
This approach, applicable to linear and time-invariant systems, is
widely used and forms the basis for various physical modelling
synthesis software packages [1] [2] and is closely related to sound
synthesis methodologies employing filter banks [3] [4] [5].

For vibrating objects incorporating nonlinear effects, the modal
interpretation must be generalized to include energy transfer be-
tween different modes (among other things such as e.g. frequency
shifting of modes over time). It may cause the delayed and sus-
tained appearance of tonal components that cannot be generated
by linear filtering. This complex phenomenon, widely studied for
the typical case of thin plates and shells [6] [7], can be modelled
and solved under certain conditions. The numerical solution of the
Föppl-von Kármán system [8, 9] that governs the underlying dy-
namics of nonlinear thin plates at moderate vibration amplitudes
yields realistic and convincing sound synthesis [10], but at heavy
computational cost. Ducceschi and Touzé [11] propose the modal
resolution of the system with the offline calculation of coupling
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permits unrestricted use, distribution, adaptation, and reproduction in any medium,
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coefficients. They manage under certain approximations to signif-
icantly reduce the computation time without being able to achieve
real-time sound synthesis (about 8 times real-time on a CPU) [12].
Another typical case of coupling between modes induced by non-
linear phenomena concerns collisions in musical instruments [13]
and has been the subject of various studies, including on modal in-
teractions [14]. Computational cost for synthesis can also be heavy
in such cases.

For synthesis purposes, and particularly if real-time perfor-
mance is the ultimate aim, it can be useful to depart from strict
physical models, and examine modal interactions from a percep-
tual point of view. Skare and Abel [15] perform real-time modal
synthesis of crash cymbals with a GPU-accelerated modal filter-
bank. Their method consists in identifying the modal parameters
(including a rough approximation of the couplings) on recorded
sounds, although the energy transfer mechanism is unspecified.

In this paper, we design coupled filters based on the design
proposed by Mathews and Smith [16] and adapted by Skare and
Abel [15] to incorporate energy transfer. In particular, we propose
an equivalence between the power of the signal corresponding to
a tonal component and the energy of a vibration mode from an
equivalent physical system to ensure energy conservation during
transfers. Inter-modal energy transfer is encoded in a matrix con-
taining all the coupling coefficients. The aim of this paper is not to
propose a synthesis model performing an accurate simulation of a
physical system. Instead, we seek to develop a framework allow-
ing direct modelling of sounds targeted to the way they are per-
ceived. This results in an efficient way to generate sounds evoking
nonlinear sources and can yield real-time event-driven synthesis of
sounds in virtual or augmented reality environments, a particularly
active field of research [17] [18].

Some background on modal synthesis and linear filtering is
given in Section 2. Then, the coupling between the filters is pre-
sented in Sec.3, the stability of the filters is discussed in Sec.3.2,
and the definition of the matrix containing the coupling terms is
proposed in Sec.4. Various example systems used to generate pro-
totypical sounds are presented in Sec.5. Sound examples are avail-
able online at the following address [19].

2. MODAL SYNTHESIS AND LINEAR FILTERING

The modal resolution of a linear partial differential equations (PDE)
system describing the vibrations of a resonant object is well-described
in various texts [20]. Solutions are of the following form for the
displacement w depending on a spatial coordinate r and time t:

w(r, t) = wh(r, t)︸ ︷︷ ︸
homogeneous solution

+ wp(r, t)︸ ︷︷ ︸
particular solution

, (1)
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where

wh(r, t) =

∞∑

i=1

e−αit [Ai cos(ωit+ φi)]ϕi(r) (2a)

wp(r, t) =

∞∑

i=1

(gi(t) ∗ hi(t))ϕi(r), (2b)

Here, ∗ represents a convolution operation, and the impulse re-
sponse hi(t) of the following form:

hi(t) =
1

ωi
e−αit sin(ωit) (3)

the function ϕi(r) is the ith mode’s shape or basis function, ωi

and αi are the angular frequency and the damping coefficient of
the ith mode, respectively. The constants Ai and φi derive from
the initial conditions and gi(t) is the modal excitation (projection
of an excitation source g(r, t) onto the modal basis functions).

One may note that the modal model does not necessarily de-
rive from the solution of partial differential equations. The modal
parameters may be identified directly from experimental measure-
ments (recording) or from numerical simulations.

A straightforward approach to numerical solution at a sam-
ple rate fs in Hz is to use recursive filters with an exponentially-
damped sinusoidal impulse response (IIR). The filter proposed by
Mathews and Smith [16] has this property. The implementation of
this filter consists in calculating, for each time step n, the imag-
inary part of a complex number z(n) whose rotation speed in
the complex plane is constant and corresponds to the angular fre-
quency ω of the exponentially damped sinusoid:

y(n) = Im(z(n)) where z(n+1) = Zz(n)+u(n) (4)

with u(n) the source of the filter, and Z the constant modification
of the phase and modulus in one time step:

Z = e−α/fsejω/fs = X + jY (5)

with X = e−α/fs cos(ω/fs) and Y = e−α/fs sin(ω/fs).
The recurrence equation on the complex sequence z(n) is com-

puted by the following system including a recurrence equation for
the real part x(n) = Re(z(n)) and a recurrence equation for the
imaginary part y(n) = Im(z(n)), which is the output of the filter:

x(n+ 1) = Re(z(n+ 1)) = Xx(n)− Y y(n) + u(n)

y(n+ 1) = Im(z(n+ 1)) = Y x(n) +Xy(n)
(6)

for a real source u(n) ∈ R.

3. COUPLING BETWEEN THE FILTERS

3.1. Principle and implementation

Consider N filters defined as in the previous section in parallel
and we wish to couple them. We note zi(n) the complex sequence
corresponding to the ith filter, with xi(n) its real part and yi(n)
its imaginary part (corresponding to the output signal of the filter).
The source for the ith filter, corresponding to the projection of the
source of the filter bank u(n) onto the ith modal basis function, is
noted ui(n).

The mechanical energy corresponding to the vibration of a
mode is proportional to the square of the amplitude of the displace-
ment. From a signal point of view, the square of the amplitude

of a tonal component corresponds to twice the power of the sig-
nal. Postulating a linear relation between the displacement of the
structure and the sound produced, we have chosen to model the
energy transfers between the modes by power transfers between
the filters [21]. If we only look at the power evolutions linked to
the energy transfers (by postulating a null source), we write the
following recurrence relation on the powers of the output signals
of the different filters Pi:

Pi(n+ 1) =


Pi(n) + Ti(n)︸ ︷︷ ︸

transfer


 e−2αi/fs
︸ ︷︷ ︸

losses

(7)

with
Pi(n+ 1) ≥ 0⇔ Pi(n) + Ti(n) ≥ 0, (8)

and Pi(n) the power of the tonal component:

Pi(n) =
|zi(n)|2

2
=

1

2
(xi(n)

2 + yi(n)
2) (9)

xi(n), yi(n) ∈ R.

Thus, we can express the variation of the modulus of zi(n)
due to energy transfer between two time steps:

|zi(n+ 1)| =
√
|zi(n)|2 + 2Ti(n) e

−αi/fe (10)

We can define an amplitude ratio between the modulus for two
consecutive time steps if |zi(n)| ̸= 0:

|zi(n+ 1)|
|zi(n)|

=

√
1 +

2Ti(n)

|zi(n)|2
︸ ︷︷ ︸

transfer

e−αi/fe
︸ ︷︷ ︸

losses

(11)

Thus, we can modify the recurrence equation defined in the
previous section (see Eq.(4)) by incorporating the modulus vari-
ations due to energy transfers. It gives the following recurrence
relation for zi, including the source and phase variations:

zi(n+1) =

{ √
2Ti(n)Zi + ui(n) if zi(n) = 0√
1 + 2Ti(n)

|zi(n)|2Zizi(n) + ui(n) else

(12)
with Zi = e−αi/fsejωi/fs = Xi + jYi, as defined in Eq(5). One
can note that Ti(n) > 0 if zi(n) = 0 (see Eq.(8)). This implies
that the term

√
2Ti(n) is real in the first part of Eq.(12).

Finally, we can write the system of equations for the imple-
mentation of the filters (see Figure 1 for a representation in block
diagram):

xi(n+ 1) = Re(zi(n+ 1)) = Xix̃i(n)− Yiỹi(n) + ui(n)

yi(n+ 1) = Im(zi(n+ 1)) = Yix̃i(n) +Xiỹi(n)

(13)

with

x̃i(n) =

{ √
2Ti(n) if zi(n) = 0√
1 + 2Ti(n)

|zi(n)|2 xi(n) else

ỹi(n) =

{
0 if zi(n) = 0√

1 + 2Ti(n)

|zi(n)|2 yi(n) else

(14)
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In this way, power can be transferred among the different fil-
ters without affecting the phases. The coupling intervenes in the
calculation of the transfer terms Ti(n) which ultimately involve
the other filters (see Figures 1 and 2).
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Figure 1: Block diagram of a filter for the generation of the signal
corresponding to a vibration mode. u corresponds to the source
entering this particular filter and the block Ti corresponds to the
calculation involving the states of other filters (coupling term).

3.2. Energy and stability

A sufficient condition for the stability of the filter bank is to impose
a non-positivity constraint for the transfer terms:

N∑

i=1

Ti(n) ≤ 0 (15)

This condition impedes the creation of energy during transfer be-
tween modes for an equivalent physical system.

Also, the sum is bounded by the condition defined in Eq.(8) (a
filter cannot transfer more power than it possesses):

N∑

i=1

Ti(n) ≥ −
N∑

i=1

Pi(n) (16)

One can note that it is possible to consider a less restrictive
stability condition that binds the transfer term to be lower than the
power decrease due to losses:

N∑

i=1

(Pi(n) + Ti(n)) e
−2αi/fs ≤

N∑

i=1

Pi(n)

⇔
N∑

i=1

Ti(n) e
−2αi/fs ≤

N∑

i=1

Pi(n)
(
1− e−2αi/fs

)

(17)

However, this condition cancels the effect of dissipation and is not
consistent with an equivalent physical system. We prefer to con-
sider the condition presented Eq.(15) for the rest of the document.

4. DISTRIBUTION MATRIX

This section presents a formalism for the calculation and control of
the coupling between filters. The challenge is to arrive at a model

Coupled filters

u(n)

  Filter associated to mode  N

z-1

H
i

T
i

  Filter associated to mode 1

.

.

.

s(n)

Figure 2: Schematic representation of the coupled filter bank. the
double arrow connecting the two boxes represents the coupling be-
tween the filters through the transfer vector t. The output of the fil-
ter bank is the sum of the outputs of the filters s(n) =

∑N
i=1 yi(n)

simple enough to be controllable (i.e., to be able to predict the
sound outcome of a manipulation of the parameters) and complete
enough to allow the matching of modal trajectories to a range of
nonlinear phenomena.

Now define the column vectors p(n) = [P1(n), . . . , PN (n)]T

and t(n) = [T1(n), . . . , TN (n)]T . The power transfers between
the tonal components t(n) at a given time step n are defined as:

t(n) = M [p(n)− τ ]+ . (18)

Here, [·]+ indicates the “positive part of", i.e., [ζ]+ = 1
2
(ζ + |ζ|).

An N × 1 column vector τ containing the thresholds τi, i =
1, . . . , N at which transfers are activated for each tonal compo-
nent has also been introduced here.

Thus, the calculation of the transfer terms is performed by the
matrix product of an N × N redistribution matrix M with the
vector resulting from the positive part of the difference between
the power of each frequency component p(n) and the associated
threshold τ . In other words, the transfer terms Ti(n) are propor-
tional to the excess power above the corresponding threshold and
the terms of the matrix M define the proportions distributed and
received by each other component. Note that this relation is not
an immediate consequence of a physical model but is a heuristic
means of capturing salient phenoemna in a physical system. Our
focus is on the design of a synthesis process with a predictable
sound outcome rather than on the simulation of a physical system.

To respect the stability condition Eq.(15), we set the sum of
all values of a given column of the matrix M to be lower or equal
to zero. If Mij is the i,jth entry of M, then

N∑

i=1

Mij ≤ 0 ∀ j ⇒
N∑

i=1

Ti(n) ≤ 0 (19)
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The diagonal entries Mjj of the matrix M define the proportion
of power of the jth mode that will be redistributed to other modes
and the other terms of the column Mij define the quantity that the
ith mode will receive from this redistribution.

An efficient way to define the coefficients of the matrix is to
use the following expression:

Mij = ηλ
aij∑N
i=1 aij

− λδij (20)

Where aij is a coefficient weighting the redistribution from the jth
mode to the ith mode. In this formulation, the stability of the filter
bank is ensured for arbitrary aij , provided that at least one value
per column is non-zero and that 0 ≤ η ≤ 1. η corresponds to the
efficiency of the transfers (η = 1 ⇒ ∑

Ti(n) = 0). λ is the
proportion of power above threshold transferred to other modes
at each time step (0 ≤ λ ≤ 1). The values of the off-diagonal
elements Mij of the matrix M are the proportion of energy trans-
ferred by the mode j that will be received by the mode i.

The ith transfer term Ti(n) can be expressed as follows:

Ti(n) = ηλ

N∑

j=1

[
aij∑N
i=1 aij

(Pj(n)− τj)
]

︸ ︷︷ ︸
positive contribution Ti+(n)

− λ (Pi(n)− τi)︸ ︷︷ ︸
negative contribution Ti−(n)

(21)

5. EXAMPLES

Nonlinear vibration leads to complex phenomena that can produce
subtle and chaotic variations in radiated sound. We can reduce the
complexity of the model and propose a heuristic that attempts to
maintain the essential perceptual attributes of an object vibrating
under nonlinear conditions. The resulting synthetic sound is nev-
ertheless less realistic and versatile than sounds generated by the
direct resolution of physical models (such as, e.g., the Föppl-von
Kármán system) although the synthesis quality can be improved by
using random processes in the implementation of the algorithms.

The coupled filter bank proposed here is dependent on many
parameters: the number of filters N , the oscillation frequencies ωi

and damping αi for each filter, the coefficients aij and the param-
eters λ and η for the definition of the redistribution matrix M, and
the thresholds τi. Strategies for setting these parameters are pre-
sented in two cases of musical interest. In the case of nonlinear
plate vibration, energy is transferred to filters of near frequency in
order to generate a gradual cascade of energy towards the high-
frequency range. In the case of a string colliding with a rigid ob-
ject, in contrast, there is simultaneous transfer or energy to many
frequency components.

5.1. Energy cascade in thin plates

Consider a thin rectangular plate (according to the Kirchhoff model
[22]), with mass density ρ kg· m−3, thickness H m, and flexural
rigidity D in kg·m2·s−2, and side lengths Lx and Ly in m. If
the plate is simply supported on all its edges, the modal frequen-
cies ωlm and modal shapes ϕlm(x, y) can be expressed as follows
[23]:

ωlm =
π2

L2
x

√
D

ρH

(
l2 + ν2m2) ϕlm(x, y) = sin(lπx) sin(mπy)

(22)

Here, ν = Lx/Ly is the plate aspect ratio, or the ratio between
the length and width of the plate. The integer indices l,m ≥ 1
correspond to the number of vibration nodes in the main directions
of the rectangular plate (Cartesian coordinates (x, y)) with x and
y being normalized by the length of the plate in the corresponding
direction (so that 0 ≤ x, y ≤ 1).

For a point excitation force located at (xe, ye), we can com-
pute the modal forces using the mode shapes evaluated at the ex-
citation point as ϕlm(xe, ye). We define the source of the l,mth
filter as follows:

ulm(n) = sin(lπxe) sin(mπye)u(n) (23)

where u(n) is the global excitation function.
We use a raised sinusoid for the excitation force (as proposed

in [4] and [24]) to simulate an impact:

u(n) =

{
A sin2(πn/Nex) if n ≤ Nex

0 else
(24)

For typical plate strikes, the strike duration Nex/fs in seconds is
on the order of 1-4 ms.

The damping coefficients are chosen according to an exponen-
tial law, as proposed by Aramaki et al.[25], with parameters that
are set to evoke a metallic object:

αlm = e(αG+ωlmαR) (25)

with αR = 4 × 10−5 and αG = 0.33220. This set of parameters
permits direct modal synthesis for linear plate vibration. To each
pair of indices (l,m) we associate an index i (perhaps chosen in
terms of increasing modal frequency) corresponding to the filter
number used to generate the corresponding tonal component.

In order to produce the cascade of energy towards the high fre-
quency components, we carry out transfers between filters whose
frequencies are close. Indeed, the energy supplied by the impact
is localised at low frequencies and transfers directed towards the
neighbouring modes allow the progressive appearance of higher
frequency components. The weighting coefficients aij can be set
as follows (see Figure 3):

aij =

[
1− |fj − fi|

∆f

]

+

(26)

with fi = ωi
2π

a
ij

f
j
-f
i

0

1

Δf-Δf

Figure 3: Value of the coefficient aij as a function of the frequency
difference between filter i and j.

We set η = 1 (ensuring conservation of energy during the
redistribution). The cascade can be mainly controlled by λ, or by
the definition of thresholds τi (see Figures 4 and 5).
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Figure 4: Spectrograms of output for filters whose frequency corresponds to the modal frequency of a thin plate for different values of λ
(τi = 0). From left to right: λ = 0.001, λ = 0.01, λ = 0.1, λ = 1. We can observe that the energy cascade spreads faster and higher in
frequency with the increase of λ. Transfers are performed at each time step.
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Figure 5: Spectrograms of output for filters whose frequency cor-
responds to the modal frequency of a thin plate for different thresh-
olds τi. Left: τi = 0; middle: τi = 0 except for i = 10 where
τ10 = 1; right: τi is half the excitation amplitude. All tonal com-
ponents decay simultaneously when the thresholds are zero (left).
A component emerges and decays more slowly when its threshold
is non-zero (middle). When all thresholds are different from zero,
we observe a usual exponential decay after the delayed appear-
ance of the high frequency component (right).

In the case of wave turbulence in plates [26], couplings be-
tween modes can lead to rapid variations in amplitude and fre-
quency leading to a chaotic regime. In the chaotic regime, the
resulting signal is noisy, and difficult to reproduce by a set of tonal
components. One way to reproduce this phenomenon with the cou-
pled filters presented in this paper is to pass randomized phases to
the positive contributions of the transfer term in the source. In
this way, the tonal components are subject to rapid random ampli-
tude modulations that can evoke the chaotic phenomenon occur-
ring during wave turbulence in the plates (see Figure 6).

5.2. Collisions in sound production

The perturbation of the vibrations of an object when colliding with
an obstacle can lead to different types of sound events. In the typi-
cal case of a guitar, the player can choke the string, mute it, play a
natural harmonic. The string can also interact with the soundboard
(slap, string buzz).
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Figure 6: Spectrogram of output for filters whose frequency corre-
sponds to the modal frequency of a thin plate. The random modu-
lation of the redistributions induces rapid variations in the ampli-
tude of the tonal components which generate noise and beating in
the signal.

The model of a vibrating string with simply supported bound-
ary conditions gives the following modal frequencies and shapes:

ωi = iω1 ϕi(x) = sin (iπx) (27)

where here, the spatial coordinate x is normalized by the length of
the string (0 ≤ x ≤ 1). For a point excitation force located at xe,
the source of the ith filter can be defined as:

ui(n) = sin (iπxe)u(n) (28)

We use the same excitation force and damping model than previ-
ously (see Eqs.(24) and (25)).

The evocation of an obstacle disturbing the vibrations of the
string requires the definition of thresholds that correspond to the
location of the obstacle. We propose thresholds corresponding to
the maximum amplitude of modal displacements without colliding
with a virtual obstacle positioned at xc, yc, where yc is the vertical
displacement of the obstacle relative to the string:

τi =
1

2

(
yc

sin (iπxc)

)2

(29)

DAFx.5

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

90



Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

We define a redistribution matrix with all columns being iden-
tical in order to cause a simultaneous redistribution to a set of tonal
components. The coefficients aij are defined as follows:

aij = | sin (iπxc)|ξi(fi) (30)

with ξi(fi) a parameter depending on the frequency allowing weight-
ing of the redistribution according to the filter frequency. We de-
fine ξi(fi) as the Fourier transform of the raised cosine, an ap-
proximation of the force profile caused by a collision (as defined
for the source, Eq.(24)):

ξi = sinc(fiγ) +
1

2
(sinc(fiγ − 1) + sinc(fiγ + 1)) (31)

with fi the frequency of the ith filter and γ a parameter corre-
sponding to the duration of the raised cosine. This results in a cut-
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f i (kHz)
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0.5
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i
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=2ms

Figure 7: Value of ξi as a function of the frequency of filter i.

off frequency beyond which there is no more transfer (see Figure
7). Various examples of sound outputs for different configurations
are presented—see Figures 8 and 9.
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Figure 8: Spectrograms of output for filters whose frequency are
harmonic for different values of xc (yc = 0, γ = 2 × 10−4s,
λ = 0.25, ν = 0.5). Transfers are performed every 294 samples
for times greater than 500ms, which corresponds to a collision
every 6.67ms (150Hz). From left to right: xc = 1/2, xc = 1/3,
xc = L/4. We can observe that the transfer does not affect even
harmonics (resp. multiples of 3 and 4) for xc = 1/2 (resp.xc =
1/3 and xc = L/4 ), which allows the reproduction of a natural
harmonic played on a guitar.

Collisions in musical instruments may be the source of more
subtle phenomena than a simultaneous appearance of various fre-
quency components. The cases of string buzz and tanpura can be
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Figure 9: Spectrograms of output for filters whose frequency are
harmonic for different values of ν and γ (xc = 1/2, yc = 0).
From left to right: (ν = 0.5, γ = 2×10−4s), (ν = 0.15, γ = 2×
10−4s), (ν = 0.5, γ = 2×10−3s). Transfers are performed every
294 samples for times greater than 500ms, which corresponds to
a collision every 6.67ms (150Hz). There is a lower increase in
the high-frequency components and a faster dissipation of all the
tonal components involved in the redistribution as the efficiency
decreases. As γ increases, there is also less energy distributed to
the high-frequency components, but this energy is not dissipated
and remains in the low-frequency components.

approached by introducing random processes into the redistribu-
tion, as has been done for chaotic phenomena in plates (see Figure
10).

It is possible to apply the same principle for the generation of
sounds corresponding to collisions with 2D objects. For example,
we can generate muted plate sounds (see Figure 11).

6. CONCLUSION AND FURTHER WORK

In this paper, we have presented the design of coupled resonant
filters geared towards the emulation of mode coupling effects in
nonlinear vibrating structures. This filter bank allows efficient and
real-time sound synthesis even for a large number of filters. The
coupling, performed without modifying the phase, introduces pre-
dictable and controllable effects on the output signal. The terms
controlling the coupling between the different filters are grouped
in a matrix whose definition is the main challenge. The setting of
the parameters of the sound synthesis process is presented through
various examples corresponding to sources whose behavior is non-
linear. A simple setting allows the generation of typical sounds,
though sometimes with an unnatural character. The introduction
of random processes in the energy redistribution can add a lot in
terms of plausibility.

Future work will be concerned with determining which sound
morphologies are important from a perceptual point of view for the
recognition of sound events [27] corresponding to nonlinear phe-
nomena in order to reproduce them with this coupled filter bank.
This could lead to the development of environmental sound syn-
thesizers and virtual musical instruments (e.g. tanpura, cymbal ...),
or to non-linear audio effects (such as the nonlinear reverberation
of a snare drum due to the wires held under tension against the
lower drumskin). The filter bank presented in this paper can also
be used as an abstract sound creation tool. In this context, the chal-
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Figure 10: Spectrograms of output for filters whose frequency are
harmonic with the introduction of random processes during the
redistribution (λ = 0.001, ν = 0.9, xc = 0.38, yc = 0.001,
γ = 2 × 10−4s). Transfers are performed every 294 samples for
times greater than 500ms, which corresponds to a collision every
6.67ms (150Hz).
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Figure 11: Spectrograms of output for filters whose frequency cor-
responds to the modal frequency of a thin plate. here ν = 0 and
we observe the quick dissipation of certain tonal components for
three distinct impacts, which creates a sensation of choking.

lenge would be to design intuitive control for use in a musical or
sound design context.
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ABSTRACT

Low frequency oscillator (LFO) driven audio effects such as phaser,
flanger, and chorus, modify an input signal using time-varying fil-
ters and delays, resulting in characteristic sweeping or widening
effects. It has been shown that these effects can be modeled us-
ing neural networks when conditioned with the ground truth LFO
signal. However, in most cases, the LFO signal is not accessi-
ble and measurement from the audio signal is nontrivial, hindering
the modeling process. To address this, we propose a framework
capable of extracting arbitrary LFO signals from processed au-
dio across multiple digital audio effects, parameter settings, and
instrument configurations. Since our system imposes no restric-
tions on the LFO signal shape, we demonstrate its ability to ex-
tract quasiperiodic, combined, and distorted modulation signals
that are relevant to effect modeling. Furthermore, we show how
coupling the extraction model with a simple processing network
enables training of end-to-end black-box models of unseen analog
or digital LFO-driven audio effects using only dry and wet audio
pairs, overcoming the need to access the audio effect or internal
LFO signal. We make our code available and provide the trained
audio effect models in a real-time VST plugin1.

1. INTRODUCTION

In music composition, production, and engineering, audio effects
play a key role in altering the sound toward the desired result.
Modulation effects such as phaser, flanger, and chorus, are part
of a broad family of audio processors based on using a modulation
signal to modify the spectrum, loudness, or spatial characteristic of
the input audio. The typical modulation signals adopted are peri-
odic (e.g., sinusoidal, sawtooth, triangular) with a frequency below
the audible range (20 Hz) and are therefore called low frequency
oscillators (LFO). Since oscillators are used to continuously vary
the internal parameters of these effects, the exact shape, frequency,
and phase of the LFO signal plays a crucial role, affecting the
overall timbre and temporal behavior. This is especially evident in
analog circuits where imperfections and nonlinearities may cause
distortion and quasi-periodicity of the oscillation.

Digital emulation of audio effects is an area of active research
[1–3], and many methods have been developed to analyze and em-
ulate effect units. Depending on the degree of prior knowledge
and reliance on measurement data, these can be divided into white-
[4–7], gray- [8–13], or black-box [14–17] approaches. Most prior
work on modulation effects modeling uses complex and time-
consuming white-box approaches, obtaining models that are not

1https://christhetree.github.io/mod_extraction/
Copyright: © 2023 Christopher Mitcheltree et al. This is an open-access article

distributed under the terms of the Creative Commons Attribution 4.0 International

License, which permits unrestricted use, distribution, adaptation, and reproduction

in any medium, provided the original author and source are credited.
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Figure 1: By using the pretrained LFO extraction model (CNN) to
analyze input and modulated audio, our proposed system enables
training of a black-box neural network model (LSTM) on modula-
tion audio effects without access to the ground truth LFO signal.

easily transferable to other designs or LFO-driven effects. There
are also examples of gray-box approaches, which strike a balance
between general validity of the block-based model [8] and emu-
lation quality of a specific unit [9, 10]. However, the modeling
capabilities and robustness of such models is limited by the hand-
engineered measurement techniques used to extract the LFO sig-
nal [9–12] and assumptions made about the LFO’s shape.

Work in [14, 15] proposes recurrent and convolutional neural
networks for black-box modeling of time-varying audio effects.
Relying only on datasets of dry-wet audio, these are the first end-
to-end approaches applied to LFO-driven effects. The method
achieves good results with non-causal and non-controllable imple-
mentations, but does not explicitly learn the LFO signal and is not
evaluated on unseen effects, audio, or LFO shapes.

To address the challenges of modeling a wide range of mod-
ulation effects and configurations, we introduce a neural architec-
ture that is trained to extract arbitrary LFO signals from phaser,
flanger, and chorus audio effects across varying parameter settings.
By training this model on a dataset of guitar signals with basic
phaser, flanger, and chorus implementations, we demonstrate our
model achieves:

• Accurate modulation extraction from unseen audio sources.

• Extrapolation to complex modulation signals such as quasiperi-
odic, combined, and distorted LFO signals.

• Generalization across effect implementations for unseen analog
and digital phaser and flanger effects.

• End-to-end causal modeling of analog and digital LFO-driven
effects without access to the internal LFO signal.
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2. BACKGROUND

2.1. Low Frequency Oscillators

In 1964 Robert Moog introduced the first transistor-based volt-
age controlled oscillator (VCO) and voltage controlled amplifier
(VCA) designs [18]. These circuits are at the origin of modu-
lar synthesizers and later on led to modulation audio effects like
phaser, flanger, and chorus. While VCOs were used to generate
pitched sounds, VCAs were responsible for the envelope of syn-
thesized notes. In his designs Moog also included VCOs oscillat-
ing at frequencies below 20 Hz, i.e. LFOs, to modulate other sig-
nal parameters (e.g., frequency, phase, amplitude) or processing
blocks (e.g., panning, cutoff frequency). The most common types
of modulations stem from periodic waveforms like sine, sawtooth,
triangle, or square, but often extend to more complex shapes.

In analog effects [4, 10], non-ideal components can cause dis-
tortions from the reference shape as well as deviations that cause
quasiperiodicity. There are also cases, like chorus effects, where
random LFO signals are adopted. Furthermore, with the preva-
lence of digital emulations and software synthesizers, modulation
signals can achieve an even wider diversity than their analog coun-
terparts. As a result, the extraction of modulation signals from
processed audio has applications beyond virtual analog modeling.

2.2. Modulation Effects

Phaser and flanger are examples of modulations affecting the spec-
trum of a signal, while chorus affects the pitch and timing.

Phaser — Phasing is achieved by using a series of notch or all-
pass filters [19]. The typical analog implementation uses an even
number of first order allpass filters, which have flat magnitude re-
sponse but phase that varies between 0◦ and −180◦. When two
filters are connected in series the phase varies back to 0◦ and, by
mixing the filtered output with the input signal phase cancellations
occur at frequencies around the 180◦ point. Altering the center
frequency of the filters creates a characteristic sweeping sound.

Flanger — In a flanger, a delayed copy of the input signal is
summed to the dry input itself causing constructive and destructive
interference. The delay is periodically modulated but usually kept
below ≈ 15ms. As a result, it is often perceived as a time-varying
comb filter. In contrast to phaser effects, where the frequency dis-
tance between notches is kept constant on a logarithmic scale, in
flanger effects, the distance changes with the delay value.

Chorus — Chorus effects are identical to flangers in implemen-
tation, but use multiple delayed and modulated copies of the input
signal. Also, by adopting larger delays - around ≈ 30ms - the
output is perceived as a sum of slightly pitch shifted copies of the
input, as when multiple instruments or voices are playing in uni-
son. Therefore, there is not a clearly observable modulation of the
spectrum compared to phasers and flangers.

2.3. Virtual Analog Modeling of Modulation Effects

Research in virtual analog modeling aims to develop methods that
emulate the characteristics and behaviors of a reference unit. These
methods can be divided into white-, gray-, or black-box model-
ing depending on the degree of prior knowledge and type of mea-
surements they rely on. To create accurate simulations, white-box
modeling [4–7] requires a thorough understanding of the system,

and typically employs differential equations to describe its behav-
ior and numerical methods to solve them. Therefore, such meth-
ods are often associated with a time consuming design process
and computationally demanding and non-transferable implemen-
tations. Circuit analysis together with voltage and current mea-
surements are used to create a state-space model of a phaser effect
pedal in [6], while in [7] a similar analysis is used to emulate a
bucket brigade delay circuit that is then employed in flanger effect
emulation. Phaser, flanger, and chorus are also modeled in [4],
where the authors discretize the differential equations of JFET
transistors and transconductance amplifiers used in such effects.

To reduce prior knowledge necessary to model a device, gray-
box approaches combine a partially theoretical structure with input-
output measurements [9,10,12]. However, they still require ad hoc
measurement and optimization procedures [9, 12] and knowledge
of the underlying implementation. A gray-box model of phaser ef-
fect pedal is presented in [10], where nonlinear allpass filter blocks
are combined with analysis and measurement of the interaction be-
tween light dependent resistors and incandescent lamp optocoupler
controlling the LFO. This work shows how critical the LFO signal
can be in shaping the overall sound of a design. In [9] we have an
example of a measurement signal and extraction algorithm specif-
ically designed to capture a phaser’s LFO signal.

A similar measurement is adopted in [11], and the extracted
LFO signal is used to condition neural networks trained on phaser
and flanger effects. A custom extraction algorithm is implemented:
the LFO shape (rectified sine) is observed in the output and given
to a least-squares solver. Furthermore, custom training data is re-
quired, where the test signal is interposed between samples so that
the initial LFO phase can be extracted. This work is developed
further in [12] by improving the measurement technique.

In black-box approaches, minimal knowledge of the system
is required and modeling mostly relies on input-output measure-
ments. A major advantage is that they simplify the process to
collecting adequate data. However, these models often lack in-
terpretability and might entail time-consuming optimizations. In
[14, 15], we have the only examples of black-box models of time-
varying audio effects. Neural networks are successfully trained on
many modulation effect types. However, these models are non-
causal, non-controllable, and have not been tested on unseen LFO
shapes or audio signals different from the training data.

2.4. Effects Recognition and Parameter Estimation

Beyond effect modeling, there has also been research on recogni-
tion of audio effects and effect chains, as well as control values
from processed audio. Our task of LFO extraction can be viewed
as a specific form of audio effect parameter estimation, however,
existing works have yet to consider reconstructing the LFO sig-
nal itself. Early works focus on audio effects classification [20],
while others extend this task to target the identification of specific
effect units and their control values [21], including within mix-
tures [22]. Recently, work has generalized this task to the complete
reconstruction of a graph of audio effects and their parameter val-
ues [23]. In [24], the authors focus on dynamic range compression,
and train neural networks to extract ratio, attack, and release times,
and total harmonic distortion from a reference signal. Extracting
information from audio recordings for applications in music pro-
duction and sound synthesis is still at an early stage, and the work
presented here also aims to contribute in these directions.
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3. METHODOLOGY

We approach the problem of modeling an LFO-driven audio effect
in two steps. First, we develop an LFO extraction model which can
be trained to reconstruct the modulation signal from dry and wet
audio pairs. Then we feed the extracted LFO signal along with the
dry audio to an effect model that can be trained to reconstruct the
wet audio. Figure 1 visualizes our approach with a block diagram.

3.1. LFO Extraction

The LFO extraction model (LFO-net), shown in Figure 2, is a con-
volutional neural network (CNN) consisting of sequential convo-
lutional blocks. As input it takes a 2-channel Mel spectrogram of
the dry and wet audio. Each block consists of LayerNorm [25]
across the frequency and time dimensions, a 2D convolution, Max
Pooling, and a PReLU activation [26]. Feature maps are max-
pooled only along the frequency dimension and dilated only along
the time dimension, similar to how a temporal convolutional net-
work (TCN) operates [27]. As a result, the temporal receptive field
of the network grows exponentially with each convolutional block
while the frequency resolution decreases exponentially. The final
layer of the network is a time-distributed linear layer that estimates
the LFO value for the current frame between 0 and 1.
Training — LFO-net is trained using the AdamW optimizer to
minimize the L1 error between the reconstructed modulation sig-
nal ŝ and the ground truth modulation signal s, each withN timesteps

L1(s, ŝ) =
1

N

N∑

n=1

|s(n)− ŝ(n)| (1)

where n is the time index. We also include terms for the first-order
central difference error

s′(n) =
s(n+ 1)− s(n− 1)

2
. (2)

as well as theL1 error of the second-order central difference, which
is defined recursively

s′′(n) =
s′(n+ 1)− s′(n− 1)

2
. (3)

These terms are scaled by α, β, and γ respectively and encourage
the network to learn smoother modulation signals. The complete
loss function LS can be expressed as follows:

LS = αL1 (s, ŝ) + βL1

(
s′, ŝ′

)
+ γL1

(
s′′, ŝ′′

)
(4)

Based on initial testing, we selected α = 1, β = 5, and γ =
10 to weigh the different terms. In addition, SpecAugment [28]
was used for masking both frequency and time dimensions during
training to increase robustness.
Post-processing — Since LFO-net imposes no restrictions on the
shape of the LFO besides being bounded between 0 and 1, the
output can appear noisy or irregular. To improve the quality of
the extracted LFO signal we introduce three post-processing steps,
shown in Figure 4. First, the signal is smoothed with a 4th or-
der moving average filter. This is followed by “stretching” of the
peaks and troughs so they are equal to 0 and 1, respectively. This
is achieved by finding the locations of local minima and maxima,
and then linearly interpolating consecutive sections to span from
0 to 1. Finally, when training effect models, invalid reconstructed
LFO signals where there are too many peaks or troughs or where
consecutive peaks or troughs are too close together are thrown out.

Conv Block 1

Conv Block 2

Conv Block N

LayerNorm

Conv2d

MaxPool2d

PReLU

Figure 2: LFO extraction model (LFO-net) diagram.

LSTM

Figure 3: LFO effect modeling block diagram.

Figure 4: Examples of original (left), smoothed (center), and
stretched (right) post-processed modulation signals.

This helps stabilize training by only using examples where the es-
timated LFO is likely to be an accurate prediction of the ground
truth LFO signal. The last two post-processing steps are only used
for the unseen effect experiments in Section 4.5.

3.2. Effect Modeling

Our effect model, shown in Figure 3, is based on previous work
in black-box modeling of modulation effects [12]. It consists of a
long short-term memory (LSTM) network with a time-distributed
linear layer that compresses the latent space into a single sample-
by-sample value which is added to the input audio and then bounded
by a hyperbolic tangent activation. The network takes as input two
channels: the dry audio and an LFO conditioning signal.
Training — Training is done on blocks of 1024 samples using
truncated backpropagation through time (TBPTT) with 1024 sam-
ples of warmup. Once again, the AdamW optimizer is used to
minimizeLA: theL1 loss between the output audio and the ground
truth wet audio. We do not train using Error-to-Signal Ratio (ESR)
and DC loss as in [29] since in our experiments we found using just
the L1 loss resulted in better results across all metrics.
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Table 1: Parameter values for the “fixed params” and “varying params” evaluation configurations.

LFO Parameters Effect Parameters

Effect Config. Shape Phase Rate Center Freq. Min. Delay Delay Width Feedback Depth Mix

Phaser Fixed Cos. 0 - 2π 0.5 - 3.0 Hz 440 Hz - - 0.25 1.0 1.0
Varying 70 - 18k Hz - - 0.0 - 0.7 0.25 - 1.0 1.0

Flanger Fixed All 0 - 2π 0.5 - 3.0 Hz - 1 ms 4 ms 0.25 1.0 1.0
Varying - 0 - 1 ms 2.5 - 10 ms 0.0 - 0.7 0.25 - 1.0 1.0

Chorus Fixed All 0 - 2π 0.5 - 3.0 Hz - 20 ms 10 ms 0.25 1.0 1.0
Varying - 11 - 30 ms 2.5 - 10 ms 0.0 - 0.7 0.25 - 1.0 1.0

4. EXPERIMENTS

4.1. Modulation Extraction

Most phaser, flanger, and chorus implementations do not allow
defining an arbitrary LFO signal. As a result, in order to be able
to train the LFO extraction model with effects using arbitrary LFO
signals, we implement our own flanger/chorus effect directly in
PyTorch so that it can run on GPU and be integrated into our data
pipelines. We use six different LFO shapes: cosine (cos), triangle
(tri), rectified cosine (rect. cos), inverse rectified cosine (inv. rect.
cos), sawtooth (saw), and inverse sawtooth (inv. saw). The LFO
parameters of the module are phase, rate, and shape and the effect
parameters are min. delay, delay width, feedback, depth, and mix.
For the flanger effect we set the minimum delay to 0-1 ms whereas
for a chorus effect we set it to 10-20 ms. We also use a modified
version of the phaser provided in Pedalboard2, which allows
us to specify the LFO phase, while its shape remains restricted to
a cosine waveform. Its LFO parameters are phase and rate and its
effect parameters are center frequency, feedback, depth, and mix.
Dataset — We use the fourth subset of the IDMT-SMT-Guitar [30]
dataset, which contains 64 short electric guitar pieces grouped by
genre. Each piece has been recorded at a fast and a slow tempo
using three different guitars. We remove the two bars of synchro-
nization tones at the beginning of each piece and split into 75%
training and 25% validation sets across the 64 unique songs. This
results in 154 min of audio in the training set and 50 min of audio
in the validation set. We generate LFO signals with random phase,
shape, and rate between 0.5 and 3 Hz and then apply the three au-
dio effects to random 2-second chunks of the dataset while uni-
formly sampling the effect parameters within their usable ranges.
Training — The input to LFO-net is a Mel spectrogram with 1024
FFT size, 256 sample hop length, 256 Mel bins, and a sample rate
of 44.1 kHz. The model consists of 6 convolutional blocks, each
with 64 channels, a kernel size of 5 by 13, and a frequency max-
pooling and temporal dilation factor of 2. As a result, the receptive
field of the network along the time axis spans 2 seconds and out-
puts 345 frames given 88200 input samples. SpecAugment of 25%
is applied during training to both the frequency and time axes. The
model contains 1.3 M parameters.
Evaluation — During evaluation of LFO-net, we smooth the sig-
nal using a 4th order moving average filter and keep phase, shape,
and rate of the LFO signal random. We define two different effect
parameter configurations to compare against: “fixed params” and
“varying params”, summarized in Table 1. We evaluate on 1000

2https://github.com/spotify/pedalboard

random 2-second non-silent chunks of the dataset. As a baseline,
we assume an experienced audio engineer could correctly guess
the shape of the LFO signal, whether it’s going up or down, and
the approximate rate of modulation from listening to the wet audio.
We define this as an LFO signal with the correct shape, a random
phase error of up to 50%, and a random rate error of up to 25%.

4.2. Unseen Audio Sources

We evaluate the LFO-net on five unseen datasets processed with
the Pedalboard phaser and our flanger/chorus implementation
using the same setup described in the previous experiment (Sec-
tion 4.1). These datasets are guitar, bass/double bass, and key-
board audio from MedleyDB 2.0 [31], drums from the IDMT-
SMT-Drums [32] dataset, and vocals from VocalSet [33].

4.3. Quasiperiodic, Combined, and Distorted Modulations

Irregular LFO shapes can greatly expand the creative possibilities
of an effect and are commonplace in virtual synthesizers. Further-
more, the internal LFOs of analog audio effects are imperfect and
can drift or become distorted. As a result, we test the ability of our
LFO extraction model to generalize to irregular LFO shapes. We
generate quasiperiodic LFO signals by randomly stretching each
cycle of a periodic modulation by 10 - 33.33%. We generate com-
bined LFO signals by swapping out random cycles of a periodic
modulation with a different shape. We try combining all six shapes
randomly together and the four symmetrical shapes (no sawtooth
and inverse sawtooth). Finally, we distort LFO signals via expo-
nentiation, which makes different sections of the signal more con-
cave or convex. Figure 5 shows examples of these three types of
irregular LFO signals. We then evaluate on the test dataset using
the “fixed params” evaluation configuration.

4.4. Latent Space Visualization

In order to see whether the model learns meaningful representa-
tions in its latent space we generate three different visualizations.
We perform inference on 200 samples from the validation dataset
while changing one variable and keeping all others fixed. A sin-
gle 64-dimensional latent vector is obtained by taking the average
across the output frames of the final convolutional block in the
model. We then produce a 2d visualization of the vectors using
principle component analysis (PCA). We explore how the rate and
shape of the LFO signal are encoded as well as the difference be-
tween the phaser, flanger, and chorus effects.
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Figure 5: Examples of quasiperiodic (left), distorted (center), and
combined (right) LFO shapes.

Figure 6: Examples of 3%, 6%, and 11% extracted LFO L1 errors.

4.5. Unseen Analog and Digital Effects

Our final experiment evaluates whether LFO-net can be applied
to unseen analog and digital effects and then be used to condi-
tion and train an effect emulation model. We use the EGFxSet
dataset [34], which consists of five-second long recordings of sin-
gle electric guitar notes processed with an MXR Phase 45 phaser
pedal, a Mooer E-Lady flanger pedal, and a Boss CE-3 chorus
pedal. Referencing the datasheets of these effects, we established
that all three effects use a rounded triangle LFO shape. We peak
normalize the input chunks of audio since the volume levels dif-
fer significantly between the wet and dry audio pairs. We apply
all post-processing steps described in Section 3.1 during training
and inference when extracting the LFO signal (8th order moving
average for smoothing) and use a 70/18/12% train-val-test split.

For digital effects we use the MeldaProduction MPhaser and
MFlanger plugins3. These effects give the user control over the
LFO signal and enable combined and irregular LFO signals to be
drawn in the user interface. We test two scenarios. First, we con-
sider modeling a phaser and flanger effect with an irregular LFO
signal and then with a quasiperiodic LFO signal. For the irreg-
ular case we define a skewed sinusoidal LFO shape as shown in
Figure 7 at a frequency of 0.75 Hz. For the quasiperiodic case we
start with a triangle shape and automate the rate of the LFO from
0.5 Hz to 2.0 Hz and back every 4 seconds. We apply both effects
to 8 minute training, 2.5 minute validation, and 2 minute test sets
from the fourth subset of the IDMT-SMT-Guitar dataset. During
post-processing for the irregular case, we omit step 2 (stretching)
to preserve the original shape of the extracted LFO signal.

Since we do not have access to the internal LFO signal for
these effects, we first confirm visually that the LFO extraction
model is able to output similar LFO signals when applied to these
unseen effects. We then use it to train one effect model LSTM
with 64 hidden units for each of the seven analog and digital effect
configurations defined previously that learns to reconstruct the wet
audio given the dry audio and the extracted LFO signal. As a base-
line we also train effect models conditioned on a randomly gener-
ated LFO with a triangle shape and 0-25% frequency error for the
analog effects, a triangle shape and random frequency between 0.5
- 2.0 Hz for the quasiperiodic experiment, and a cosine shape and
0-25% frequency error for the irregular LFO signal experiment.

3https://www.meldaproduction.com/effects/free

Figure 7: Skewed sinusoidal LFO shape used in the Melda Phaser
and Flanger irregular LFO effect modeling experiments.

5. RESULTS

5.1. Modulation Extraction

Table 2 summarizes the ability of the model to extract LFO signals
from the test dataset. Figure 6 provides a visual reference for the
reconstruction quality corresponding to different L1 error values.
We find that an L1 error of less than 5% corresponds to very ac-
curate extraction with less than 10% error still being acceptable.
We notice that the model struggles most with the asymmetrical
sawtooth shapes. This is likely due to the waveform containing
sharp edges, which can be difficult to reconstruct. We also observe
that the model is better at extracting the LFO from the phaser, and
worse at extracting the LFO from the chorus. This matches our
intuition since the phaser is limited to a cosine LFO shape and be-
cause the chorus effect contains the largest varying delay which
results in the greatest change in the wet audio spectrogram com-
pared to the flanger. Finally, there is no difference in model per-
formance when the parameters are fixed or varying across their
entire usable ranges, thus highlighting the learning capabilities of
the proposed LFO model architecture. The baseline consistently
results in very large errors due to the fact that small differences in
phase and frequency can cause the baseline and ground truth sig-
nal to drift apart. We also experimented with extracting the LFO
signal from just the wet audio (no dry audio channel) and found
that this resulted in an approximately 3% increase in the L1 error.

5.2. Unseen Audio Sources

We find the model generalizes well to unseen data processed with
our three training effects. From Table 3 we see that LFO-net
performs just as well or even better on the unseen guitar, bass,
and keys datasets. Performance on vocals is also only marginally
worse. We expect drums to be the most challenging to extract LFO
signals from due to the less tonal and dense onsets and the results
match this intuition with extraction ability becoming worse for the
flanger and chorus effects on the drums dataset. Varying parame-
ters also results in a very small reduction in performance compared
to fixed parameters.

5.3. Quasiperiodic, Combined, and Distorted

The quasiperiodic, distorted, and combined LFO signal results are
contained in Tables 4 and 5. The ability to extract quasiperiodic
signals is only slightly reduced when compared to periodic signals
with the chorus and asymmetrical shapes appearing more chal-
lenging than the flanger and symmetrical shapes. This implies the
system could be used to obtain an LFO signal for non-periodic
audio effects.
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Table 2: LFO extraction evaluation metrics.

L1 Error (%)

Effect LFO Shape Fixed Varying Baseline

Phaser Cosine 1.8% 2.1% 32%

Flanger Cosine 1.9% 1.9% 32%
Triangle 2.2% 2.3% 27%
Rect. Cosine 2.2% 2.1% 28%
Inv. Rect. Cos. 1.9% 2.0% 28%
Saw 4.5% 4.5% 27%
Inv. Saw 4.9% 4.7% 27%
All 2.9% 2.9% 28%

Chorus Cosine 3.6% 2.9% 32%
Triangle 3.1% 3.3% 27%
Rect. Cosine 2.7% 2.9% 28%
Inv. Rect. Cos. 2.9% 2.9% 28%
Saw 8.0% 6.9% 27%
Inv. Saw 8.5% 7.3% 27%
All 4.7% 4.3% 28%

All All 3.1% 3.1% 29%

Table 3: LFO extraction metrics for unseen datasets.

L1 Error (%)

Dataset Params Phaser Flanger Chorus All

MDB Guitar Fixed 1.8% 2.8% 4.7% 3.1%
Varying 1.8% 2.8% 4.9% 3.2%

MDB Bass Fixed 1.9% 2.4% 4.3% 2.9%
Varying 2.3% 2.6% 4.7% 3.2%

MDB Keys Fixed 1.8% 2.5% 4.2% 2.8%
Varying 2.3% 2.5% 4.0% 2.9%

IDMT Drums Fixed 1.9% 5.3% 12.2% 6.5%
Varying 2.7% 5.8% 11.3% 6.6%

Vocalset Fixed 2.8% 4.3% 5.4% 4.2%
Varying 2.7% 4.2% 5.8% 4.2%

Distorted inverse rectified cosine, saw, and inverse saw are
also difficult for LFO-net to extract. We believe this is because
the inverse rectified cosine shape becomes closer to a square wave
at the troughs when exponentiated which results in a constant de-
lay and less sweeping patterns in the spectrum to analyze. Sim-
ilarly, the saw and inverse saw shapes become even more jagged
at the corners, thus making reconstruction more challenging, es-
pecially at higher LFO rates. Finally, we found that LFO-net is
better at reconstructing random combinations of the LFO shapes
when the asymmetrical ones are omitted. We believe this is due
to the harsh discontinuities that can be introduced by combining
sawtooth waves with the other symmetrical waves. Our results in-
dicate that the model can extract symmetrical modulation shapes
well, even when each period consists of a different shape.

Table 4: LFO extraction metrics for quasi. and distorted signals.

L1 Error (%)

Effect LFO Shape Quasi. Base. Dist. Base.

Flanger Cosine 3.3% 32% 3.4% 33%
Triangle 3.6% 28% 2.4% 30%
Rect. Cosine 3.7% 28% 1.9% 32%
Inv. Rect. Cos. 3.3% 29% 8.1% 28%
Saw 5.8% 27% 13% 32%
Inv. Saw 6.5% 28% 13% 31%
All 4.5% 29% 6.7% 31%

Chorus Cosine 4.7% 32% 4.6% 33%
Triangle 5.3% 28% 3.1% 30%
Rect. Cosine 4.9% 28% 3.6% 32%
Inv. Rect. Cos. 4.3% 29% 8.7% 28%
Saw 10% 27% 16% 32%
Inv. Saw 11% 28% 16% 31%
All 7.0% 29% 8.5% 31%

Both All 5.8% 29% 7.6% 31%

Table 5: LFO extraction metrics for combined modulations.

L1 Error (%)

Effect LFO Shapes Combined Baseline

Flanger Symmetrical 4.7% 33%
All 9.4% 34%

Chorus Symmetrical 6.1% 33%
All 11.2% 34%

Both Symmetrical 5.4% 33%
All 10.3% 34%

5.4. Latent Space Visualization

The latent space visualizations for changing LFO shape, effect,
and rate are shown in Figures 8, 9, and 10, respectively. The latent
space decouples for all three visualizations with the relationship
between different LFO shapes being encoded by the distance of
their clusters in the latent space. Opposite pairs of shapes (i.e. saw
/ inverse saw and rect. cos. / inv. rect. cos.) are separated by a
large distance and similar shapes like triangle and cosine are close
together. Similarly, the three different effects decouple in the la-
tent space with chorus and flanger having more overlap since they
are identical in implementation, but with different delay amounts.
We expect the phaser effect to be the most distinct since it is a
unique implementation. Finally, the LFO rate visualization dis-
plays a clear relationship between the frequency of the LFO and
position in the latent space, with high frequencies becoming more
densely clustered together.

5.5. Unseen Analog and Digital Effects

We are able to use LFO-net to model unseen analog and digital au-
dio effects using the effect model described in Section 3.2. Figure
11 shows some examples of the extracted LFO signals from the
different effects. For the EGFx analog effects dataset, we see best
results on the phaser effect, followed by the chorus, and then the
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Table 6: Unseen effect evaluation results.

Audio Error Baseline Error

Effect LFO Shape L1 (%) ESR L1 (%) ESR

EGFx Phaser Analog Tri. 3.5% 0.42 6.1% 0.78
EGFx Flanger Analog Tri. 5.8% 0.94 5.9% 0.95
EGFx Chorus Analog Tri. 5.0% 0.59 6.6% 0.82

Melda Phaser Quasi. Tri. 1.4% 0.21 2.7% 0.61
Irregular 0.76% 0.08 3.0% 0.78

Melda Flanger Quasi. Tri. 2.3% 0.13 5.3% 0.51
Irregular 2.9% 0.18 5.2% 0.45

flanger, which is not able to be modeled effectively. We found this
dataset to be challenging due to large differences in power supply
noise between dry and wet audio pairs, making it difficult to inter-
pret the error metrics and forcing the LSTM to learn to model these
differences as well. Despite this, the phaser is able to be modeled
and sounds close to the wet audio from informal listening. We
provide audio samples in the supplemental material.

The chorus effect is not modeled very well, but in our initial
experiments we found that the LSTM effect model is unable to
learn chorus effects, even when presented with the ground truth
LFO signal, due to the long delays they make use of. As a result,
we are surprised to see that the chorus model performs better than
the baseline and is sometimes able to match the volume envelope
of the wet audio. We also notice that the flanger appears to have
two modulations occurring in its spectrogram. LFO-net is able to
reliably extract one of them, but this is insufficient for modeling
the effect. We believe extracting multiple modulations from audio
is a natural future research direction to continue this work on.

For the Melda digital effects we see that both the irregular and
quasiperiodic phaser and flanger effects are able to be captured
successfully by the effect model. Our informal listening tests also
confirm that they sound close to the target wet audio. The baseline
model is able to capture the effects to an extent, but struggles es-
pecially with the quasiperiodic and irregular phaser LFO signals.
The difference in the final ESR highlights the importance of pro-
viding an accurate LFO signal to the effect model.

We plot extracted LFO signals from unseen audio effects in
Figure 11. A similar LFO shape to the one shown in Figure 7 is
extracted for the flanger, but for the phaser it is extracted as two
individual rounded peaks, one taller than the other. Since the irreg-

Figure 11: Extracted LFO patterns from unseen audio effects.
Top row: EGFx Phaser, Flanger, Chorus
Bottom row: Melda Phaser Irregular, Flanger Irregular, Quasi.

ular phaser is able to be modeled with a lower ESR than the irregu-
lar flanger, this indicates that this may be an artifact of the internal
implementation of the Melda phaser, or that the exact LFO shape
may not be required to successfully model an LFO-driven effect.
We consider this another interesting future research direction.

6. CONCLUSIONS

In this work, we propose a system that extracts arbitrary LFO
signals from processed audio for multiple LFO-driven audio ef-
fects (phaser, flanger, and chorus), parameter settings, and instru-
ment configurations. Our approach does not impose any restric-
tions on the LFO shape, which allows our neural network architec-
ture to generalize to quasiperiodic, combined, and distorted mod-
ulation signals. We test our pretrained network on LFO extrac-
tion from a multitude of unseen audio sources, including guitar,
bass, keyboards, drums, and singing voice. We show through
a visualization of the latent space that the network learns mean-
ingful representations of the different modulation shapes, rates,
and effects. Finally, we demonstrate that our pretrained extrac-
tion network enables end-to-end modeling of unseen analog and
digital LFO-driven audio effects when coupled with a simple pro-
cessing network, overcoming the need for cumbersome and hand-
engineered LFO measurement methods. We find that asymmet-
rical and discontinuous LFO shapes, such as saw waveforms, are
the most difficult to extract and that the effect model cannot learn
LFO-driven effects that make use of larger delays or contain mul-
tiple modulations. We make our code available and provide the
trained audio effect models in a real-time VST plugin.
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ABSTRACT

Active listening consists in interacting with the music playing
and has numerous potential applications from pedagogy to gam-
ing, through creation. In the context of music industry, using ex-
isting musical recordings (e.g. studio stems), it could be possible
for the listener to generate new versions of a given musical piece
(i.e. artistic mix). But imagine one could do this from the original
mix itself. In a previous research project, we proposed a coder /
decoder scheme for what we called informed source separation:
The coder determines the information necessary to recover the
tracks and embeds it inaudibly (using watermarking) in the mix.
The decoder enhances the source separation with this information.
We proposed and patented several methods, using various types of
embedded information and separation techniques, hoping that the
music industry was ready to give the listener this freedom of ac-
tive listening. Fortunately, there are numerous other applications
possible, such as the manipulation of musical archives, for exam-
ple in the context of ethnomusicology. But the patents remain for
many years, which is problematic. In this article, we present an
open-source implementation of a patent-free algorithm to address
the mixing and unmixing audio problem for any type of music.

1. INTRODUCTION

Active listening of music is an artistic as well as a technological
topic of growing interest, that concerns offering listeners the pos-
sibility to interact in real time with the music, e.g. to modify the
elements, the sound characteristics, and the structure of the mu-
sic while it is played. This involves, among other examples, ad-
vanced remixing processes such as generalized karaoke (muting
any musical element, not only the lead vocal track), respatializa-
tion, or upmixing. The applications are numerous, from learning /
teaching of music to gaming, through new creative processes (disc
jockeys, live performers, etc.). In the context of ethnomusicologi-
cal archiving, the recordings can consist of several tracks, but for
the purpose of compatibility, only the mix can often be distributed
in the archive. Thus, a technique allowing the user to get access
back to the separate tracks from the stereo mix can be very useful.

To get this new freedom, a simple solution would be to give
the user access to the individual tracks that compose the mix, by
storing them into some multi-track format. This approach has two

The DReaM project was supported by the French ANR (Agence Na-
tionale de la Recherche), from 2009 to 2014 (ANR-09-CORD-006).
Copyright: © 2023 Sylvain Marchand et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

main drawbacks: First, it leads to larger multi-track files. Second,
it yields files that are not compatible with the prevailing stereo
standards. Another solution is to perform some blind separation
of the sources from the stereo mix. The problem is that even with
state-of-the-art blind source separation techniques the quality is
usually insufficient and the computation is heavy (see [1]).

In the DReaM project (see [2]), we proposed an Informed
Source Separation (ISS) approach (see [3]) to accurately recover
the separate tracks from the stereo mix. The present article will
focus on this approach only, where the system consists of a coder
and a decoder. The coder is used at the mixing stage, where the
separate tracks are known. It determines the information necessary
to recover the tracks from the mix and embeds it in the mix. In the
classic case of Pulse-Code Modulation (PCM), this information is
inaudibly hidden in the mix by a watermarking technique. With a
legacy system, the coded stereo mix can be played and sounds just
like the original, although it includes some additional information.
Apart from backward compatibility with legacy systems, a further
advantage concerns the fact that the file size stays comparable to
the one of the original mix. The decoder performs source separa-
tion of the mix with parameters given by the additional informa-
tion. This ISS approach permits producing good separate tracks,
thus enabling active listening applications.

The original target of the DReaM project was the music in-
dustry, which turned out to be quite conservative. For instance, the
actors of music industry appeared to be reserved with the use of
audio formats that are alternative to conventional stereo encoding,
hence hindering the development of object-based formats or ad-
vanced spatial audio formats such as Ambisonics. Another exam-
ple is the fact that listeners are considered as (passive) consumers,
even if some want to behave as musicians (active listeners, content
producers, etc.).

Fortunately, there is some opportunity for the system devel-
oped in the project for an application to musical archives (see [4]).
Indeed, some recordings contain several tracks, but the diffusion
format is still legacy stereo. Thus, having a format backward com-
patible with standard stereo but allowing to recover the individual
tracks present in the mix can be of interest. The DReaM project
showed that it is possible. However, since the finality of the project
was industrial, the ISS methods were patented. For new – non
commercial – applications, a patent-free method was needed. The
contribution of the present article is the definition and implemen-
tation of such a method.

The remainder of this article is organized as follows. Section
2 presents the DReaM project: its fundamentals and target appli-
cations. Section 3 describes the separation / unmixing methods
developed in the project, whereas Section 4 introduces a patent-
free method: ReaLiTy. Finally, Section 5 draws some conclusions.
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2. THE DREAM PROJECT

DReaM is a French acronym for “le Disque Repensé pour l’écoute
active de la Musique”, which means “the disc thought over for ac-
tive listening of music”. This is the name of an academic project
(2009–2014) with industrial finality, coordinated by the first au-
thor, and funded by the French National Research Agency (ANR).
The project involved academic partners (LaBRI – University of
Bordeaux, Lab-STICC – University of Brest, GIPSA-Lab – Greno-
ble INP, LTCI – Telecom ParisTech, ESPCI – Institut Langevin)
together with iKlax Media, a company for interactive music that
contributed to the Interactive Music Application Format (IMAF)
standard (see [5]).

The origin of the project comes from the observation of artis-
tic practices. More precisely, composers of acousmatic music con-
duct different stages through the composition process, from sound
recording (usually stereophonic) to diffusion (multiphonic). Dur-
ing live interpretation, they interfere decisively on spatialization
and coloration of pre-recorded sonorities. For this purpose, the
musicians generally use a mixing console to upmix the musical
piece being played from an audio CD. This requires some skills,
and imposes musical constraints on the piece. Ideally, the individ-
ual tracks should remain separate. However, this multi-track ap-
proach is hardly feasible with a typical (stereophonic) audio CD.

Nowadays, the audience is more eager to interact with the mu-
sical sound. Indeed, more and more commercial CDs come with
several versions of the same musical piece. Some are instrumen-
tal versions (e.g. for karaoke), other are remixes. The karaoke
phenomenon gets generalized from voice to instruments, in mu-
sical video games such as Rock Band. But in this case, enabling
interaction translates to users having to buy a video game, which
includes the multi-track recording.

Yet, the music industry seems to be reluctant to releasing the
multi-track versions of big-selling hits. The only thing the user
can get is a standard CD, thus a stereo mix, or its digital version
available for download or streaming, now that the physical version
(at least the CD) disappears.

2.1. Objectives

In general, the project aims at solving a so-called inverse problem,
to some quality extent, at the expense of additional information.
In particular, an example of such an inverse problem can be source
separation: recovering the individual source tracks from the given
mix.

On the one hand coding the solution (e.g. the individual tracks
and the way to combine them) can bring high quality, but with a
potentially large file size, and a format not compatible with exist-
ing stereo formats. On the other hand the blind approach (without
information) can produce some results, but of insufficient quality
for demanding applications (see [1]). The blind approach can be
regarded as an estimation without information, while coding can
be regarded as using information (from each source) without any
estimation (from the mix).

The informed approach proposed by DReaM is just in between
these two extremes: getting musically acceptable results with a
reasonable amount of additional information. The problem is now
to identify and encode efficiently this additional information. Re-
markably, ISS can thus be seen both as a multi-track audio coding
scheme using source separation, or as a source separation system
helped by audio coding.

This approach addresses the source separation problem in a
coder / decoder configuration. At the coder (see Figure 1), the ad-
ditional information is estimated from the original source signals
before the mixing process and is inaudibly embedded into the final
mix. At the decoder (see Figure 2), this information is extracted
from the mix and used to assist the separation process.

So, a solution can be found to any problem, thanks to the ad-
ditional information embedded in the mix.

“There’s not a problem that I can’t fix,
’cause I can do it in the mix!”

(Indeep – Last Night a DJ Saved my Life)

The original goal of the project was to propose a fully backward-
compatible audio-CD permitting musical interaction.

The idea was to inaudibly embed (using a high-capacity water-
marking technique) in the audio track some information enabling
to some extent the musical decomposition, that is the inversion of
the music production chain: dynamics decompression, source sep-
aration (unmixing), deconvolution, etc.

With a standard CD player, one would listen to the fixed mix.
With an active player however, one could modify the elements and
the structure of the audio signal while listening to the music piece.

Now that the music is getting all digital, the consumer gets
access to audio files instead of physical media. In this article we
will consider only audio files without compression.

2.2. Applications

Active listening (see [6]) amounts to performing various opera-
tions that modify the elements and structure of the music signal
during the playback of a piece. This process, often simplistically
called remixing, includes generalized karaoke, respatialization, or
applying certain effects to individual audio tracks (e.g. adding
some distortion to an acoustic guitar). The goal is to enable the
listener to enjoy freedom and personalizing of the musical piece
through various reorchestration techniques. Alternatively, active
listening solutions intrinsically provide simple frameworks to the
artists to produce different versions of a given piece of music.
Moreover, it is an interesting framework for music learning / teach-
ing applications.

2.2.1. Respatialization

The original application was to let the public experience the free-
dom of composers of electroacoustic music during their live per-
formances: moving the sound sources in the acoustic space. Al-
though changing the acoustical scene by means of respatialization
is a classic feature of contemporary art (electroacoustic music),
and efforts have been made in computer music to bring this prac-
tice to a broader audience (see [7]), the public seems just unaware
of this possibility and rather considered as passive consumers by
the music industry. However, during the public demonstrations of
the DReaM project, we felt that the public was very reactive to
this new way of interacting with music, to personalize it, and was
ready to adopt active listening, mostly through musical games.

2.2.2. Generalized Karaoke

The generalized karaoke application is the ability to suppress any
audio source, either the voice (classic karaoke) or any instrument
(“music minus one”). The user can then practice singing or playing
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Figure 1: Architecture of an Informed Source Separation (ISS) coder.
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Figure 2: Architecture of an Informed Source Separation (ISS) decoder.

an instrument while being integrated in the original mix and not a
cover song.

Note that these two applications (respatialization and gener-
alized karaoke) are related, since moving a source far away from
the listener will result in its muting, and reciprocally the ability to
mute sources can lead to the monophonic case (the spatial image
of a single source isolated) where respatialization is much easier
(possible to some extent even without recovering the audio object
from this spatial image).

2.2.3. Sound Archives

It turns out that the system developed in the project might be very
useful for musical archives. Indeed, some recordings contain sev-
eral tracks, but the diffusion format is still legacy stereo. Thus,
having a format backward compatible with standard stereo but al-
lowing to recover the individual tracks present in the mix can be
of interest.

3. INFORMED SOURCE SEPARATION METHODS

A stereo (2-channel) mixture {yc(n)}c=1,2 will be produced from
K source signals {xk(n)}Kk=1 and panning angles θk (which are
not azimuths, see [8] for details), the latter leading to a mixing ma-
trix A where Ack denotes the contribution of the kth input source
to the cth output channel. In this article, we will consider a simple
case where the mixing matrix A is obtained from panning angles
θ using Equations (1) and (2)

A1k = sin(θk) (1)
A2k = cos(θk) (2)

such that A2
1k + A2

2k = 1 (energy conservation). The values for
the panning angles θ will range from 0 (right) to π/2 radians (left).

Source separation then consists in recovering (estimates of)
the source signals xk from the mix signals yc, possibly with the
help of additional information extracted from xk (informed ap-
proach).

Over the years of the project, several Informed Source Sepa-
ration (ISS) methods were proposed. More precisely, this section
presents the similarities, differences, strengths, and weaknesses of
four of them. A detailed technical description or comparison is out
of the scope of this article. Instead, we will propose a new – free
– method, which is a mix of the original methods. The detailed
descriptions of the following methods can rather be found in [9],
[10], [8], and [11], while their comparison is done in [12].

The majority of the ISS methods aims at extracting the contri-
bution of each source from each Time-Frequency (TF) point of the
mix, at least in terms of magnitude, and sometimes phase too.

3.1. Local Inversion

The first method performs a local inversion (see [9] and [13]) of
the mix for each TF point, using the information of the two pre-
dominant sources in this point (as well as the knowledge of the
mixing matrix). More precisely, at each TF point two sources can
be reconstructed from the two (stereo) channels, by a local two-by-
two inversion of the mixing matrix. This way, we get estimates of
the magnitude and phase of the prominent sources. But the prob-
lem is that the remainingK−2 sources exhibit a spectral hole (no
estimated signal), which is perceived as quite annoying in subjec-
tive listening tests (see [8]). Also, this method requires the mixing
matrix A to be of rank K.
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3.2. Minimum Mean-Square Error Filtering

The second method performs classic Minimum Mean-Square Er-
ror (MMSE) filtering (see [10] and [14]) using Wiener filters driven
by the information about the power of the sources (as well as the
mixing matrix), the corresponding spectrograms being transmitted
using either sound (NMF) or image (JPG) compression techniques
(see [12] for details). In contrast to the local inversion method,
MMSE does not constrain as much the mixing matrix A and is
therefore more flexible towards the mixing configurations. The
separation quality, however, is much better when A is of rank K.

3.3. Linearly Constrained Spatial Filtering

The third method is called Undetermined Source Signal Recovery
(USSR), and performs linearly constrained spatial filtering (see
[8] and [15]) using a Power-Constraining Minimum-Variance -
(PCMV) beamformer, also driven by the information about the
power of the sources (and their spatial distribution) and ensuring
that the output of the beamformer matches the power of the sources
(additional information transmitted in ERB/dB scales, see Section
4.1.2). In the stereo case, if only two predominant sources are de-
tected, the beamformer is steered such that one signal component
is preserved while the other is canceled out. Applying this princi-
ple for both signal components results in inverting the mixing ma-
trix (first method). Moreover, dropping the power constraint will
turn the PCMV beamformer into an MMSE beamformer (second
method). Otherwise, the PCMV beamformer takes advantage of
the spatial distribution of the sources to produce better estimates.

3.4. Iterative Phase Reconstruction

The fourth method performs iterative phase reconstruction and is
called IRISS (Iterative Reconstruction for Informed Source Sepa-
ration), see [11]. It also uses the magnitude of the sources (trans-
mitted in ERB/dB scales) as well as a binary activity map as an
additional information to the mix. The main point of the method
is to constrain the iterative reconstruction of all the sources so that
Equation (5) is satisfied at each iteration very much like the Mul-
tiple Input Spectrogram Inversion (MISI) method (see [16]). Con-
trary to MISI, both amplitude and phase of the STFT are recon-
structed in IRISS, therefore the remix error should be carefully dis-
tributed. In order to do such a distribution, an activity mask derived
from the Wiener filters is used. The sources are reconstructed at
the decoder with an initialization conditioned at the coding stage.
It is noticeable that this technique was specifically designed for
mono mixtures (1-channel), where it gives the best results.

3.5. Evaluation

3.5.1. Performances

The quality performance of the system reaches the needs of many
real-life applications (for each of the four methods described above).
The comparison of the four original methods can be found in [12],
for the linear instantaneous and convolutive case, using either the
objective Signal-to-Distortion Ratio (SDR) criterion of BSSEval
(see [17]) or the subjective Perceptual Similarity Measure (PSM)
of PEMO-Q (see [18]), closer to perception. A set of 14 musical
excerpts from the Quaero database has been considered (see [12]
for details).

Figure 3 shows the performances of MMSE (Wiener) filter-
ing with access to full information (oracle situation) about sound

sources for both subjective (PSM) and objective (SDR) measures.
The PSM is often above 0.9 (1 corresponding to perfection), and
the SDR is around 15dB (which is quite good).
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Figure 3: Performances of MMSE filtering with access to full infor-
mation (oracle) about sound sources (estimated signals compared
to the original signals).

Figure 4 shows the relative performances of the DReaM meth-
ods, relatively to the MMSE oracle, as functions of the additional
information bitrate. It turns out that the first method (local in-
version) exhibits the best objective (SDR) results, while the third
method (USSR) exhibits the best subjective (PSM) results; this
was also verified in a formal listening test conducted in [8].

It is important to note that the complexity of these methods is
low, allowing real time. Moreover, as shown in [12], the typical
bitrates for the additional information are approximately 5 to 10
kbits per second for each source, which is quite reasonable.

The problem with these methods is that they are protected with
patents.

3.5.2. Patents

The patent of the first method (see [13]) protects the local inversion
technique as well as the encoding of the active sources indices.
The patent of the second method (see [14]) protects the coding
of the additional information, but not Wiener filtering which is a
well-known technique. The patent of the third method (see [15])
protects the use of the PCMV beamformer for source separation,
whereas the ERB and dB scales used for the additional information
reduction are well-known, and also used by the fourth method.
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Figure 4: Performances of the DReaM methods (relatively to the MMSE oracle), as functions of the additional information bitrate.
The black circle indicates the performance of the proposed ReaLiTy implementation.

This last method is patent-free, but unfortunately not suitable for
stereo mix, with a lower quality and a higher complexity (increased
processing time).

Thus, there is room for an efficient patent-free method, with
additional information represented in ERB/dB scales and filtering
performed using the standard Wiener (MMSE) filtering, provided
the watermarking technique used is also patent-free.

This method, called ReaLiTy, is described in the next section.
The code is distributed as free software, and comes with a sound
example. The performance of the proposed method on that specific
example is indicated1 by a black circle on Figure 4. The subjective
result is close to MMSE oracle performance thanks to the high bi-
trate per source (35 kbps) for the additional information, but stays
below this limit unlike USSR (whose filtering is not MMSE). The
objective result is comparable to those of USSR and MMSE JPG
(the bitrate being unfortunately not suitable for MMSE NMF), al-
though slightly below.

4. REALITY: A FREE IMPLEMENTATION

All the methods developed during the DReaM project are based on
a coder / decoder scheme. The coder produces a stereo mix from

1However this is only an indication, since this figure was originally
generated for [12] with different sound excerpts, and unfortunately more
than 10 years after it was impossible to get access to them. More precisely,
if the database is known, the excerpts were not specified and this infor-
mation is apparently lost now. Running a new comparison on different
excerpts turned out to be also impossible, since we do not have access to
the (patented) code of the original methods anymore.

theK source signals using panning angles, and the decoder recov-
ers (estimates of) these signals from the mix, using the additional
information inaudibly embedded by the coder. This section gives
the details for the coder and the decoder of the proposed ReaL-
iTy method, which is patent-free and comes with a free software
implementation in Python programming language.

The source signals {xk(n)}Kk=1 are block-wise time-frequency
mapped by means of the Short-Time Fourier Transform (STFT)
using Equation (3)

Xk(h, b) =

N−1∑

n=0

xk(hH + n)w(n)e−ȷ2πnb/N (3)

where 0 ≤ b < N is the frequency index, N is the frame size, h
is the frame index, H is the hop size, and ȷ is the imaginary unit.
In practice, for w we use the Hann window of size N = 2048,
for a sampling frequency Fs = 44100Hz. We will allow a 50%
overlap, thus H = N/2.

4.1. Coder

As shown on Figure 1, the coder consists of three building blocks:
mixer, analyzer, and multiplexer.

4.1.1. Mixer

The sources are defined as K mono signals xk of same length L,
with sampling rate Fs. The mixer takes these original signals xk
and panning angles θk and produces a stereo (2-channel) mixture
{yc(n)}c=1,2.
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We first consider linear and time-invariant mixing systems.
Formally, we suppose that each source signal xk is mixed into each
destination channel c through the use of some mixing coefficients
ack, leading to Equation (4).

yc(n) =

K∑

k=1

ack · xk(n) (4)

Since the mixing coefficients are constant over time the mixing is
said to be linear instantaneous.

If the mixing coefficients ack are replaced by filters, and the
product in Equation (4) is replaced by the convolution, the mix-
ing is then said to be convolutive. We can easily handle this case
(see [12]) with the STFT representation if the length of the mixing
filters is sufficiently short compared to the window size, thanks to
the convolution theorem, with Equation (5)

Yc(h, b) ≈
K∑

k=1

Ack(b) ·Xk(h, b) (5)

whereAck(b) is understood as the frequency response of filter ack
at frequency index b. When the mixing process is linear instan-
taneous and time invariant, Ack is constant and the 2×K matrix
A is called the mixing matrix. The mixing process can thus be
rewritten as matrix multiplication in Equation (6)

Y ≈ A ·X (6)

where Y = [Y1, Y2]
⊤ and X = [X1, · · · , XK ]⊤ are column vec-

tors respectively gathering all mixtures and sources at the time-
frequency (TF) point (h, b).

4.1.2. Analyzer

The analyzer also takes the original signals xk as inputs, to com-
pute the additional information to be embedded in the mix.

At the origin of the DReaM project, this information consisted
of the indices of the two most prominent sources, that is the two
sources with the highest energy at the considered TF point, since
this information can be used to solve the interference of the sources
at this point, by local inversion (see [9]). This information can be
efficiently coded with ⌈log(K(K − 1)/2)⌉ bits per TF point. But
the local inversion technique is patented (see [13]).

The information about the power spectrum of each source turned
out to be extremely useful and more general. Indeed, if we know
the power of all the sources, we can determine the two predomi-
nant sources. We can also derive activity patterns for all the sources.
As shown in [10], this information can be coded using sound or
image compression techniques. The problem, again, is that it is
patented (see [14]).

Let us consider the instantaneous Power Spectral Density (PSD)
Ek(h, b), calculated according to Equation (7).

Ek(h, b) = |Xk(h, b)|2 (7)

Fortunately, this information can efficiently be coded on a double-
logarithmic scale using simple psychoacoustic considerations. More
precisely, a significant reduction of this information can be achieved
in two ways: first, by reducing the frequency resolution of the
PSDs Ek(h, b) in approximation of the critical bands (see [19]),
and second, by quantizing the obtained PSD values Êk(h, z) with
a step size equal to some value ∆, which is put in relation to an

appropriate psychoacoustic criterion.

Scaling. The peripheral auditory system is usually modeled as a
bank of overlapping bandwidth filters, the auditory filters, which
possess an Equivalent Rectangular Bandwidth (ERB). The scale
that relates the center frequency of auditory filters to units of the
ERB is the ERB-rate scale. Using the ERB-rate function of [20]
we can define a relation between the frequency index b and the
critical-band index zb by Equation (8)

zb = ⌊21.4log10 (4.37b(Fs/1000)/N + 1)⌋ (8)

where ⌊·⌋ is the floor function. The zth critical-band value of the
approximate PSDs is then calculated as the arithmetic mean be-
tween lower(z) = inf {b : zb = z} and upper(z) = sup {b : zb = z}
according to Equation (9).

Ēk(h, z) =
1

upper(z)− lower(z) + 1

upper(z)∑

b=lower(z)

Ek(h, b) (9)

Recovering the Short-Time PSDs (STPSDs) in linear scale (to the
resolution of the STFT) is as easy as Equation (10).

Ek(h, b) ≈ Ēk(h, zb) (10)

Quantization. Furthermore, under the assumption that the the
minimum just-noticeable-difference level and so the maximum al-
lowed quantization error is 1dB (see [19]), the quantization step
size ∆ is chosen as 2dB, and the irrelevancy-reduced PSD values
are obtained from the uniform quantizer in Equation (11)

Ē∆
k (h, z) = [5log10Ēk(h, z)] (11)

where [·] denotes the round-to-nearest rounding function. Note
that replacing 5 by 10 in the previous equation would lead to the
classic dB scale. Recovering the STPSD values in linar scale (by
“dequantization”) is as easy as Equation (12).

Ēk(h, z) ≈ 10Ē
∆
k (h,z)/5 (12)

4.1.3. Multiplexer

The multiplexer takes the downmix yc as well as the mixing pa-
rameters (panning angles) and the additional information as inputs,
in order to produce a bitstream: the resulting stereo sound file.

The panning angles θk are simply rounded to the nearest in-
teger value and quantized on 8 bits. The additional information
consists of the STPDSs of the K source signals, Ē∆

k , quantized
on BS bits. Increasing BS will lead to a better audio quality, but
at the expense of a greater number of bits necessary at each STFT
frame to encode the full additional information (including mixing
parameters): (8 +W ×BS)×K bits, where W is the number of
bands of the ERB scale. In our implementation, we useW = 136,
BS = 6, for K = 5 sources, for a total of 4120 bits per frame.

These bits will be embedded inaudibly using watermarking.
To avoid any patent, we will consider the most basic technique
consisting in hiding the data in the Least Significant Bits (LSBs)
of the downmix samples.

Since this downmix is stereo (2 channels), and each STFT
frame consists of N samples, with a hop size of H = N/2 mean-
ing 50% overlap, if we use BC LSB bits per channel we can hide
BC ×N bits per frame. In our implementation we use N = 2048
and Bc = 3, for a total of 6144 bits available.
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With these settings, we could handle up to 7 sources. To go
further, one can increase BC or decrease BS . In the first case, the
quality of the mix will begin to degrade (the watermark becoming
audible), and the second case the quality of the estimated source
signals will degrade. Using a higher capacity watermarking or en-
tropy coding for the data could also be solutions.

4.2. Decoder

As shown on Figure 2, the decoder consists of two building blocks:
demultiplexer and separator.

4.2.1. Demultiplexer

From the input bitstream, the demultiplexer has to recover the
downmix plus the additional information (including mixing pa-
rameters). As an approximation, the downmix yc will be the stereo
signal of the input. The additional information (θk and Ē∆

k ) is sim-
ply extracted from the LSBs of the samples of this input signal.

4.2.2. Separator

The core block of the decoder is the separator, aiming at estimating
theK original signals xk from the downmix yc and this additional
information, consisting of the K source STPSDs in ERB/dB scale
(Ē∆

k ) together with the mixing parameters (θk), leading to the mix-
ing matrix A (see Section 3).

Filtering. As shown in Section 3.5, if one wants to maximize the
objective quality (SDR), one could use the first DReaM method
(local inversion) but then mess with a patent ([13]), and if one
wants to maximize the subjective quality (PSM), one could use the
third method (USSR) but then mess with another patent (see [15]).
The Wiener (MMSE) filtering used by the second method is a good
compromise, and patent-free. This filtering is done according to
Equation (13).

X̂k(h, b) =

2∑

c=1

Yc(h, b) · Ack · Ek(h, b)∑K
s=1Acs · Es(h, b)

(13)

Adjusting. Since the STPSDs of the sources Ek are known, we
can scale the estimated source spectra X̂k to adjust these STPSDs.

The spectra
{
X̂k(h, b)

}K

k=1
are then transformed back to the time

domain to get the signals {x̂k(n)}Kk=1 using the inverse STFT
(ISTFT) with a classic overlap-add (OLA) procedure, with 50%
overlap (H = N/2), the Hann window used for the STFT ensur-
ing perfect reconstruction of the signals in this case.

In practice, it could be a good idea (in case of non-linear spec-
tral processing) to apply the window w at both STFT and ISTFT
stages, using the square root of the Hann window (so that the prod-
uct of the windows of the two stages results in the original Hann
window). This is done is our free software implementation2, pro-
grammed in Python.

2ReaLiTy:
https://www.sylvain-marchand.info/ReaLiTy/

5. CONCLUSION

Originally thought as a way to interact with the music signal through
its real-time decomposition / manipulation / recomposition, in the
DReaM project the emphasis has been laid on the mixing stage,
leading to source separation / unmixing techniques using addi-
tional information to improve the quality of the results. DReaM
can also be regarded as a multi-track coding system based on source
separation.

The initial aim was to give freedom to the listener, in the con-
text of music industry, but artistic as well as industrial problems
arose. For example, the artwork is sacred – it shall not be “al-
tered”. Also, the method requires studios recordings – involving
copyright issues with studios / producers / majors. Finally, the
method requires mastering the whole production chain – meaning
entering Digital Audio Workstations (DAWs), which can hardly be
done. But DReaM has shown the possibility to produce a mix al-
lowing source separation, backward compatible with legacy stereo,
thus without the need of some multi-track format. Unfortunately,
the industrial finality of the project led to patents on the original
methods.

In this article, we proposed ReaLiTy, a patent-free version of
the system. It is based on well-known techniques such as LSB
watermarking, ERB/dB scale, or Wiener filtering. A free software
implementation in Python programming language is available on-
line. We hope that it could be used e.g. for storing / spreading
multi-track sound archives within the standard stereo format, or
could serve as a basis for future research.
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ABSTRACT

In this paper we introduce a novel approach utilizing real-time
concatenative synthesis to produce a Feature-Based Delay Line
(FBDL). Expanding upon the concept of a traditional delay, its
most basic function is familiar – a dry signal is copied to an audio
buffer whose read position is time shifted producing a delayed or
"wet" signal that is then remixed with the dry. In our implemen-
tation, however, the traditionally unaltered wet signal is modified
such that the audio delay buffer is segmented and concatenated ac-
cording to specific audio features. Specifically, the input audio is
analyzed and segmented as it is written to the delay buffer, where
delayed segments are matched to a target feature set, such that the
most similar segments are selected to constitute the wet signal of
the delay. Targeting methods, either manual or automated, can be
used to explore the feature space of the delay line buffer based on
dry signal feature information and relevant targeting parameters,
such as delay time. This paper will outline our process, detail-
ing important requirements such as targeting and considerations
for feature extraction and concatenation synthesis, as well as dis-
cussing use cases, performance evaluation, and commentary on the
potential of advances to digital delay lines.

1. INTRODUCTION

1.1. Concatenative Synthesis

Concatenation synthesis, thought of as directed granular synthe-
sis [1] and referred to as its natural successor, is a type of syn-
thesis where small segments of audio are selected according to
their descriptors and concatenated together to create a unique au-
dio stream. The origins of the idea are espoused in Iannis Xe-
nakis’ Formalized Music in which he describes a stochastic ap-
proach of concatenating small segments of audio together to cre-
ate new sounds [2]. Due to processing limitations of the time, the
analysis was a time consuming endeavor that had to take place
pre-synthesis and was thus a major limiting factor for the syn-
thesis technique. Concatenation synthesis gained prominence in
vocal synthesis in the 1990s through work presented by various
researchers including Hunt and Black in 1996 [3] and J Olive in
1997 [4]. The technique was quickly seen to be effective for resyn-
thesizing sounds from a corpus of source audio comprised of vocal
sonic components such as phonemes, sibilants, or fricatives. Con-
catenation synthesis remains as one of the predominant means of
performing vocal synthesis today.

Copyright: © 2023 Niccolo Abate et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

The early 2000s, referred to as the early years of concatenation
synthesis [5], presented an increase in processing power spawning
a surge of new interest in the technique exhibiting several different
applications with an exploration towards musical ends. Ari Lazier
and Perry Cook developed Mosevius [6], a tool for creating “audio
mosaics." This application was available as a standalone tool or as
a library, where it allowed users to perform concatenative synthe-
sis on a corpus of audio using MIDI or real-time feature extraction
on a control signal to inform segment selection. Similarly, Diemo
Schwarz’ CataRT [7] was a collection of patches for Max/MSP
built to perform concatenative synthesis. This system also used
manual control or real-time feature extraction of input audio to
inform segment selection from a corpus of audio. These two ap-
plications were nearly identical in their approach to concatenative
synthesis and established a standard paradigm for the process.

More recently, advancements in processing and research have
led to the development of more tools utilizing concatenation syn-
thesis in various ways. In 2011, Beller [8] created a physical
gestural controller to control segment selection in a concatenative
speech synthesis system for performance at IRCAM, which was
later built upon by Zbyszyński et al. [9] in 2019, bringing the idea
to musical ends along with the introduction of machine learning
algorithms. In 2012, S. An et al. created a framework in which
plausible accompanying audio is generated for physics based cloth
animations by producing a simple target sample based upon sim-
ulation information which informs concatenation on a database of
higher fidelity cloth samples [10]. In 2016, the audio plug-in Mo-
saic [11] brought concatenative synthesis towards the audio effects
world by layering sounds from an audio corpus on top of incom-
ing audio by means of real-time feature extraction of the input sig-
nal guided by user-specified thresholds for particular features. In
2017, MIT produced an application called RhythmCAT [12] that
used concatenation synthesis to power a drum programmer and
beat maker for electronic music. The application had a focus on
refined interface and streamlined functionality, taking advantage of
methods like dimension reduction and onset detection to quantize
the output and smooth out the user experience. In 2019, C Moore
and W Brent explored concatenation synthesis with a new level
of interactivity using virtual reality technology to allow users to
explore the feature space in three dimensions while forming clus-
tering structures and allowing the user to explore the space with
rays and other physical means [13].

While each of these applications explored concatenation syn-
thesis in unique ways, they all rely on a corpus of audio that is
pre-analyzed, and they appeal to the design paradigm established
in the 2000s by apps such as Mosevius and CataRT. The reason for
this is clear, as it is computationally efficient to pre-analyze an au-
dio corpus and then use the resulting meta-data analysis to perform
real-time synthesis. However, with current advances in processing
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and research in the field, we can expand this paradigm and tap into
unexplored territory via generating audio corpora and performing
end-to-end concatenation synthesis all in real-time. This may al-
low the technique to proliferate in the audio effects world, where
relatively little work has been done but more potential exists for
the technique in audio production and sound design.

1.2. The Delay Line

The phenomenon of audio delay fundamentally influences our au-
ditory experience in the physical world. Acoustical sound waves
propagate throughout a space and reflect off surfaces causing the
superposition of time-offset waves at the position of a listener’s ear
or a microphone. Depending on the delay time, this phenomenon
yields changes to the perceived audio ranging from an audible echo
to intricate alterations in audio timbre resulting from spectral fil-
tering. Notably, the perception of the quality of a space, such as a
concert hall, is an amalgamation of all delays resulting from sonic
reflections propagating throughout that space [14].

Given this correlation, it comes as no surprise that delay, har-
nessed through "delay lines," constitutes a crucial aspect of signal
processing, whether analog or digital. Delay lines form the foun-
dation for numerous common operations such as filtering, reverb
emulation, and physical modeling, as well as various other audio
effects like flanging and chorus [15].

With such a fundamental role in audio processing, advances
in delay line technology have the potential to permeate multiple
areas of signal processing and audio effects. As a result, the delay
line represents a significant object of inquiry for modern process-
ing power and algorithms, including real-time music information
retrieval and concatenative synthesis.

2. FEATURE-BASED DELAY LINE

This brings us to our proposed model of a Feature-Based Delay
Line (FBDL), a novel application of a traditional delay line that
utilizes concatenation synthesis where the corpus of audio exists
as an ever-changing delay line buffer, analyzed, segmented, and
concatenated all in real-time (Figure 1). To accomplish this, seg-
mentation and feature extraction take place as the audio is copied
to the delay buffer, where the resulting analysis remains paired
with its associated audio as it travels through the buffer. Segments

are then selected according to a process we call targeting and con-
catenated to create the wet signal, which is then mixed with the
dry signal. To control concatention of the delay line, the user can
set several important parameters, including segment size, feature
set, feature weights, targeting method, and targeting parameters.
In particular, the critical method of targeting produces a system of
selection criteria that expands on the concatenation synthesis norm
of simple matching, adding tunable depth to the system and creat-
ing the delay-like behavior. The aggregate result is an audio effect
that expands on the traditional delay line, exhibiting creative po-
tential for audio production and sound design, as well as potential
as a component for signal processing.

As discussed above, the fundamental structure of the FBDL
is a delay line, where the content of the delay line buffer consti-
tutes the audio corpus for concatenation synthesis. Our approach
is rooted in the functionality of a traditional digital delay line [15],
but it expands on the capabilities of the traditional paradigm to
create new possibilities. A traditional digital delay line utilizes a
circular buffer, where given an audio buffer X of sample size N, the
next input sample will write to an indexed buffer position n, such
that X(n) = input sample. As audio samples are written, the index
n will then be incremented, wrapping around when it reaches the
end of the buffer. In a digital delay line, given a delay time t in
samples, the delayed signal will read every sample from index n - t
(this index will also wrap to stay in the bounds of the buffer), such
that the output = X(n - t). Our FBDL is similar to the traditional
paradigm, where incoming audio is written to a circular buffer of
length N. However, in our case the delay time, now denoted c,
is dynamically determined as a result of concatenative synthesis,
where the delay buffer position n - c is a function of audio features
defined via the targeting process (Figure 2).

Figure 2: Feature-Based Delay Line, where delay time c is deter-
mined by audio feature analysis (targeting).

Figure 1: Data and signal flow of the Feature-Based Delay Line Architecture.
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3. TARGETING

Targeting is our process of traversing a defined feature space and
selecting audio segments according to their qualitative position in
the space. The method of targeting plays the primary role in deter-
mining the delay position within our delay buffer, serving as the
bridge between the concatenative synthesis technique and the de-
lay line buffer. All audio that exists inside the delay buffer has been
segmented in time and analyzed such that each segment of audio
has an associated feature set of descriptors positioning it within a
multidimensional feature space. Segments organize in the space
such that qualitatively similar audio will be positioned close to-
gether and selected accordingly.

For audio selection, a target position in the feature space and a
radius about the position are specified. At any given point in time,
audio will be selected with a position in feature space contained
within the target radius. We define the targeting method as follows:

Tc = Targeting(Tref , R) (1)

where Tc is the delay time in buffer position output from targeting
(equivalent to c in the previous Figure 2), Tref is the reference
delay time used to determine the target position in feature space,
and R is the target radius about the target position.

Inside the targeting function, given Tref and R, the analysis
of each segment of audio in the delay line is compared to the anal-
ysis of the audio segment containing X(n - Tref ), the "reference
segment," where n is the current write position in the delay buffer.

Formally, all audio segments in the buffer can be stated as:

Si = X(n− Ti), · · · , X(n− Ti + l) (2)

where Si is the segmented audio starting at delay time Ti, with
length l (Figure 3).

Figure 3: Delay line segmented for targeting.

Each audio segment, Si, is associated with a feature set vector
FSi:

FSi = (F1, F2, · · · , Fm) (3)

where Fm is a feature of the audio in segment Si. The collection
of all feature set vectors in the delay line forms our feature space.

The association between each Si and FSi is unique except in
special cases. For example, given a feature set vector containing
only RMS, two segments may share the same value. However,
such an occurrence would be scarce and become progressively im-
probable as the dimensionality of the feature space increases. The
only other case where this scenario may occur is with repetitive in-
put signals, in which two segments contain identical audio. Even
here, the scenario remains highly unlikely because it necessitates
precise alignment with respect to segmentation and FFT framing.

The reference segment of audio, Sref , is defined as the seg-
ment which contains the sample X(n− Tref ):

Sref = Sk | X(n− Tref ) ∈ Sk (4)

where Tref is the target delay time, and Sk is the audio segment
containing the sample X(n− Tref ) (Figure 4).

Figure 4: Reference Segment Sref determined by reference delay
time Tref.

Then, the Euclidean distance between the reference feature
vector FSref and all other vectors in our feature space is com-
puted. If the distance between a given feature space vector FSi

and the reference vector is less than the specified target radius,
then the vector is stored in the set of viable segments V .

V = {Sk∀k | d(FSk, FSref ) ≤ R} (5)

A selection candidate Ssel is then randomly selected from V , and
its reference time, Tsel, is output from the targeting function, ulti-
mately setting the delay time Tc equal to Tsel (Figure 5).

Figure 5: Segment Ssel selected from the set of viable segments.
Ssel must be sufficiently similar to reference segment Sref . Asso-
ciated time delay Tsel is set as c for the delay tap X(n− c).

The FBDL can be made to act like a traditional digital delay.
For the targeting function detailed above, it is trivial to show how
this is achieved. If we let R = 0 and assume the case that all FSi

are unique, then the only viable segment for which the euclidean
distance between FSi and FSref is less than or equal to R is the
segment Si = Sref . Thus, the only viable segment is the reference
segment, Sref (Figure 6).

Figure 6: Reference Segment Sref is the only viable segment as
Target Radius R = 0. Sref therefore will be selected.

However, there is a small discrepancy here: because Tref

might fall anywhere inside Sref , there is some potential error from
the exact reference delay time given depending on when the tar-
geting method is queried. While this is not typically noticeable
depending on the segment size used, it can be remedied with slight
shifting of the selected segment. In this case, the selected segment
will be shifted to align with the reference delay time if it is the
reference segment containing Tref (Figure 7).
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Figure 7: Reference Segment Sref is the only viable segment as
Target Radius R = 0. With shifting enabled Ssel = Sref is now
shifted to align with Tref .

Now the output from the targeting method will always be
Tref . Therefore, in this scenario, the FBDL and the traditional
digital delay line are identical, as X(n− Tc) = X(n− Tref ).

As the value of R increases, more audio segments become
viable candidates for selection, and thus more sonic variety is in-
troduced into the delayed signal.

4. TARGETING EXPANSIONS - PARAMETERS AND
METHODS

The targeting function can be modified or parametrically expanded
to impact the behavior of the delay. This can be accomplished
via adding parameters to a given targeting method or the target-
ing method itself can be modified to process input parameters in
various ways. Our targeting function’s expanded signature can be
generalized as:

Tc = Targeting(Tref , R, · · · ) (6)

For our implementation we include the addition of feature
weights and target smoothing, defining our final targeting function
as follows:

Tc = Targeting(Tref , R, FW,S) (7)

where FW is a vector of feature weights, and S is a smoothing
factor.

4.1. Feature Customization and Weighting

The feature set can be customized to alter the selection process and
sound quality of the delay effect. Customization can result from
a combination of features being added or removed from a given
feature vector, or specific features in the vector may be replaced
with others that are more desirable. The introduction of a feature
weight vector allows the user to control the relative strength of
each feature in the vector during the selection process, thereby ac-
centuating specific audio characteristics in determining the viabil-
ity of a segment. Computationally, this is a simple enhancement to
the targeting function that can allow greater real-time control over
the selection process. To accomplish this, compute the Hadamard
Product [16], where given a feature vector and vector of feature
weights both of the same length n:

FVwgt = FV ◦ FW = (FiWi, · · · , FnWn) (8)

where FVwgt is the weighted feature vector, FV is the original
feature vector, and FW is the vector of feature weights. The entry-
wise product is computed for all vectors in the feature space before
computing Euclidean distances and determining segment viability.

4.2. Smoothing

The smoothing parameter S changes the way the target position
traverses the feature space by setting the feature set of the reference
segment equal to the average of the feature sets of the prior N
segments trailing the reference segment in the delay line. Thus,
by applying a smoothing factor, the feature set of the reference
segment is defined as:

FSsmth =
1

N

N−1∑

i=0

FSref−i. (9)

This effectively makes the size of the reference segment larger,
as it incorporates the features of more audio into its average. As
a result, the target may remain more centralized about the feature
space and mitigate effects of outliers.

4.3. Targeting Methods

Targeting methods define distinct paradigms for traversing and or-
ganizing the feature space. Targeting methods are composed of
unique targeting functions with varying parameter sets existing as
arguments that fundamentally impact targeting behavior. Each tar-
geting method may have a collection of parameters that apply to it
that may or may not also apply to other targeting methods.

The primary targeting method utilized is a best fit approach,
based on the audio input into the delay line, as well as a collection
of other potential parameters such as target delay time, audio fea-
ture sets, feature weights, and smoothing, as detailed above. This
method is parametrically automated, and as shown lends itself to
unique potential for the FBDL.

Alternatively to our automated approach, manual targeting
was also implemented. For this method the user manually deter-
mines the target position in feature space via use of a graphical user
interface or other direct interactive methods. Our implementation
focuses on the former, allowing a user to traverse and explore the
feature space more freely and develop a deeper understanding of
the feature space bounds. For example, it can be effectively used
when writing to the delay line is paused, “freezing” the state of
the delay line into a temporarily static corpus. With a static corpus
and feature space, the listener can take time to consider how audio
segments are associated with various qualities in the space. This
can greatly inform the user on setting and refining parameters that
impact the targeting process and segment selection.

Functionally, the behavior of the FBDL is critically deter-
mined by the targeting parameters and method. As shown above,
with restrictive settings it will act exactly like a traditional delay
line. However with modifications, the FBDL can produce a broad
array of sonic behavior ranging from light variation to entirely new
textures that are generated and layered into the original audio. In
this way, our FBDL encompasses the full scope that a traditional
delay line affords while introducing a broad set of new possibili-
ties.

5. FEATURE EXTRACTION AND CONCATENATION
CONSIDERATIONS

5.1. Feature Extraction

The characteristics of the feature space impact the capabilities of
the FBDL architecture. Every feature is a descriptor that is used
to organize the segments of audio in the delay line. Different
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features afford different ways to organize the segments of audio,
and this organization affects segment selection during the target-
ing method. Importantly, each feature is a characteristic that can be
compared to the target position in order to determine a segment’s
viability. For example, the presence of a “loudness” feature or a
"noiseness" feature in the feature set allows for volume or noise to
affect a segment’s viability respectively.

5.1.1. Feature Impact

A given feature is only as useful as the amount of variation present
among the population of segments in the delay line. In other
words, “noisiness” provides no useful differentiation in a popula-
tion of segments that all have the same amount of noise. The same
is true for pitch, loudness, or any other descriptor. With this no-
tion, variations in acoustic properties among different sound types
may necessitate the selection of distinct features for optimal sig-
nal processing. For example, with percussive sound sources, mea-
surements of energy and noise and change in spectra are likely
to be more useful than specific pitch related features such as fun-
damental frequency, as opposed to tonal sources which are likely
to benefit from the opposite. Part of exploring the feature space
is discovering which set of features provide the most utility for a
given sound source.

5.1.2. Feature Set

Access to a broad feature set is important in order to maximize the
customization possibilities during audio segment selection. To this
end many features are available, including some that measure sim-
ilar characteristics through different means. The full feature set is
as follows: MFCC, Spectral Centroid, Spectral Bandwidth, Spec-
tral Rolloff, Spectral Flatness, Spectral Flux, Spectral Contrast,
Short Time Energy, Short Time Variance, RMS, and Fundamental
Frequency Estimation. Feature sets can be streamlined by select-
ing a more manageable set that maximizes contrast and minimizes
redundancy.

5.1.3. Dimension Reduction and Clustering

Dimension Reduction and Clustering algorithms are used in the
implementation’s GUI as means of simplifying the complex n-
dimensional feature space into a more comprehensive, understand-
able, 2-dimensional representation. Dimension reduction is com-
puted using Principal Component Analysis (PCA) [17] and clus-
tering is computed using DBScan [18]. While versions of these
algorithms have often been used in concatenative synthesis appli-
cations and other audio database visualizations to reduce dimen-
sionality and present clustering structures, there are unique consid-
erations involved with this architecture due to the ever-changing
dynamic database (delay line buffer), compared to past applica-
tions with static databases. Namely, this includes stabilization of
the analysis in the presence of rapid change, especially for dimen-
sion reduction, where small changes may cause the reduction to
flip orientation or change basis dramatically. Real-time PCA is
still an open problem in the data science community [19].

5.2. Concatenation

Operations required for concatenation synthesis can also materi-
ally impact the sonic quality of the delay line. Most importantly,
the treatment and combination of delay line segments requires the

greatest consideration, where particular focus may be given to seg-
ment definition, windowing, number of segments, layering of seg-
ments, and segment effects processing.

5.2.1. Segment Definition

Segment definition plays a crucial role in the concatenation synthe-
sis of the delay line audio. Segment delineation can be determined
automatically via onset detection, or from designation of regular
units of time such as length in samples or beats per minute. The
segment size has a substantial effect on the sound quality of the
concatenation. Segment size must be set at a minimum such that it
can constitute a frame for spectral analysis. For our implementa-
tion, the default size is 2048 samples with 50% overlap. Segment
size may be tuned for different use cases, where short segments
(grains) sound more textural when stitched together, maintaining
timbre but not temporal events, and longer segments (syllables)
sound more like musical events strung together in sequence.

5.2.2. Windowing and Overlap

Windowing is applied to each segment in order to smooth the tran-
sition between disparate audio segments. For our implementa-
tion, a Tukey windowing function [20] is used, which has a si-
nusoidal onset and offset, and a flat band in the center. Control of
the center bandwidth affects the quality of the concatenated audio
stream, where a larger bandwidth yields greater individual pres-
ence of each segment and a smaller bandwidth results in less indi-
vidual presence as onset / offset periods of segments meld together.
Segments read from the delay line may be overlapped during the
onset and offset periods of their windowing function in order to
more seamlessly stitch them together. This is particularly impor-
tant with small segment sizes in order to mitigate the introduction
of unwanted spectral artifacts. For the special case of configur-
ing the delay line to perform as a traditional delay line, the center
bandwidth may be set to the size of the entire window with zero
overlap.

5.2.3. Number of Segments

The number of segments determines how many segments are being
read from the delay line at any given time. Each additional seg-
ment is another tap into the delay line. This parameter greatly in-
creases the textural capabilities of the concatenation process. Ad-
ditionally, multiple segments may layer to produce chorus-like ef-
fects, as similar audio segments are combined together with slight
pitch and time offsets. When combining large numbers of seg-
ments, they are typically offset from each other for the following
reasons. Firstly, this naturally offsets the onset and offset periods
of the segment windows. Secondly, this generally allows for more
variation in the segments selected, and if multiple copies of the
same segment are selected, their constructive amplification is mit-
igated. Finally, this is computationally advantageous, as it spreads
out the targeting queries between more calls to the audio processor.

5.2.4. Adding Effects

A multitude of effects can also be applied to the concatenated seg-
ments read from the delay line. These include speed and pitch
shifting, reverse playback, panning, waveshaping, and more. Ef-
fects can be applied universally across all segments or uniquely to
each segment read from the delay line. Variation in how the effects
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are applied allows for more diversity of texture. For example, this
is important for pitch and panning, as it allows for chorus-like pan
and pitch width effects, where pan and pitch offsets are applied to
segments spread evenly around a center value.

5.2.5. Parameter Mapping

All the effects and parameters can be mapped to the read segments
in different ways. They can be manually designated by the user
or parametrically automated to produce interesting results. One
of the unique affordances of the FBDL architecture is the access
to an array of analysis of all the contained audio, which can be
used to achieve powerful real time automatic control of parame-
ters. Specifically, effects can be mapped to any of the feature axes
of the current target position or the feature set of each individual
segment read with custom graphs. This allows for numerous possi-
bilities, including automatic equalization of segment volume, pitch
normalization of segments, silencing noisy sounds, etc., as well as
many custom behaviors for other specific goals. Generally, the
characteristics of the sound can uniquely determine audio effects
processing for each segment, allowing for endless customization
of the playback of audio from the delay line.

6. USE CASES

The Feature-Based Delay Line architecture promotes many differ-
ent use cases which were explored in our implementation. As an
expansion of the traditional delay line, it fulfills the same function-
ality. However, with increased control over the delay behavior and
extra affordances of the architecture, it expands the boundaries of
traditional use cases into new territory for sound design. Further-
more, although currently a high level tool, we believe that future
iterations of the FBDL approach may have potential use cases as a
lower level signal processing component.

6.1. General Purpose Delay

Typical delay use cases can be enhanced in many ways. Subtle
new affordances can be introduced with conservative FBDL set-
tings, such as small target radius, no segment layering, and mini-
mal segment effects processing. For example, targeting parameters
can subtly enhance traditional use cases by affecting segment se-
lection, such as expanded target radius introducing variation into
the delayed signal. Additionally, unwanted portions can be filtered
from the input signal using parameter mapping, via mapping char-
acteristics of unwanted audio such as noisiness to volume. Alter-
natively, desirable sections of the input signal can be accentuated
by linking characteristics of such segments to parameters such as
pan, pitch, feedback amount, or target radius, increasing the possi-
bilities of the effect.

6.2. Textural Audio

The introduction of concatenation synthesis into the FBDL pro-
motes a unique use case for textural audio and layering. By in-
creasing the intensity of the FBDL settings, including expanded
targeting radius, increased number of concurrently read segments,
and more liberal segment effects processing, the delayed signal
can be pushed more towards the textural “audio mosaic” realm.
With this, the well established traits of prior concatenative synthe-
sis applications are exhibited, while still maintaining the link to the

rhythm and quality of the input audio. The texture created either
can stand alone, or be layered on top of the dry signal. The unique
strength of the dynamic corpus of the FBDL is exhibited here, as
the texture melds with the the original source audio in real time,
adding additional layers of timbre.

6.3. Resonance and Comb Filtering

The FBDL presents an interesting use case in comb filtering and
resonant delay modeling, due to the expression of the architecture
with very short delay times. A selective comb filter effect can be
created using a small but non-zero target radius, where the filter-
ing will be predominantly active, as the reference segment will be
selected at sub-25ms delay time, but sometimes inactive, when a
non-reference segment is selected further back in the delay line.
Similarly, with high feedback amounts, novel resonant effects can
be achieved. The frequency at which the signal is delayed intro-
duces resonant spectral content, which compounds as it repeatedly
feeds back into the delay line. Targeting parameters provide a se-
lective and natural way to periodically break out these feedback
cycles, allowing for interesting but manageable resonant delay ef-
fects. These approaches can be adjusted via targeting parameters
and interacts with concatenation parameters and parameter map-
pings in interesting ways. This also serves as a high-level example
of how the FBDL might be used to enhance existing signal pro-
cessing operations that make use of delay lines.

7. EVALUATION

Evaluation in concatenative synthesis systems has often histori-
cally been lacking [12, 21], due to the creative and / or subjective
goals of the creator, often in the role of composer. Nonetheless,
we maintain that the evaluation of the Feature-Based Delay Line
is crucial for the advancement of the delay line as a signal process-
ing component and as an audio effects processor. To this end, a
prototype of our FBDL architecture was realized as a JUCE C++
plugin. Specifically our prototype should encompass the possibil-
ities of the traditional delay line, while also introducing new di-
mensions in the space, expanding the potential range of behaviors.
Utilizing this implementation, we conducted experiments to eval-
uate performance both as a traditional delay line and with new ca-
pabilities, such as targeting radius and parameter mapping. These
experiments were conducted in isolated circumstances to allow for
targeted assessment.

7.1. Delay Line Variation Experiment

As previously stated, the Feature-Based Delay Line is designed
to incorporate traditional digital delay functionalities while also
introducing new possibilities. The present study aims to evalu-
ate the FBDL’s performance as a basic delay line and to analyze
the changes in output as the target radius is introduced. The ex-
periment pursues two main objectives. The first objective is to
compare the delayed signal from the FBDL with that of a standard
digital delay line using neutral settings and consecutive increases
in target radius. The second objective is to assess the impact of the
introduction of the target radius on the output signal and its feature
analysis data.

To achieve these objectives, measurements were taken by
computing the differences in the waveform and feature analysis
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between the control signal and the FBDL signal with different tar-
get radii. The focus was on two specific results: (1) whether the
output signal from the FBDL architecture is identical to that of
the control delay under neutral settings, and (2) how much the in-
troduction of target radius affects the output signal and its feature
analysis data.

Figure 8 presents the results of the experiment. It shows that
with a target radius of zero and default parameters, there is no
meaningful difference between the delay signal from the FBDL
and the control signal. However, as the target radius increases,
the differences between the waveform and feature analysis of the
two signals also increase. These differences are strongly corre-
lated with the target radius. The plot indicates a contour due to
a spike in variation introduced as the target radius encompasses
clusters of segments. This is followed by a slight plateau until
the target radius expands sufficiently to include different clusters,
eventually resulting in complete randomness at a target radius of
1.0. The shape of this contour may vary depending on the distri-
bution of points throughout the feature space, but it will always be
positively correlated with the target radius (with some expression
of randomness due to nondeterministic segment selection).

These findings demonstrate the FBDL’s ability to encompass
the behaviors of a typical delay line and evaluate one of the new
axes (targeting, specifically target radius) introduced into the pos-
sibility space of the architecture, under circumstances that isolate
that particular axis.

Figure 8: Waveform & Feature Differences vs. Target Radius.

7.2. De-Essing Experimental

There are numerous ways to take advantage of the FBDL’s utiliza-
tion of parameter mapping to access analysis of the delay buffer.
For our second experiment, de-essing presented itself as an inter-
esting ability of the architecture and an apt candidate for evalu-
ation. De-essing is a well-defined, isolated practice with a clear
connection to feature analysis. For example, sibilance in a vo-
cal sample corresponds to increased measures of noise. Specifi-
cally, this experiment tests the de-essing capabilities of parameter
mapping by using a mapping of spectral flatness to volume and
compares the results to a commercial de-essing plugin (set to max
strength).

The de-essed signals from both the FBDL and the commer-
cial de-esser are compared to each other and to the control signal
through waveform and feature analysis differences. The FBDL’s
signal is recorded with a delay time equal to the minimum anal-
ysis frame size, then time shifted to be in sync with the other
waveforms for comparison. The amount of noise in the signals
is computed by summing the multiplication of each sample by its
spectral flatness value. The remaining noise ratio is the amount of
noise in the de-essed signal divided by the amount of noise in the
control signal. The removed noise ratio is the amount of noise in
the difference between the de-essed signal and the control divided
by the amount of noise in the control signal.

As shown in Figure 9, the de-essing created by the parameter
binding is effective at filtering out noise from the control signal, re-
moving 45.62%, compared to 23.53% removed by the commercial
de-esser. Note that the sum of the remaining and removed noise
sums roughly to the amount of noise in the unaffected waveform.
The de-essed waveforms are plotted in Figures 10 and 11, with
removed signal highlighted in red.

These results show FBDL’s success as a de-esser within this
scope of evaluation, as well as serving nicely to display the effi-
cacy of parameter mapping as a general technique, which could be
applied in other ways towards unique ends.

Figure 9: Removed & Remaining Noise

Figure 10: FBDL De-Essing Effect

Figure 11: Commercial De-Essing Effect
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8. CONCLUSION

The union of concatenation synthesis and dynamic delay buffer
into an intelligently guided Feature-Based Delay Line (FBDL) of-
fers unique possibilities both as an expansion of the traditional de-
lay line and as an application of concatenation synthesis. With
this architecture, we aim to inspire further exploration of mu-
sic information retrieval and concatenative synthesis in the area
of audio effects processing, and innovate upon the prior appli-
cations of concatenative synthesis by introducing a real-time dy-
namic database and expandable targeting method to traverse the
feature space based on delay time. Furthermore, expansion on
the delay line as a fundamental component may result in progress
throughout related areas of signal processing.

Future work on the FBDL architecture will address unique
considerations of this approach, such as segment alignment and
feature analysis with an arbitrary delay time, along with real-time
dimension reduction and clustering integration into the targeting
and parameter mapping parts of the architecture as additions or
substitutions in the feature set. Additionally, continued develop-
ment in FFT optimization, especially through GPU accelerated
implementations [22] and / or dedicated FFT processing hardware
[23] will limit the amount of error in the architecture and expand its
potential. Finally, we look to conduct a detailed performance eval-
uation and seek qualitative user feedback from sound designers to
identify areas of improvement in our design and implementation.

We are eager to share our approach with the broader audio and
music community. A video demonstration, as well as builds of
the plugin, experimental notebooks, and performance evaluation
notes are attainable via the project repository located at https:
//github.com/NiccoloAbate/DelayCat.
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ABSTRACT

This work introduces the use of the Dynamic Pitch Warping (DPW)
method for automatic pitch correction of singing voice audio sig-
nals. DPW is designed to dynamically tune any pitch trajectory
to a predefined scale while preserving its expressive ornamenta-
tion. DPW has three degrees of freedom to modify the funda-
mental frequency (f0) signal: detection interval, critical time, and
transition time. Together, these parameters allow us to define a
pitch velocity condition that triggers an adaptive correction of the
pitch trajectory (pitch warping). We compared our approach to
Antares Autotune (the most commonly used software brand, ab-
breviated as ATA in this article). The pitch correction in ATA has
two degrees of freedom: a triggering threshold (flextune) and the
transition time (retune speed). The pitch trajectories that we com-
pare were extracted from autotuned-in-ATA audio signals, and the
DPW algorithm implemented over the f0 of the input audio tracks.
We studied specifically pitch correction for three typical situations
of f0 curves: staircase, vibrato, free-path. We measured the prox-
imity of the corrected pitch trajectories to the original ones for each
case obtaining that the DPW pitch correction method is better to
preserve vibrato while keeping the f0 free path. In contrast, ATA
is more effective in generating staircase curves, but fails for not-
small vibratos and free-path curves. We have also implemented an
off-line automatic picth tuner using DPW.

1. INTRODUCTION

Pitch correction (or automatic pitch tuning) is nowadays one of
the most commonly used digital audio effects for vocal music. Ini-
tially known as the "Cher" effect, the audible distortion produced
by sharp pitch transition in retuned singing became appreciated
on its own in popular electronic music. The sharp transition is a
case of use where all minor expressive singing variations are flat-
tened. Noticeable gliding appears often in the transitions between
notes. The success of Autotune in the music industry has sparked
much discussion and debate. Some argue that it is a tool that helps
artists achieve a perfect pitch singing, while others criticise its use
as it can lead to a loss of natural expression and emotion in the
music. Despite this, Autotune has become a staple in modern mu-
sic production and is used in various genres such as pop, hip-hop,
and electronic music [1]. Although it is a common practice to use
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DAFx effects which involve perceptual features such as [2] melody
(pitch), source (timbre, [3]), or space [4],pitch correction is one of
the most commonly used. I became a stylistic signature for many
popular music genre.

Antares Autotune (ATA)1 is a digital audio effect developed by
H. Hildebrand in 1997 [5] and its enduring popularity has spanned
over 25 years. ATA uses an autocorrelation method that was ini-
tially developed for seismic imaging, with the help of short-time
Fourier transform. Although the initial purpose of ATA was not to
enrich the voice with a new vocoder-like audio effect but to cor-
rect out-of-tune melodies, the unique electronic texture produced
has been embraced in popular music and has even become a hall-
mark of specific musical styles, often employed systematically.
ATA offers two use cases: one the one hand pitch correction is
used for better rendering of out of tune singing and on the other
hand the distortion effect occurring extreme correction situations
is appreciated on its own. The need for melodic correction also ap-
peared in digital music instruments (DMI) [6, 7, 8, 9]. These DMIs
use interfaces with particular features that involve learnability, ex-
plorability, and controllability [10]. A new pitch tuning correction,
Dynamic Pitch Warping (DPW) [11], has been developed for per-
formative vocal synthesis in Cantor Digitalis [8] where the funda-
mental frequency (pitch) is controlled in real-time with the help
of a stylus on a graphic tablet. Pitch correction helps for singing
accurate notes. However, it is very important to preserve small ex-
pressive ornaments like vibrato [12] without flattening the notes to
preserve naturalness.

The purpose of this paper is to study the DPW pitch correction
method. This method was designed to preserve expressive varia-
tions like vibrato while adjusting the main shape of the f0 curve
to a predefined scale. We identify three cases of particular inter-
est: abrupt pitch transitions (staircase notes), notes with vibrato
and free path curves that should not be corrected. The results of
this paper allow us to open perspectives for developing dynamic
and singer-controlled vocal digital audio effects that are able to
preserve expressive ornaments in real-time. Section 2 presents a
review of the pitch correction method studied (ATA and DPW).
Section 3 compares DPW and ATA on typical pitch patterns. Sec-
tion 4 presents the off-line implementation of DPW for audio sig-
nals.

2. PITCH CORRECTION SYSTEMS

An audio pitch correction system contains three parts: a pitch de-
tection algorithm (PDA), a pitch correction algorithm, and finally

1https://www.antarestech.com/ last checked: 6 April 2023
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a pitch warping modification (vocoder). The present paper aims to
apply DPW as a pitch correction algorithm for vocal speech into-
nation. DPW offers three control parameters when other correc-
tion methods have one or two parameters. DPW uses an adaptive
function, the term "adaptive" is related to the adaptive digital au-
dio effects (aDAFx) that are recent solutions designed to respond
to changes in the input signal and adjust specific audio parameters
accordingly to it, thanks to specific denominated adaptive func-
tions. These kind of effects are more dynamic and responsive that
the traditional DAFx, some examples of aDAFx being the com-
pressor, the expander and the limiter (auto-adaptive on loudness).

Along this line, several DMIs have introduced the use of pitch
correction methods to improve the expressivity of musical user in-
terfaces. That is the case for devices such as the Continuum Fin-
gerboard [6, 7]2, the Seaboard[13]3, Garageband4, TouchKeys[14],
and Cantor Digitalis [8]5. The latter is particularly interesting since
it uses a Dynamic Pitch Warping method to correct the continuous
position of the pitch controller relative to a pitch scale. The cor-
responding adaptive warping function proposed by Perrotin and
d’Alessandro [11] attracts real pitch values towards integer values,
using a MIDI scale. The integer values are tuned notes. DPW is
based on a pitch velocity condition expressed as the pitch stabil-
ity within a pitch interval during a critical time threshold before
triggering the automatic correction. We will review the warping
methods applied in ATA and DPW in the following two subsec-
tions.

2.1. Autotune Antares

Autotune was developed by H. Hildebrand using techniques origi-
nally developed for mapping the Earth’s subsurface and is consid-
ered a time-domain vocoder that modifies the signal both on the
frequency and time domain using a short-time Fourier transform
with a window function to frame the inner transform. Autotune is
a full pitch correction system including the three steps described
above: pitch detection, pitch correction and pitch modification.
We present in this section the pitch correction method. For this
purpose, the sung notes are shifted to the closest note in a prede-
fined scale, and the transition is carried out over a duration equal
to a transition time (named "retune speed" on ATA). Autotune also
includes the flextune parameter, which acts as a threshold for the
correction and represents the size of the neighborhood of a note in
which a pitch correction can be triggered.

Due to lack of detail in the patent [5], the ATA algorithm
can only be reproduced for an extreme correction case, meaning
a value 0 on the Decay parameter in the patent of ATA (internal
parameter of the code, and related to the retune speed parameter).
This case corresponds to force the input trajectory to match integer
MIDI values, i.e., the target notes. For the non-zero Decay cases
we cannot reproduce the algorithm as the patent doesn’t describe
exactly the configuration of the smoothing step. To treat cases with
non-zero transition time we will apply the ATA VST on audio sig-
nals and then extract the retuned f0 to study correction actually
carried on.

2https://www.hakenaudio.com/
continuum-fingerboard last checked: 25 may 2023

3https://www.roli.com last checked: 25 may 2023
4https://www.apple.com/mac/garageband/ last checked:

25 may 2023
5http://www.lam.jussieu.fr/cantordigitalis/ last

checked: 25 may 2023

2.2. Dynamic Pitch Warping

Figure 1: The arc of curvature for the dynamic pitch correction
method, took from [11]

DPW is a real-time pitch correction method developed by Per-
rotin and d’Alessandro for Cantor Digitalis. Although it was orig-
inally designed to correct a driven by stylus pitch on a graphic
tablet, we aim to use DPW for vocal correction. DPW relies on
pitch velocity (speed) to trigger an adaptive correction that mod-
ifies the input f0 curve gradually, enabling the output f0 to con-
verge to the nearest semitone on the MIDI scale. When pitch ve-
locity falls below a threshold, DPW smoothly shifts subsequent
f0 values to converge to a tuned semitone, while preserving some
expressive motion of the original f0 value. The adaptive function
remains static when the pitch velocity condition is not met, allow-
ing intended notes to be corrected while retaining expressiveness
and preserving all dynamics for non-corrected notes. To review
the method, we first analyze the isolated adaptive function, as seen
in Figure 1 that maps the input f0 (x axis) to the output f0 (y
axis). On both axes, zero represents the closest target (ideal) pitch,
and −δ and +δ correspond to the previous and next notes on the
discrete target pitch scale, respectively. While it works on any ar-
bitrary scale, δ = 1 when working with semitones. For input pitch
x01, the closest target note is zero. Therefore, at the time the cor-
rection is triggered, the corresponding adaptive function that is ini-
tially diagonal will smoothly shift towards the lowest arc-shaped
curve, to eventually map the input f0 to the pitch target (zero) as
output f0. The adaptive function then becomes static until it is
newly triggered. To avoid introducing a constant shift on the full
pitch range, the adaptive function is arc-shaped so that if the input
moves from the x01 value to the neighbour notes on the pitch scale
(−δ or +δ), the output f0 will continuously reach −δ or +δ. If
those boundaries are reached, the adaptive function goes back to a
linear mapping between input and output, until it is triggered again
for a new input.

The adaptive function is derived from the analytic definition
of an arc. To ease formulation, the inverse function is first defined:

x(y) = Aeγ(y+B) + C (1)

where the parameters A, B, C and γ can be calculated from the
boundary conditions, i.e., the arc must satisfy x(±δ) = ±δ. If we
use this condition, we can write A and C in terms of γ, δ, and B

DAFx.2
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as follows:

C = −δ
(
1 +

2

e2γδ − 1

)
, A = 2δ

eγ(δ−B)

e2γδ − 1
(2)

Replacing these values in the original equation 1, we find that
the dependency on B disappears. Furthermore, the function is not
defined for γ = 0, but it corresponds to an absence of correction,
i.e., the mapping is linear. So the function of the arc curvature can
be written as:

x(y) =

{
δ
[
2 eγ(δ+y)−1

e2γδ−1
− 1
]

if γ ̸= 0

y if γ = 0
(3)

The adaptive warping function is defined as the inverse of 3:

y(x) =

{
1/γ
[
log
[
(e2γδ − 1)(x

δ
+ 1) 1

2
+ 1]

]
− δ if γ ̸= 0

x if γ = 0
(4)

Where γ is the factor of correction, y is the output pitch after the
correction, and x is the input pitch. When the correction is trig-
gered (at that moment x = xo) , the value of γ = γ0 can be calcu-
lated from the input value x0 to ensure that y(x0) = 0 following
the equation:

γ0 =
1

δ
log

(
δ − x0
δ + x0

)
(5)

The DPW has two stages that can be seen on Figure 2. One is
the triggering part and the other is the warping stage. For the cor-
rection to be triggered, the pitch trajectory has to be stable enough,
i.e., it has to stay within an interval of detection (ID) during a crit-
ical time (Tc) [11]. If these conditions are met, we can calculate
the curvature γ0 given the input pitch at triggering time (x0 in the
definition, f0 for us). To ensure a smooth transition, γ is linearly
interpolated from 0 (linear mapping) to γ0. This transition spans
a time interval denominated transition time (Tt). When the tran-
sition is completed, the input pitch has converged to the closest
integer notes on the midi scale. This transition is carried out simi-
larly to the static case of ATA, not over the frequency but over the
γ value, then f0 (input) is warped with the adaptive function.

Figure 2: Illustration of the dynamics of DPW. The input f0 (green
curve) is stable in a detection interval ID during the critical time
Tc (pink region). The correction is triggered during the transition
time Tt (blue region). The input f0 can vary continuously during
the transition time, until it reaches the next semitone on the pitch
scale (integer, black).

3. CASE STUDIES OF PITCH CORRECTION

In this section, we compare both ATA and DPW methods. Firstly,
we want to show the difference between the methods through a
simple case. We take as example a constant flat note (C♯) with
a pitch shift of 0.15 semitone (ST), and we use both methods to
correct it. In Figure 3, we see a DPW correction (blue) triggered
with the following parameters: ID = 0.1 ST, Tc = 0.5 s, and
Tt = 0.5 s. The ATA correction (red) has a retune speed equal
to Tt. We have chosen a non-zero value for Tc to show the inclu-
sion of the new parameter. The critical time is the main difference
between both methods. While it introduces a triggering delay in
DPW, we find similar results for both corrections once after that
trigger.

Figure 3: DPW correction (blue curve) and ATA correction (red
curve) of a constant input pitch (green curve).

3.1. Extreme correction with zero transition time parameter

We denominate extreme correction to a full discretization of the
input pitch trajectory. To check the extreme correction, we chose
two typical examples: the first one is a glissando, and the second
is a melody taken from [15]. After trying some configurations, we
have found a combination of parameters that provides similar re-
sults with both methods. For DPW, we have chosen the parameters
Tc = 0 s, ID = 0.01 ST, and T = 0.001 s (the minimal value).
For ATA we choose just the zero retune speed the minimal value),
that as described in the patent generates discrete notes (integers on
ST scale). We can see the results in Figure 4 and 5. The fo-signal
treated with DPW is in blue, and the one treated with ATA is in red
and the original is in green.

3.2. Expressive Correction with ATA

One of the most important artifacts of vocal expression is vibrato.
Expressive Correction is the term we use here to refer to a fast
transition within pitch correction that correspond to oscillatory or-
naments, particularly vibrato. As we will see, a vibrato with a
small amplitude can be shifted around the target pitch with DPW,
while it is not well centered under the ATA correction. The expres-
sive correction requires a non-zero transition time parameter. We
don’t have access to the full implementation of the transition time
parameter in ATA (also referred to as the Decay parameter in the
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Figure 4: Extreme correction for a glissando

Figure 5: Extreme correction for an expressive melody

patent), so we cannot reproduce the exact expected pitch correc-
tion of ATA. Therefore, the most effective way to fully understand
how the ATA pitch correction algorithm works is to utilize the ATA
VST plugin to retune voice samples and extract the corrected f0
from the resulting audio using Praat software 6. This curves are
compared with the DPW correction. To generate the input audio
samples, we use Cantor Digitalis (CaD), which is a continuous
pitch input synthesizer. CaD takes the trajectory of a wacom sty-
lus, the it generates f0 and synthesizes a vocal sound. We modified
its code to have purposely not-intonated sounds related to the orig-
inal stylus trajectory. Audio examples can be found in soundcloud
7. The non-intonated audio samples can be corrected with ATA
vist but also with an off-line DPW implementation that we explain
later in section 4. Now we proceed to the comparison of both both
pitch correction methods.

The simplest case of correction is a shifted note with vibrato.
Small vibratos can be effectively corrected with ATA using a re-
tune speed of 50ms. For sustained notes, ATA performs very well
and there is no difference with DPW, so we do not present this
example here. The difference arises when we have a signal that
contains flat notes, free paths, and vibratos. Therefore, it is impor-
tant to demonstrate how a correction can be performed with ATA
using different values of the retune speed parameter, refer to Fig-

6https://www.fon.hum.uva.nl/praat/
7https://on.soundcloud.com/b5NDp last checked: 25 may

2023

Figure 6: Correction using different values of retune speed on ATA,
RS= 0, 15, 50, 100, 200 ms (up to down)

ure 6. Going up to down we use a retune speed parameter from
0, 15, 50, 100 and 200 ms. The correction is effective at 50ms for
the vibrato, but the pitch trajectory after the 12-second mark be-
comes lost and flattened. Only with a retune speed parameter set
to 200ms is it possible to preserve some of the pitch trajectory, but
at that configuration, the vibrato is not corrected.

Now we will examine the functionality of the ATA flextune pa-
rameter. For a more general case, let’s now observe what happens
when we vary the retune speed while maintaining a specific value
for flextune. We have done a configuration with zero retune speed
and two values of flextune: zero (red) and 40 cents (violet), fig-
ure 7. As we can see, the flextune parameter allows for movement
within the range defined by the flextune value after the correction,
resulting in the production of smaller ornaments at the output.

In the following example, we will use a non zero value of re-
tune speed, 15ms, and flextune values of zero (red) and 30 cents
(violet), as shown in figure 8. As we can see, like the previous
example, some ornaments smaller than the flextune value can be
preserved at the output.

Now, we present a study with a transition time of 50ms and
flextune values of 30 and 60 cents. As we can see in figure 9, a
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Figure 7: Correction with ATA, at zero retune speed and flextune:
0 (red) and 40 cents (violet))

Figure 8: Correction with ATA, at retune speed equal to 15 ms and
flextune: 0 (red) and 30 cents (violet))

larger value for flextune results in a lack of reactivity. This means
the vibrato is not corrected but the path after time equal to 12 s is
better preserved than in the other cases. In other words when the
notes are well corrected, the general path may be more or less lost
depending on the parameters.

Figure 9: Correction with ATA, at retune speed equal to 50 ms and
flextune: 30 (red) and 60 cents (violet))

Finally, we show what happens when varying the retune speed
for the same flextune parameter. We have chosen a moderate flex-
tune value of 40 cents, while the retune speed varies as follows:
50ms, 100ms, and 200ms. The result can be seen in figure 10.
There is always a trade-off between preservation of the main path
(free path) and vibrato correction. This means that ATA better pre-
serves the vibrato, but regions such as the one after 12 seconds
become staircase-like, resulting in the loss of the original pitch
trajectory. In the other hand, parameter values that preserve the
shape in that zone, does not correct the vibrato. As we can see
in figure 10, the vibrato is not corrected for a retune speed higher
than 50ms. On the other hand, when we use flextune at 40 cents
and keep zero retune speed (figure 8) the vibrato is corrected but
the path after time 12 s is flattened.

3.3. Expressive Correction with DPW

We will show several examples variations of the DPW parame-
ter: critical time and transition time. For the first example, we do
choose 100 ms as Tc, then we vary Tt, giving the results in figure

Figure 10: Correction using different values of retune speed on
ATA, RS= 0, 50, 100, 200 ms (up to down) for the same flextune
value (40 cents)

11. As we can see, varying Tt parameter allow us to "smooth" the
pitch correction.

Also we have done a correction using a larger critical time
equal to 250 ms (optimal according to [11]). It gives the results
in figure 12. As we see, the critical time acts as trigger of the
correction and the transition time acts as a smoother. The critical
time (as parameter) adds an ornament at the beginning of each
note step in the staircase region and the transition time modifies
the shape of the ornament.

Finally, we have performed a correction using the same tran-
sition time (50 ms) while varying the critical time parameter (100
ms, 150 ms, 250 ms). It gives the results in figure 13. As we
can see the critical time parameter acts like a trigger for the pitch
correction algorithm and the transition time acts as the smoother.

Now we can compare the best configuration for each method.
In the case of ATA, it is not possible to achieve good vibrato cor-
rection and good preservation of the free path simultaneously. There-
fore, we preferred a moderate configuration that performs reason-
ably well for both purposes. A suitable ATA configuration is a
retune speed of 100 ms and flextune of 40 cents (figure 13). For
DPW the most suitable correction is done by choosing the critical
time as 200 ms (DPW) and then we can choose for example a tran-
sition time equal to 50 ms (figure 10) . For simplicity we have put
these two cases in the figure 14). This shows that DPW performs
a better correction: Firstly the vibrato is well centered in DPW
correction while not in ATA; and secondly the DPW preserve bet-
ter the fo-path after time 12 s, while ATA flatten it. In contrast,
ATA seems visually better in the segment before 5 s while DPW
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Figure 11: Correction using different values of transition time in
DPW (from up to down: 100,200,400 ms), for the same critical
time (100 ms)

Figure 12: Correction using different values of Tt in DPW (from
up to down: 25,200 ms), for the same Tc (250 ms)

present an more visible expressive ornament. In the subsequent
subsection, we will showcase the measurements that are directly
linked to the aforementioned observations, as we will see DPW is
closer to the original fo curve for all the regions.

3.4. Comparison through MSE and MAE

The difference between two curves can be measured in various
ways, here we presented two. Firstly, the Mean Squared Error
(MSE) that measures the sensitivity to quadratic errors; it is calcu-
lated through the difference of squares, which gives larger errors
a greater impact on the overall result. MSE also provides a mea-
sure of variance between the curves. Secondly, the Mean Absolute
Error (MAE) that provides a measure of the average difference in
magnitude between the curves, unlike MSE, MAE does not am-
plify larger errors. We use the follwoing equations:

Figure 13: Correction using different values of Tc in DPW (from
up to down: 100,150,250 ms), for the same Tt (50 ms)

Figure 14: Correction for the same Tt (50 ms) using flextune at 40
cents for ATA and Tc at 200 ms for DPW and the corresponding
MSE.

Mean of MSE =
1

N

N∑

j=1

(
1

nj

nj∑

i=1

(yij − ŷij)2
)

(6)

Mean of MAE =
1

N

N∑

j=1

(
1

nj

nj∑

i=1

|yij − ŷij |
)

(7)
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Where N represents the number of samples, nj is equal to 1,
cause there always a comparison of one curve with the reference, j
represents the curve to compare (ATA or DPW), yij are the values
of the original curve j, and ŷij are the values of the comparison
curve j.

Our example is helpful to highlight three types of pitch mod-
ification. The first part in 0 < t < 5 where signal is like a
staircase between the notes 48,49 and 50. The second part in
5 < t < 0represents the correction of a poorly intonated frequency
modulation, similar to the human vibrato. And the third part is a
soft path of a fo trajectory that should not be corrected, the free
path represents the case where the singer do not have the intention
to play any specific note. Each part must be compared to the desir-
able pitch curve, which is different for each region. For example
for the staircase part, the desired signal is a staircase. For the vi-
bratory part the ideal pitch would be the same vibration but well
centered. And for the third part, the original signal would be the
ideal pitch, rather than a correction we want to preserve it. These
assumptions are illustrated on figure 6, the calculation of MSE is
done point by point. The mean over each region is reported in Ta-
ble 1. As it is shown and mentioned before, DPW perform better
correction of vibratos while preserving the free path of the note,
and ATA is better for the staircase part while losing more of the
vibrato and free path parts.

Table 1: MSE and MAE between input and corrected f0 for the
different regions

MSE MAE
Region DPW ATA DPW ATA

1 0.0146 0.0146 0.0747 0.0914
2 0.0415 0.0642 0.1304 0.2103
3 0.0539 0.0280 0.2015 0.1463

Please note that all the comparison are focused on the pitch
correction curves. For DPW we use the pitch correction method
that is different than the full algorithm audio. The implementation
of the vocoder, described in section 4, is a complex process and
the vocoder we have use in making the audio DPW tracks is not
as advanced as the vocoder of ATA. As a result, some impreci-
sion may be present in the generated f0 paths for the DPW audio
examples. Despite these limitations, it is worth highlighting the
valuable insights gained from this comparison, which shed light
on the respective strengths and weaknesses of each method.

4. IMPLEMENTATION OF AN OFF-LINE AUDIO PITCH
CORRECTION

This section talks about the off-line implementation of DPW. DPW
works in an analogous way to Cantor Digitalis. However, instead
of an incoming f0 given by a table, we use an f0 value obtained
from a pitch tracker on a pre-recorded vocal audio track. The
general structure for a autotune system is conformed by: a pitch
tracker, a pitch correction algorithm, and a pitch warping algo-
rithm (vocoder). DPW can follow a similar approach using a pitch
tracker to acquire f0.

4.1. Development of the off-line retuner

We developed a methodology for off-line vocal retuning using
the DPW method; this process requires obtaining F0 data and a

Figure 15: Configuration of the offline retuner

transparent vocoder as shown in 15. For pitch tracking, we uti-
lized Praat8 (software to analyze audio prosody), the To PitchTier
method allows us to obtain F0 curves for the original audios within
a Praat file sampled at Praat time intervals. We did a Python code
(with package wave) to extract the file’s relevant data and to cre-
ate arrays for time and f0 information; the arrays were re-sampled
at the original audio files sampling rate. The pathlib package was
employed to process multiple sound library files simultaneously,
resulting in a library of the original audios and the f0 files. The
Max/MSP environment was used to process the f0 information (on
Semi tones and Hz) and write retuned audio files using the different
vocoders (retune∼, freqshift∼, pitchshift∼, supervp∼, etc). Our
goal was to identify the most transparent vocoder that generated
a voice signal closest to the input F0, using the original f0 data,
the retune∼ object was selected as the most transparent modifi-
cation for the entire library; this ensured that the vocoder avoided
introducing sound artifacts that could affect the perception of qual-
ity and retuning. However, the overall quality of the presented
vocoder, retune∼, is not as precise and good as the ATA vocoder.
Therefore, the resulting audio tracks using retune∼ may not be as
good as those using the ATA vocoder. Therefore, we dispose of an
alternative option, with an wrapper of the World [16]vocoder, pro-
vided by the research engineers of Lutherie-Acoustique-Musique
Group, the audio obtained with World is done through a non-real-
time transposition through python. The resulting audio has a bet-
ter quality than the MAX implementation. The sound library for
DPW correction using both vocoders can listen on the soundcloud
playlist noted in section 3.2.

5. CONCLUSIONS

Through our research, we studied DPW algorithm for audio pitch
correction. It is possible to control and trigger a pitch correction
thanks to three degrees of freedom that preserves low-amplitude
vibratos and ornaments in the neighborhood of the target note. We
have also shown how the pitch correction methods are composed
of two stages (triggering and warping), and how the modification
of the control parameters can lead to equivalent configurations for
different systems. We have identified a scenario where ATA and
DPW exhibit similarity: extreme correction. Moreover, we have
identified three types of correction: staircases, vibratos, and free
paths, and have illustrated that DPW performs better for vibratos
and free paths, while also being adequate for staircase correction.
DPW also exhibits less trade-off between its parameters compared
to ATA.

In addition, we have developed an audio application that in-
cludes the DPW method. Compared to ATA, its control parameters
allow for a smooth pitch trajectory transition towards the nearest

8https://www.fon.hum.uva.nl/praat/
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notes on a defined scale, minimizing distortion of melodic orna-
ments between the notes. However, it is important to note that
the vocoder used in our application (retune∼) may not provide the
same level of quality, precision and accuracy as the ATA vocoder.

We plan to undertake a comprehensive perceptual evaluation
of the two systems in a formal setting. This evaluation aims to
assess the perceptual salience of the pitch effects introduced by
the DPW method, as well as their potential musical relevance.
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ABSTRACT

Articulatory features can provide interpretable and flexible con-
trols for the synthesis of human vocalizations by allowing the user
to directly modify parameters like vocal strain or lip position. To
make this manipulation through resynthesis possible, we need to
estimate the features that result in a desired vocalization directly
from audio recordings. In this work, we propose a white-box op-
timization technique for estimating glottal source parameters and
vocal tract shapes from audio recordings of human vowels. The
approach is based on inverse filtering and optimizing the frequency
response of a waveguide model of the vocal tract with gradient
descent, propagating error gradients through the mapping of ar-
ticulatory features to the vocal tract area function. We apply this
method to the task of matching the sound of the Pink Trombone,
an interactive articulatory synthesizer, to a given vocalization. We
find that our method accurately recovers control functions for au-
dio generated by the Pink Trombone itself. We then compare our
technique against evolutionary optimization algorithms and a neu-
ral network trained to predict control parameters from audio. A
subjective evaluation finds that our approach outperforms these
black-box optimization baselines on the task of reproducing hu-
man vocalizations.

1. INTRODUCTION

Articulatory synthesis is a type of speech synthesis in which the
position and movement of the human articulators, such as the jaw,
lips or tongue, are used as control parameters. Because of their
inherent interpretability, articulatory features lend themselves well
towards fine-grained and flexible user control over the speech syn-
thesizer [1]. Articulatory Synthesis is typically implemented as a
physical model, which simulates the propagation of air pressure
waves through the human vocal tract. A large number of such
models have been developed over the years [2].

Obtaining the articulatory features that control the physical
model is not a trivial problem. Area functions of the vocal tract
can be directly measured with magnetic resonance imaging (MRI)
[3] or electromagnetic articulography (EMA) [4]. However, these
procedures are time-consuming, susceptible to noise and varia-
tions, and require access to specialized equipment. It is there-
fore desirable to recover the articulatory features directly from a

∗ Work performed as part of an academic visit to the Centre for Digital
Music, Queen Mary University of London
Copyright: © 2023 David Südholt et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

Figure 1: The user interface of the Pink Trombone articulatory
synthesizer.

given speech signal. In general, this task is known as Acoustic-to-
Articulatory Inversion (AAI). Two main strands of research can be
identified: one is data-driven AAI, which seeks to develop sta-
tistical methods based on parallel corpora of speech recordings
and corresponding MRI or EMA measurements [5, 6]. The other
takes an analysis-by-synthesis approach to AAI, in which numer-
ical methods are developed to both obtain acoustic features from
articulatory configurations, and to invert that mapping to perform
AAI [7, 8, 9].

In this work, we focus on the analysis-by-synthesis approach
and consider the specific articulatory features that make up the
control parameters of an articulatory synthesizer. The AAI task
is then framed as obtaining control parameters such that the syn-
thesizer reproduces a target recording. This allows a user to repro-
duce that vocalization with the articulatory synthesizer, and then
modify parameters such as vocal tract size, pitch, vocal strain, or
vowel placement.

Attempts to solve this problem of sound matching, for articu-
latory synthesis or other types of synthesis, can generally be clas-
sified into black-box and white-box methods.

Black-box methods do not rely on information about the struc-
ture of the synthesizer. A popular approach is to use derivative-free
optimization techniques such as genetic algorithms [10, 11, 12, 13,
14] or particle swarm optimization [15]. These methods are com-
putationally expensive and can take many iterations to converge
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to a solution. Various deep neural network (DNN) architectures
have also been proposed to predict control parameters that match
a given sound [16, 17, 18, 19, 20]. They require constructing high-
quality datasets for training that cover the space of acoustic out-
puts.

White-box methods can improve the sound matching of spe-
cific synthesizers by incorporating knowledge of their internal struc-
ture. This can be done by reasoning about their underlying phys-
ical processes [21, 22] or, more recently, making use of auto-
differentiation and gradient descent techniques [23, 24, 25, 26].

In this work, we propose a gradient-based white-box optimiza-
tion technique for sound matching vowel sounds with the articula-
tory synthesizer known as the Pink Trombone (PT)1. The PT is a
web application that uses well-known models of the glottal source
and the vocal tract to implement an intuitively controllable vocal
synthesizer. Its user interface is depicted in Figure 1.

Our technique works as follows. First, we decompose a record-
ing into a glottal source signal and an IIR filter with existing in-
verse filtering methods. We then obtain a vocal tract configuration
by minimizing the difference between an analytical formulation of
the tract’s transfer function [27] and the IIR filter with gradient
descent. A differentiable implementation of the mapping between
control parameters and the vocal tract configuration allows propa-
gation of the error gradient directly to the control parameters. Sec-
tion 2 describes the details of our approach.

We find that this approach can accurately recover the vocal
tract area function on vowel sounds generated by the PT itself.
A subjective listening test shows that without requiring any train-
ing procedures, the approach outperforms black-box baselines on
the task of reproducing real human vocalization. The results of
the objective and subjective evaluations are presented in section 3.
Section 4 concludes the paper.

2. METHOD

The PT is based on the widely used source-filter model of speech
production. The speech output S(z) = G(z)V (z)L(z) is as-
sumed to be the combination of three linear time-invariant (LTI)
systems: the glottal flow G, the vocal tract V , and the lip radiation
L. The lip radiation is approximated as a first-order differentiator
L(z) = 1 − z−1 and combined with G to form a model of the
glottal flow derivative (GFD). Speech is then synthesized by gen-
erating a GFD signal (the source) and filtering it through the vocal
tract V .

In our sound matching approach, a target sound is first decom-
posed into the GFD source waveform and coefficients for an all-
pole filter, using the inverse filtering technique proposed in [28].
The control parameters for the PT glottal source are then obtained
directly from the GFD waveform. We propose an objective func-
tion based on the magnitude response of the all-pole filter that al-
lows estimating the control parameters of the vocal tract with gra-
dient descent. The overall method is illustrated in Figure 2. The
source code is available online2.

2.1. Inverse Filtering

To separate target audio into a GFD waveform and a vocal tract
filter, we use the Iterative Adaptive Inverse Filtering method based
on a Glottal Flow Model (GFM-IAIF) [28].

1https://dood.al/pinktrombone
2https://github.com/dsuedholt/vocal-tract-grad

IAIF methods in general obtain gross estimates of G, V and
L with low-order LPC estimation, and then iteratively refine the
estimates by inverse filtering the original audio with the current
filter estimates, and then repeating the LPC estimation at higher
orders.

GFM-IAIF makes stronger assumptions about the contribution
of the glottis G, and uses the same GFD model as the PT synthe-
sizer (compare section 2.2), making it a good choice for our sound
matching task.

From GFM-IAIF, we obtain an estimate for the vocal tract fil-
ter V in the form of N + 1 coefficients a0, . . . aN for an all-pole
IIR filter:

V (z) =
1∑N

i=0 aiz
−i

(1)

This also gives us an estimate of the GFD waveform by inverse
filtering the original audio through V , i.e. applying an all-zero FIR
filter with feed-forward coefficients bi = ai.

2.2. Glottal Source Controls

The PT uses the popular Liljencrants-Fant (LF) model to gener-
ate the GFD waveform. Originally proposed with four parameters
[29], the LF model is usually restated in terms of just a single pa-
rameter Rd, which is known to correlate well with the perception
of vocal effort [30].

Rd can be obtained from the spectrum of the GFD. Specifi-
cally, [31] finds the following linear relationship between Rd and
H1 − H2, the difference between the magnitudes of the first two
harmonic peaks of the GFD spectrum (measured in dB):

H1 −H2 = −7.6 + 11.1Rd (2)

We estimate the fundamental frequency F0 using the YIN algo-
rithm [32], and measure the magnitudes of the GFD spectrum at
the peaks closest to F0 and 2 · F0 to calculate H1 −H2 and thus
Rd.

However, the PT does not use Rd as a control parameter di-
rectly. Instead, it exposes a “Tenseness” parameter T , which re-
lates to Rd as T = 1−Rd/3.

T is clamped to values between 0 and 1, with higher values
corresponding to higher perceived vocal effort. Additionally, the
PT adds white noise with an amplitude proportional to 1−

√
T to

the GFD waveform, to give the voice a breathy quality at lower vo-
cal efforts. Figure 3 shows the glottal source at varying Tenseness
values.

The estimated control parametersF0 and Tenseness correspond
to the horizontal and vertical axes in the PT’s “voicebox” UI ele-
ment, respectively (see Figure 1).

2.3. Vocal Tract

While the glottal source affects voice quality aspects like breathi-
ness and perceived effort, the vocal tract is responsible for shaping
the source into vowels and consonants.

In the PT, the vocal tract is treated as a sequence of M + 1
cylindrical segments, with M = 43. The shape of the vocal
tract is then fully described by its area function, i.e. the individ-
ual segment cross-sectional areas A0, . . . , AM . Noting that A =
π(d/2)2, the area function may equivalently be described by the
segment diameters d0, . . . , dM .
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Figure 2: Illustration of the proposed sound matching method. Target audio is inverse filtered to obtain a source waveform and the transfer
function of a filter. For resynthesis, the glottal control parameters F0 and Tenseness are estimated from the source waveform. The vocal
tract area function is optimized with gradient descent to match the filter’s transfer function.

Figure 3: A single cycle of the glottal source waveform of the Pink
Trombone, which combines the LF model with white noise, at vary-
ing values of the Tenseness parameter.

An additional, similar model of the nasal tract is coupled to the
vocal tract at the soft palate. However, for the open vowel sounds
that we are considering, the soft palate is closed and the coupling
effect is negligible. In the PT implementation, the soft palate only
opens when parts of the vocal tract are fully constricted, therefore
here we focus only on the vocal tract itself.

2.3.1. Control Model

Directly specifying each segment diameter individually does not
make for an intuitive user experience and could easily result in very
unrealistic, strongly discontinuous area functions. Instead, the PT
implements a tiered control model over the vocal tract based on
the model proposed in [33].

The control model consists of two tiers. The first tier is a
tongue defined by a user-specified diameter td and position tp. The
tongue shape is modeled as sinusoid shape and modifies a base di-
ameter, representing a neutral area function, into the rest diameter.
Figure 4 illustrates this.

The second control tier are constrictions that the user can ap-
ply to the rest diameter at any position along the vocal tract. Sim-
ilarly to the tongue, constrictions are defined by an index, a di-
ameter, and a model of how they affect the rest diameter. There
are however two differences between the tongue and the constric-
tions: Firstly, constrictions are optional, while the tongue is always
present. Secondly, constrictions can fully close the vocal tract, at

Figure 4: Example plots of the rest diameter, i.e. the result of ap-
plying the tongue model to the base diameter, at different tongue
positions tp and tongue diameters td.

Figure 5: Block diagram of a scattering junction in the Kelly-
Lochbaum model, with scattering coefficient km.

which point noise is inserted to model plosives and fricatives. For
this work, we consider only open area functions, meaning that we
do not allow constrictions to reduce the diameter below a certain
threshold.

2.3.2. Estimating the Area Function

Propagation of the glottal source through the vocal tract is mod-
eled by implementing each cylindrical segment as a bidirectional,
half-sample delay. The half-sample delay is achieved by process-
ing the signal at twice the audio sampling rate and adding up ad-
jacent pairs of samples. At the M inner junctions, the change in
cross-sectional area leads to reflection and refraction, described by

DAFx.3

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

128



Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

scattering coefficients calculated from the segment areas as

km =
Am −Am−1

Am +Am−1
for m = 1, . . .M. (3)

This is the well-known Kelly-Lochbaum (KL) model [34]. An
illustration of a scattering junction is shown in Figure 5.

The length of the simulated vocal tract results from the num-
ber of segments and the sampling rate. Considering a speed of
sound in warm air of c ≈ 350 m/s and an audio sampling rate of
fs = 48000 Hz, implementing half-sample delays as unit delays
processed at 2 · fs, M + 1 = 44 segments result in a vocal tract
length of 44 · 350/(2 · 48000) ≈ 0.16 m. This corresponds to
the vocal tract of an average adult male [33], giving the PT a male
voice. The number of segments and the unit delays are fixed in the
PT. The KL model can be implemented more flexibly through e.g.
the use of fractional delays [35].

An analytical transfer function for the piecewise cylindrical
model using unit delays was derived in [27]. The formulation can
be straightforwardly adapted to half-sample delays by replacing
every delay term z−n with z−n/2, and then applying an additional
factor of 1+ z−1 to account for the summing of adjacent samples.
The transfer function HKL can then be stated as:

HKL(z) =
(1 + z−1)z−(M+1)/2∏M

m=1(1 + km)

K1,1 +K1,2RL −R0(K2,1 +K2,2RL)z−1
(4)

R0 and RL are the amount of reflection at the glottis and lips,
respectively, and K ∈ R2×2 is defined as follows:

K =

[
K1,1 K1,2

K2,1 K2,2

]
=

M∏

m=1

[
1 kmz

−1

km z−1

]
(5)

We now wish to find the tongue controls and constrictions such
that |HKL| approximates |V |, the magnitude response of the vocal
tract recovered by inverse filtering.

In an approach inspired by [24], we now consider the squared
error between the log of the magnitude responses for a given an-
gular frequency 0 ≤ ω < π:

E(ω) =
(
log10 |HKL(e

iω)| − log10 |V (eiω)|
)2

(6)

We can then define a loss function that measures how closely a
given vocal tract area function matches the recovered vocal tract
filter by evaluating the mean squared error over a set of F linearly
spaced frequencies:

L =
1

F

F−1∑

f=0

E(
f

F
π) (7)

We can then find the set of controls that minimizesL, meaning that
the corresponding area function approximates |V |. A schematic
overview of the computation graph is shown in Figure 6.

3. EXPERIMENTS AND RESULTS

We first evaluated the performance of our approach on recovering
control parameters for sounds generated by the PT itself. These
in-domain sounds are guaranteed to be within the possible output
space of the PT, and the ground truth parameters are known.

Tongue
Parameters, 
Constrictions

Base
Diameter

Vocal Tract 
Area

Analytical
Transfer Function

Target Transfer
Function

Loss

Figure 6: Schematic overview of the computation graph. In the
forward pass, an area function is calculated from the control pa-
rameters. The corresponding transfer function is then computed
and used to calculate the loss. Solid arrows denote that the opera-
tions are implemented to support auto-differentiation. This allows
updating the estimate of control parameters (tongue and constric-
tions) using the gradient of the loss.

We then applied our approach to estimating control parame-
ters for out-of-domain sounds that were not generated by the PT
itself. Ground truth parameters that provide an exact match are
not known and likely do not exist due to limitations of the model,
which makes evaluation challenging. We performed a listening
test to compare the quality of our method to previously proposed,
model-agnostic black-box sound matching approaches.

For all evaluations, parameter ranges were normalized to [0, 1].
Gradient descent was performed for 100 steps, with a step size of
10−4 and a momentum of 0.9.

3.1. Reconstructing PT-generated Audio

3.1.1. Setup

For the in-domain evaluation, we generated 3000 total sets of con-
trol parameters and attempted to recover the vocal tract area. For
all examples, F0 was uniformly sampled from [80, 200], the tense-
ness from [0, 1], the tongue position tp from [12, 29] (measured
in segments along the tract), and the tongue diameter td from
[2.05, 3.5]. The range of F0 roughly covers the pitch range of
adult male speech, while the other control parameter ranges cover
the range of possible values defined by the PT interface.

The parameters were divided in three sets of 1000 examples
each. The first set was taken as-is. A random constriction, with
position sampled from [0, 43] and diameter sampled from [0.3, 2],
was applied to the vocal tract in the second set. Two such indepen-
dently sampled constrictions were applied in the third set.

For each example, we performed the gradient descent opti-
mization twice with different targets: First, with the target re-
sponse |V | taken directly from the ground truth frequency response
(FR) of the original vocal tract. Since this FR is guaranteed to be
within the domain of the KL vocal tract model, it should be able to
be matched very closely.
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Table 1: MAE values for recovering control parameters when the target transfer function of the vocal tract (VT) is either given from the
ground truth area function, or obtained by inverse filtering (IF). tp ∈ [12, 29] is the (continuous) position of the tongue along the vocal
tract. td ∈ [2.05, 3.5] is the tongue diameter.

# of Constrictions 0 1 2
VT Transfer Function Given IF Given IF Given IF
tp [-] 0.19 1.42 1.21 1.93 1.74 2.15
td [cm] 0.02 0.26 0.12 0.28 0.19 0.32
Total Diameter [cm] 0.01 0.23 0.07 0.24 0.11 0.24
Frequency Response [dB] 0.13 2.09 0.60 2.33 0.87 2.50

Second, with the target response |V | recovered by the GFM-
IAIF method. This is no longer guaranteed to have an exactly
matching vocal tract configuration, so higher deviation is expected.
However, since GFM-IAIF and the PT are based on similar as-
sumptions about the source-filter model, the obtained target re-
sponses match the ground truth closely enough to be useful in re-
covering the original control parameters.

3.1.2. Results

Table 1 shows the mean absolute error (MAE) for the tongue pa-
rameters tp and td for each condition. Additionally, the MAE val-
ues for the total area function (i.e. the diameter of each individual
segment) and the recovered FR are given.

In the simple case of optimizing the true FR with no constric-
tions applied, the original vocal tract area could be recovered with
very high accuracy, often to an exact match. Constrictions intro-
duce more degrees of freedom and result in a less accurately recov-
ered area function, although the FR was still matched very closely.
Figure 7 illustrates how visibly different area functions can have
very similar frequency responses. This relates to the transfer func-
tion in equation (4) not depending on the area directly, but rather
on the resulting reflection coefficients in equation (3). The loca-
tions of the area function’s extrema, i.e. the segments at which the
area changes from growing wider to growing more narrow or vice
versa, therefore affect the transfer function more strongly than the
specific value of a given area segment.

Since the FR obtained by GFM-IAIF might not be able to be
matched exactly by the KL model, some constrictions might be
used during the estimation even if there were none applied to the
original vocal tract, leading to deviations from the true area func-
tion. An example of this is shown in Figure 8. The range of fre-
quencies most affected by this depend on the choice of LPC esti-
mation in GFM-IAIF; as noted in [28], modeling the glottal contri-
bution as a 3rd order filter is well-motivated by the LF model and
gives balanced results in practice.

Due to the presence of this error introduced through inverse fil-
tering, applying constrictions to the ground truth area function had
a considerably less pronounced effect on the error metrics when
the FR obtained by GFM-IAIF is used as the optimization target.

Inverse filtering also noticeably affected the estimation of the
glottal source parameters. The MAE for the prediction of the
tenseness T ∈ [0, 1] was 0.013 when the original GFD wave-
form was used, but rose to 0.057 when the GFD waveform was
recovered by inverse filtering. Even the accuracy of the YIN fun-
damental frequency estimator dropped slightly: the MAE for F0 ∈
[80, 200] was 0.04 on the original GFD waveform, and 0.44 on the
recovered GFD waveform.

Applying constrictions had no effect on the glottal source pa-

rameter estimation. Grouping the MAE values by the number of
constrictions result in values deviating less than 0.5% from the re-
ported global MAE values for both T and F0.

3.2. Sound Matching Human Vocalizations

3.2.1. Black-Box Baselines

To assess the out-of-domain performance, we performed a sub-
jective evaluation comparing our gradient-based approach against
three black-box optimization methods that have previously been
used for the task of sound matching.

Genetic algorithms [10, 11, 12, 13, 14] employ a population
of candidate solutions, which evolve through generations by ap-
plying genetic operators such as selection, crossover, and muta-
tion. The fittest individuals, evaluated through a fitness function,
are more likely to reproduce and pass on their traits to offspring.

Particle Swarm Optimization (PSO) [15] involves a group of
candidate solutions, called particles, that move through the search
space to find the global optimum. Each particle’s position is up-
dated based on its own best-known position, the best-known posi-
tion within its neighborhood, and a random component, with the
goal of balancing exploration and exploitation.

For both the genetic algorithm and PSO, scores for a given set
of parameters were calculated as the mean squared error between
the mel-spectrogram of the target audio, and the audio generated
by the PT with the current parameters.

Neural parameter prediction [16, 17] uses a neural network
to predict parameters from audio. We train a convolutional neural
network (CNN) architecture with two convolutional layers sepa-
rated by a max-pooling layer and followed by three fully connected
layers on a dataset of 1,000,000 randomly sampled parameter sets
and their corresponding mel-spectrograms.

While the in-domain evaluation focused on static vocal tract
configurations, the speech samples used in the out-of-domain eval-
uation are time-varying. For all baselines and the gradient-based
approach, this is handled by estimating the parameters on a frame-
by-frame basis. To avoid sudden jumps in the area, the predictions
of the baselines were smoothed over time by applying a Savitzky-
Golay filter [36]. For our gradient approach, the estimation of each
frame was initialized with the previous frame’s prediction.

3.2.2. Listening Test

We reproduced 6 short recordings of human vocalizations with
each method. The originals and the reproductions, and the individ-
ual ratings are available online.3 The pitch, breathiness, and vowel
shape of the recordings is time-varying. Each recording came from

3https://dsuedholt.github.io/vocal-tract-grad/

DAFx.5

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

130



Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

Figure 7: Visibly different area functions can have very similar frequency responses.

Figure 8: Area estimation results when either the frequency response (FR) of the true vocal tract or the result of inverse filtering (IF) are
used as the target. The two different target frequency responses are shown on the right.

Figure 9: Boxplots showing the average rating across all stimuli
of our gradient-based approach and black-box baselines.

a different male speaker, since the PT’s fixed vocal tract length
limits its output to voices that are read as male (see section 2.3.2).
We set up an online multiple-stimulus test on the Go Listen plat-
form [37] asking participants to compare the four reproductions to
the original recording and rate the reproduction on a scale of 0–
100. We included an additional screening question in which we
replaced one of the reproductions with the original recording to
ensure participants had understood the instructions and were in a
suitable listening environment.

22 participants took part in the listening test. Of those, 4 gave
the original recording in the screening question a rating lower than
80, so their results were discarded.

The results of the listening test are shown in Figure 9. Fried-
man’s rank sum test indicates that the ratings differ significantly
(p < 0.001), and post-hoc analysis using Wilcoxon’s signed-rank
test confirms that the reproductions obtained by our proposed ap-
proach are rated significantly (p < 0.001) higher than the three
baselines, indicating that our method is well-suited for the sound
matching task.

4. CONCLUSION

We presented a white-box optimization technique for sound match-
ing vowel sounds with the articulatory synthesizer. We obtained a
vocal tract frequency response through inverse filtering and esti-
mated corresponding articulatory control parameters with gradi-
ent descent optimization, propagating error gradients through the
mapping of control parameters to the vocal tract area function.
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We showed that our approach can accurately match frequency re-
sponses for audio generated by the synthesizer itself. Reproduc-
tions of time-varying human vocalizations generated with our ap-
proach outperformed black-box baselines in a subjective evalua-
tion.

By showing that articulatory features can be estimated with a
gradient-based method, our work lays the foundation for further
research into end-to-end sound matching of articulatory synthesiz-
ers using neural networks, which require the propagation of gradi-
ents. Additionally, our method can be expanded to explore the
sound matching of more complex synthesizers, including those
with two- and three-dimensional vocal tract models and varying
vocal tract lengths that are not limited to adult male voices.
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ABSTRACT

Vactrols, which consist of a photoresistor and a light-emitting el-
ement that are optically coupled, are key components in optical dy-
namic compressors. Indeed, the photoresistor’s program-dependent
dynamic characteristics make it advantageous for automatic gain
control in audio applications. Vactrols are becoming more and
more difficult to find, while the interest for optical compression in
the audio community does not diminish. They are thus good can-
didates for virtual analog modeling. In this paper, a model of vac-
trols that is entirely physical, passive, with a program-dependent
dynamic behavior, is proposed. The model is based on first princi-
ples that govern semi-conductors, as well as the port-Hamiltonian
systems formalism, which allows the modeling of nonlinear, mul-
tiphysical behaviors. The proposed model is identified with a real
vactrol, then connected to other components in order to simulate a
simple optical compressor.

1. INTRODUCTION

A vactrol (or resistive opto-isolator) consists of a photoresistor (la-
belled LDR for Light-Dependent Resistor in the following) and a
light-emitting element (usually a LED) that are optically coupled:
the photoresistor’s resistance decreases (nonlinearly) with the light
it receives from the LED.

Vactrols were widely used from the 1960s to the early 2000s
due to their low fabrication costs, important dynamic range, and
low noise distortion (below - 80 dB). They could be found in cam-
eras (in exposure meters and autofocus) and security systems (for
object detection) to name a few applications.

Apart from their nonlinear response to light, a remarkable fea-
ture of photoresistors is their relatively long response times (com-
pared to e.g. transistors in transistor opto-isolators). Indeed, these
response times vary from a few tens of microseconds (for the turn-
on, or attack, when light is switched on) to a few hundreds of mil-
liseconds (for the turn-off, or release, when light is switched off).
Moreover, the attack time decreases with the received light. These
characteristics made vactrols much appreciated for automatic gain
control in audio applications, in which adaptive treatment and tran-
sient preservation are essential. An emblematic example of opti-
cal dynamic compressors from the late 1960s is the LA-2A built
by Teletronix [1], which was used in prominent broadcast studios
such as CBS and RCA. A more recent example is the Langevin
ELOP built by Manley [2].

Copyright: © 2023 Judy Najnudel et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

Vactrols were manufactured by Perkin Elmer [3] among oth-
ers, until 2010. They are still manufactured by Advanced Pho-
tonix, but their availability has severely diminished since the 2000s
due to a EU ban on cadmium sulfide, which is one of the main
components of photoresistors. As vintage optical dynamic com-
pressors are priced at tens of thousands of dollars, an accurate
simulation is a convenient and much cheaper way to access optical
dynamic compression.

Models of vactrols for audio applications have been proposed
in the literature [4, 5]. Based on a signal representation, they as-
sociate static characteristics obtained from measurements, and a
combination of low-pass filters to account for the photoresistor’s
dynamic behavior. More recent models based on Recurrent Neu-
ral Networks [6, 7] allow the joint inference of static and dynamic
characteristics from data.

Although these models demonstrate interesting features from
both qualitative and computational points of view, they are tailored
to a specific circuit; therefore, they offer much less modularity than
purely physical models. In particular, they are difficult to connect
to other components modeled as port-Hamiltonian systems, which
provide a unified formalism for the modeling of multiphysical sys-
tems with passivity guarantees, and has proven relevant for audio
applications [8, 9]. Moreover, a key specificity of vactrols, namely,
the inherent program-dependence of the attack and release times,
remains elusive in signal-based models.

In this paper, which is a condensed version of the work pre-
sented in [19], we propose a nonlinear model of vactrols that is
entirely physical, passive, with a program-dependent dynamic be-
havior by construction. To this end, we rely on first principles that
govern semi-conductors, and the port-Hamiltonian systems (PHS)
formalism.

This paper is structured as follows. In Section 2, we give a
brief reminder on PHS. In Section 3, we recall the main doping
mechanisms in photoresistors and derive a model for their inter-
nal dynamics. Then in Section 4, we propose a law for the opti-
cal coupling between the LED and the photoresistor, and obtain a
complete PHS model for the vactrol by connecting all subcompo-
nents through multiphysical ports. Finally, the model’s parameters
are estimated from measurements of a real vactrol, and then used
to simulate a simplified optical compressor in Section 5.

2. REMINDER ON PORT-HAMILTONIAN SYSTEMS

Any physical system can be divided into parts that interact with
each other via energy exchanges. Detailed presentations of PHS
are available in [10, 11, 12]. In this paper, we rely on a differential-
algebraic formulation adapted to multiphysical systems [13, 14].
This formulation allows the representation of a dynamical system
as a network of
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1. storage components of state x and energy E(x);

2. passive memoryless components described by an effort law
z : w 7→ z(w), such that the dissipated power Pdiss =
z (w)⊺ w is non-negative for all flows w;

3. connection ports conveying the outgoing power Pext =
u⊺y where u are inputs and y are outputs.

The system flows f and efforts e are coupled through a (possi-
bly dependent on x) skew-symmetric interconnection matrix S =
−S⊺, so that 


ẋ
w
y




︸ ︷︷ ︸
f

= S



∇E(x)
z(w)
u




︸ ︷︷ ︸
e

. (1)

In the context of electronic circuits, flows can either be currents
(e.g. for capacitors) or voltages (e.g. for inductors), and vice versa
for efforts.

Such systems satisfy the power balance

Pstored + Pdiss + Pext = 0 (2)

where Pstored = ∇E(x)⊺ẋ denotes the stored power.
Proof By skew-symmetry of S (which we recall diagonal is zero),

Pstored + Pdiss + Pext = e⊺f = e⊺Se = 0.

Note that throughout this paper, we adopt the receiver conven-
tion for all components, including external sources. This means
that the current is defined positive when entering the component
through the positive voltage terminal [15].

3. PHOTORESISTOR

A photoresistor consists of a thin layer of photoconductive mate-
rial (typically, cadmium sulfide) deposited on a ceramic substrate.
In the following, we assume that the photoconductive material is
spatially homogeneous, so that no pn-junction can be formed and
that diffusion of free carriers is negligible. As a consequence, the
photoresistor internal dynamics can be modeled by ODEs.

A photoresistor is in fact a 2-port component. The first port is
electrical, and allows connections to other electronic components
like any other resistor. The second port is optical, and allows in-
teractions with light. It is responsible for internal dynamics in the
micro-electrical domain. In the next sections, the (hidden) flow
and effort that result from optical interactions are explicitly re-
ferred to as fopt and eopt, to avoid confusion with the (directly ob-
servable) electrical flow iLDR (current), and electrical effort vLDR

(voltage). Note that both flows are in Amperes, and both efforts
are in Volts.

3.1. Photoconductivity and doping

Photoconductive materials are semiconductors, that is, they be-
come conductive under certain conditions. Indeed, the photoab-
sorption of a small amount of additional energy (denoted eg) gen-
erates a pair of free carriers: an electron in the conduction band (of
energy EC ), and a hole in the valence band (of energy EV ). The
presence of free carriers increases the photoresistor conductivity.
Note that the overall conductivity depends on the quantity of elec-
trons, but also on the quantity of holes (which, as we shall see, do
not necessarily remain equal).

Valence band EV

Ionized level EI

Conduc. band EC

Bound level EB

ei
eg

−
Bound

electron

photoabs. ≥ eg
−

Free elec.

+

Free hole

Bound
defect

photoabs. ≥ ei

−
Free elec.

+
Ionized
defect

Figure 1: Energy levels and free carriers before and after photoab-
sorption for an n-doped semi-conductor.

The conductivity of a photoconductive material can be arti-
ficially increased (or “doped”) through the inclusion of defects,
which lower the amount of energy needed to generate free carriers
via ionization [16]. Here, we consider n-doped materials only, as
cadmium sulfide (which is present in Vactrols) is most generally
n-doped [17]. For efficient n-doping, the bound defect energy (de-
noted EB) must lie between the valence band and the conduction
band, and the ionized defect energy (denoted EI ) must lie in the
conduction band, so that the ionization energy ei is smaller than
eg and electrons reach the conduction band more easily (Fig. 1).

3.2. Internal dynamics

The internal dynamics of the photoresistor is due to carrier recom-
bination processes. The most important recombination process in
doped materials is the Shockley-Read-Hall recombination [16], in
which free carriers recombine with defects. Therefore, other kinds
of recombination (e.g., radiative and Auger) are neglected.

The Shockley-Read-Hall recombination can be summed up as
follows (Fig. 2). Assume an initial state with no free carriers, de-
noted s0. Photoabsorption can lead either to ionization (state si),
or to electron-hole pair generation (state sg). The ionized defect
can then return to state s0, followed by the dissipation of excess
energy ei. In this case, the ionized defect acts as a “trap” for elec-
trons. Likewise, an electron-hole pair can recombine to state s0,
followed by the dissipation of excess energy eg .

For convenience, and since this is transparent energy-wise, we
choose to model a unique source of photoabsorption (that leads to
electron-hole pair generation), and replace a transition from state
sg to state s0, followed by a transition from state s0 to state si,
with a direct transition from state sg to state si, that dissipates the
energy eg−ei. In this case, the bounded defect acts as a “trap” for
holes.

Free carriers dynamics modeling To model the free carriers
dynamics in the micro-electrical domain, we rely on the homoge-
neous Iverson model [18]. Denote fopt the optical flow respon-
sible for the generation of free carriers (in receiver convention),
q− the absolute charge of electrons and q̇− its time variation, q+

the absolute charge of holes and q̇+ its time variation, q+τ the ab-
solute charge of defects in ionized state, q0τ the absolute charge
of defects in bound state1, and qτ the absolute charge of defects.
The photoresistor internal dynamics are governed by the following

1Here, the absolute charge of a species is to be understood as the num-
ber of instances multiplied with the elementary charge for homogeneity.
Therefore, it can be non-zero even for bound defects.
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+
− −

+

photoabsorption of eg - storage

dissipation of ei

photoabsorption of ei

dissipation of eg

dissipation of eg − ei
s0 si sg

Figure 2: Possible states and transitions for a n-doped photore-
sistor with Shockley-Read-Hall recombination. For convenience,
a transition from state sg to state s0 followed by a transition from
state s0 to state si (gray, dashed), is replaced by a transition from
state sg to state si (black, dashed).

equations [16]:

Electron charge variation q̇− = −fopt − ν−0 q+τ q
−, (3a)

Hole charge variation q̇+ = −fopt − ν+0 q0τ q+, (3b)

Constant quantity of defects qτ = q+τ + q0τ , q̇τ = 0, (3c)

Charge neutrality q+τ + q+ − q− = 0, (3d)

where the electron (resp. hole) absolute charge time variation cor-
responds to the free carriers generation rate minus the de-ionization
(resp. ionization) rate. The constants ν−0 and ν+0 (in C−1·s−1) re-
late to the electron and hole velocity, respectively. The constraints
expressed by Eqs. (3c)-(3d) allow the reduction of Eqs. (3a)-(3b)
to

q̇− = −fopt − ν−0
(
q− − q+

)
q−, (4a)

q̇+ = −fopt − ν+0
(
qτ + q+ − q−

)
q+. (4b)

PHS formulation and equivalent circuit The system described
by Eq. (4) admits a PHS formulation. To give this system a phys-
ical interpretation in terms of currents and voltages, we introduce
capacities C+ and C−, as well as conductances G−

τ (q
+, q−) :=

ν−0 C−
(
q− − q+

)
andG+

τ (q
+, q−) := ν+0 C

+
(
qτ + q+ − q−

)
.

The internal dynamics of the photoresistor can thus be described
by two equivalent capacitors C− and C+ that model the storage
of electrons and holes respectively, with flow ẋ (in Amperes) and
effort∇E(x) (in Volts)

ẋ =
[
q̇+, q̇−

]⊺
=: [fC+ , fC− ]⊺ ,

∇E(x) =

[
q+

C+
,
q−

C−

]⊺
=: [eC+ , eC− ]⊺ ,

(5)

and two conductors G−
τ and G+

τ that model the dissipation caused
by de-ionization and ionization respectively, with flow w (in Volts)
and (state-modulated) effort z(w) (in Amperes)

w =
[
e
G+

τ
, e

G−
τ

]⊺
, z(w) =

[
G+

τ eG+
τ
, G−

τ eG−
τ

]⊺
=:
[
f
G+

τ
, f

G−
τ

]⊺
.

(6)
The schematics of the corresponding equivalent circuit is shown
on Fig. 3a, with corresponding PHS equations in Fig. 3b.

Remark 1. The dynamics described by Eq. (4) depends on C±

through the reduced parameters ν±0 = ν±0 C± · 1
C± . As only

ν±0 have to be identified and ν±0 C± and C± are unknown, we
arbitrarily set C+ = C− = 1 F.

Photoresistor electrical flow and effort The resistance of the
photoresistor is given by [16]

R(q+, q−) =
1

µ+
0 q

+ + µ−
0 q

− , (7)

where µ+
0 (resp. µ−

0 ) is the surface mobility (in V−1·s−1) of holes
(resp. electrons) and relates to the dimensions of the photoresistor
and the mobility of holes.

In practice, the photoresistor exhibits a large but finite positive
resistance Rd when it is not exposed to light (d for dark), and a
small but non-zero positive resistance Rℓ when it is exposed to
maximal light (ℓ for light). The total resistance RLDR(q

+, q−) is
thus modeled as a parallel/series interconnection governed by

RLDR(q
+, q−) =

Rd

(
R(q+, q−) +Rℓ

)

Rd +R(q+, q−) +Rℓ
. (8)

As Rd is several orders of magnitude larger than Rℓ, it is immedi-
ately verified that lim

R→+∞
RLDR = Rd and lim

R→0
RLDR = Rℓ. We

deduce the electrical flow w and (state-modulated) effort z(w) of
the photoresistor:

w = iLDR, z(w) = RLDR

(
q+, q−

)
iLDR =: vLDR. (9)

4. OPTICAL COUPLING

4.1. Power conversion between the LED and the photoresistor

Two types of power conversion take place between the LED and
the photoresistor. The first one is a conversion from electrical to
optical and occurs during photoemission by the LED. The second
one is a conversion from optical to micro-electrical and occurs dur-
ing photoabsorption by the photoresistor.

However, as the photoresistor spectral sensitivity does not match
exactly with the LED spectral output, some of the power emitted
by the LED is not transmitted to the photoresistor. Since the LED
and photoresistor are enclosed in opaque resin, we assume that the
difference of power is absorbed by the resin and converted into
heat. Therefore, for convenience, the conversion from electrical
to optical to micro-electrical domain is modeled as a dissipative
quadripole (Fig.4). Denote vD the LED voltage, iD the LED cur-
rent, and PD := iD vD the LED electrical power. Assume that the
LED dissipative law I : vD 7→ iD is known (e.g. from measure-
ments or datasheets). Denote Popt := fopt eopt the optical power
outgoing from the photoresistor. The power conversion must be
passive, that is, the incoming optical power cannot be greater than
the power delivered by the LED. Therefore, we choose to model
the power conversion with a function f such that

f(PD) + Popt = 0, with 0 ≤ f(PD) ≤ PD. (10)

Assuming that eopt ̸= 0, the quadripole flow w and effort z(w)
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Figure 3: Photoresistor internal dynamics equivalent circuit schematics and corresponding PHS.

iD

vD

fopt

eoptOpt.
domain

Elec. domain Micro-elec. domain (hidden)

Figure 4: Multiphysical power conversion between the LED and
the photoresistor.

can then be defined as

w = [vD, eopt]
⊺ , z(w) = Γ(w)w =: [iD, fopt]

⊺ ,

with Γ(w) :=


 0 I(vD)

eopt

−I(vD)
eopt

0




︸ ︷︷ ︸
Γantisym(w)

+



0 0

0
I(vD) vD−f(I(vD) vD)

e2opt




︸ ︷︷ ︸
Γsym(w)

.

(11)

The matrix Γantisym(w) encodes the (modulated) gyration from
electrical to micro-electrical domain, while the (non-negative) ma-
trix Γsym(w) encodes the actual power loss during the conversion.
With Eq. (10), such a formulation guarantees the passivity of the
quadripole, since it verifies z(w)⊺w ≥ 0 for all w.

In practice, we have neither access to photoemission (from the
LED), nor photoabsorption (into the photoresistor) characteristics.
However, “ground truth” for the optical power Popt can be ob-
tained from measurements of the photoresistor’s resistance, as will
be shown in Section 5. Regarding the function f , we propose an
empirical model of the form

f(PD) = P0 P
α0
D + P1 P

α1
D , (12)

with α0, α1 positive, to account for the dual-slope of the optical
power as a function of the LED power observed in the logarithmic
domain.

4.2. Vactrol complete model

By connecting the power converter between the LED and the pho-
toresistor with the equivalent circuit that models the internal dy-
namics of the photoresistor, the vactrol (Fig. 5a) can be modeled
as the equivalent circuit in Fig. 5b. The corresponding PHS equa-
tions are given in Fig. 5c.

5. IDENTIFICATION OF A VACTROL FROM
MEASUREMENTS AND SIMULATION OF A SIMPLE

OPTICAL COMPRESSOR

The characteristics of a VTL5C3/2 are measured to obtain the LED
dissipative law, the photoresistor static resistance as a function of
LED power, as well as the photoresistor’s turn-on and turn-off (see
[19] for a schematic of the experimental setup).

The parameters Rℓ and Rd are taken from the VTL5C3/2
datasheet, and the parameters µ+

0 and µ−
0 are set according to

[20]. The remaining vactrol parameters are then estimated from
measurements, in three steps.

5.1. Parameter identification for the LED

The Shockley model [21] does not capture the behavior of LEDs
that are present in Vactrols accurately. Indeed, once it has reached
its threshold, the LED behaves more closely as a linear resistance.
Therefore, we propose a more suitable model, passive by construc-
tion, in which the LED threshold appears explicitly as a parameter.
Denote vD the LED voltage and iD the LED current. The LED is
a dissipative component of flow w and effort z(w) given by

w = vD,

z(w) = Is

(
sp

(
vD − Vt

Vs

)
− sp

(
−Vt

Vs

))
=: I(vD) = iD,

(13)

where sp : x 7→ ln(1 + expx) denotes the softplus function,
and Vt, Vs, and Is are positive model parameters. The voltage Vt

is the LED threshold (from which it starts emitting light), and the
ratio Is/Vs corresponds to the LED conductance. Due to the fact
that the sp function is increasing, and that z(0) = 0, this model is
passive since z(w)⊺w ≥ 0 for all w.

The set of parameters θD = [Vt, Vs, Is] is estimated through
a least-squares optimization. The estimated parameters are shown
in Table 1. Figure 6 shows the results of the estimation compared
with measurements.

5.2. Parameter identification for the photoresistor internal dy-
namics

To decouple the identification process, the set of parameters θLDR =[
ν+0 , ν

−
0 , qτ

]
is estimated in isolation during turn-off, which avoids
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Figure 5: Voltage-controlled vactrol schematics and corresponding PHS.
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Figure 6: LED dissipative law measurements and model.

dependencies to the optical flow fopt. Denote Rsim(θ) the pho-
toresistor resistance simulated for a given set θ, using Eq. (4) with
fopt = 0 and Eq. (8). The set θLDR is obtained by fitting Rsim(θ)
to the measured resistance through a least-squares optimization.
The estimated parameters are shown in Table 1. Figure 7a shows
that the resistance simulated with these parameters matches closely
with the measured resistance.

5.3. Parameter identification for the power conversion law in
steady state

The estimated set θLDR as well as the measured static resistance
RLDR as a function of LED power PD can be used to provide ex-
perimental data for the optical power Popt. The complete method
is detailed in [19]. In this subsection, we recall the main steps but
do not provide complete expressions and proofs, for brevity.

The first step is to reinject θLDR in Eq. (4) and solve for steady
state q̇+ = q̇− = 0. This yields the relation

q−st = Q−(q+st), (14)

where q−st and q+st are the electron charge and hole charge in steady
state, andQ− is a function parametrized by θLDR. The second step
is to substitute Eq. (14) in Eq. (8) and invert Eq. (8). We obtain the
relation

q+st = Q+(RLDR), (15)

where Q+ is a function parametrized by θLDR, µ+
0 , µ−

0 , Rd and
Rℓ. Finally, from Fig. 3b, we have in steady state (for the choice
C± = 1 F, see Remark 1)

Popt := fopt eopt = −ν−0
(
q−st − q+st

)
q−st
(
q+st + q−st

)
. (16)

By reinjecting Eqs. (14)-(15) in Eq. (16), we obtain the measured
optical power Popt as a function of static resistance RLDR, which
is itself a function of LED power PD.

The set of parameters θf = [P0, P1, α0, α1] is then estimated
by fitting Eq. (12) through a least-squares optimization. The esti-
mated parameters are shown in Table 1, and Fig. 7b shows the
estimation results. The simplified model matches well with the
original model within the range of LED powers observed under
normal use. Moreover, the passivity of the model expressed by
Eq. (10) is indeed verified since 0 ≤ f(PD) ≤ PD.

5.4. Model validation

To confirm the parameter estimation results, the photoresistor’s re-
sistance is simulated again with a non-zero optical flow, for several
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(b) Photoresistor’s absorbed optical power vs
LED power.
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(c) Photoresistor’s turn-on
measurements and model for PD = 70 mW.
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(d) Photoresistor’s resistance vs LED power
after 800 ms.

Figure 7: Photoresistor characteristics: turn-off (top left), power conversion (top right), turn-on (bottom left) and resistance vs LED power
after 800 ms (bottom right).

Table 1: Parameters for the vactrol VTL5C3/2.

Parameter Value Unit

G
iv

en

µ+
0 4 V−1·s−1

µ−
0 35 V−1·s−1

Rℓ 2 Ω
Rd 10 × 106 Ω

E
st

im
at

ed

qτ 9.77 × 10−1 C
ν0+ 1.35 × 102 C−1·s−1

ν−0 1.79 × 108 C−1·s−1

P0 -5.47 × 10−5 W
P1 5.63 × 10−5 W
α0 0.54 dimensionless
α1 0.55 dimensionless
Vt 1.52 V
Vs 23.16 × 10−3 V
Is 5.65 × 10−3 A

values of LED powers. The turn-on time response matches with
measurements (Fig. 7c, here for PD = 70 mW). After 800 ms of
simulation (the theoretical turn-on time being 3 ms), the simulated
resistance matches very closely with the measured static resistance
(Fig. 7d).

5.5. Simulation of an optical compressor

The estimated parameters for the VTL5C3/2 are used to simulate
a minimal optical compressor, shown in Fig. 8a. This compres-
sor consists in a voltage divider, in which the output resistor is the

photoresistor. If the output voltage is greater than the LED thresh-
old, the LED emits light, and the photoresistor resistance drops,
decreasing the output voltage in a feedback control loop [24]. The
operational amplifier-based voltage follower removes the electrical
coupling between the photoresistor and the LED.

For this application, we treat the voltage follower power sup-
plies as infinite constants, so that the operational amplifier never
reaches saturation. Denote v+ the input voltage, i+ the input cur-
rent, vo the output voltage, and io the output current. The voltage
follower has flow w and effort z(w) given by (see [22] for a com-
plete derivation)

w =
[
v+, io

]⊺
, z(w) =

[
0 0
1 0

]
w =:

[
i+, vo

]⊺
. (17)

Kirchhoff’s laws yield the (reduced) PHS equations in Fig. 8b.
The compressor is driven with a sinusoidal voltage of the form

vin = U(t) sin(2π f0 t), with U(t) defined as

U(t) =





1 if t ≤ t0
U0 if t0 ≤ t ≤ 2 t0

1 if 2 t0 ≤ t.
(18)

Here, the simulation is computed with an iterative solver, namely
a Newton-Raphson method [23]. Simulation results for vactrol
parameters in Table 1 and simulation parameters in Table 2, are
shown in Fig. 9a to Fig. 9c. We observe that the higher the in-
put voltage, the shorter the attack and the longer the release, in
agreement with the photoresistor time responses. In all cases, the
attack is much sharper than the release. The compression ratio and
knee can be controlled with the resistances R1 and R2: the higher
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ẋ
iC −1/R2 . . . . −1 . . 1/R2 . .
fC+ . . . −1 . . −1 . . . .
fC− . . . . −1 . −1 . . . .

w

e
G+

τ
. 1 . . . . . . . . .

e
G−

τ
. . 1 . . . . . . . .

vD 1 . . . . . . . . . .
eopt . 1 1 . . . . . . . .
v+ . . . . . . . . . 1 .
io 1/R2 . . . . . . . −1/R2 . .
iLDR . . . . . . . −1 . −1/R1

1/R1

y iin . . . . . . . . . 1/R1 −1/R1

(b) Corresponding PHS. Dots represent zeros.
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Figure 9: Simple optical compressor simulation results.
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Table 2: Optical compressor simulation parameters.

Parameter R1 (kΩ) R2 (Ω) C (µF) U0 (V) f0 (kHz) t0 (ms) fs (kHz)

Value 1 5 4.7 3-6-12 1 10 96

the ratio R1/R2, the higher the compression ratio and sharper the
knee (Fig. 9d).

6. CONCLUSION

In this paper, we proposed a dynamic, multiphysical and power-
balanced model for the vactrol, as a port-Hamiltonian system. First,
we modeled the photoresistor. Its internal dynamics were obtained
from the study of doping mechanisms in semiconductors. Then,
we addressed the nonlinear optical coupling between the LED and
the photoresistor. A law for this coupling was derived from the
photoresistor’s static resistance as a function of the LED’s electri-
cal power.

The model’s parameters were successfully estimated from mea-
surements of a real vactrol. Simulations using the estimated pa-
rameters closely match with measured dynamic and static charac-
teristics. Finally, the model was implemented in order to simulate
a minimal optical compressor. The simulated attack and release
times are program-dependent, as expected in such compressors.

Regarding ongoing work, the model is being implemented in
complex circuits that are closer to real optical compressors, and
tested against real audio signals for a more complete assessment.
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ABSTRACT

There are millions of sophisticated Android phones in the world
that get disposed of at a very high rate due to consumerism. Their
computational power and built-in features, instead of being wasted
when discarded, could be repurposed for creative applications such
as musical instruments and interactive audio installations. How-
ever, audio programming on Android is complicated and comes
with restrictions that heavily impact performance. To address this
issue, we present LDSP, an open-source environment that can be
used to easily upcycle Android phones into embedded platforms
optimized for audio synthesis and processing. We conducted a
benchmark study to compare the number of oscillators that can be
run in parallel on LDSP with an equivalent audio app designed ac-
cording to modern Android standards. Our study tested six phones
ranging from 2014 to 2018 and running different Android versions.
The results consistently demonstrate that LDSP provides a signifi-
cant boost in performance, with some cases showing an increase of
more than double, making even very old phones suitable for fairly
advanced audio applications.

1. INTRODUCTION

With its billions of users, Android is one of the most widely adopted
technologies existing today [1, 2]. Even the more affordable An-
droid phones have CPU and memory specifications that compare
with or even top those of many platforms commonly used by aca-
demics, researchers and creatives to design audio applications, in-
cluding the Raspberry Pi1, Bela [3] and the Daisy Seed board2.
Yet, the mobile phone market is characterized by a constant evo-
lution of both software and hardware, with new updates and mod-
els released frequently. Although current Android phones boast
impressive technical specifications, they are often abandoned by
users due to software incompatibility or the desire to own a newer,
more advanced device. This consumeristic approach to technology
creates significant environmental and ethical issues.

Firstly, the regular replacement of mobile phones contributes
to a throwaway culture that values disposability over sustainabil-
ity [4]. Electronic waste (e-waste) generated by discarded phones
is a growing concern as it contains hazardous substances such as
lead, mercury and cadmium, which can pollute the environment
and harm human health. Moreover, this consumeristic approach to
technology—that spreads way beyond mobile phones—also per-
petuates a cycle of social and economic inequality [5]. Not ev-

1https://www.raspberrypi.com/
2https://www.electro-smith.com/daisy
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eryone can afford to upgrade their technologies regularly, and the
constant release of new models creates an unnecessary pressure to
keep up with the latest trends, contributing to a sense of inade-
quacy and exclusion among those who cannot afford to do so.

In contrast to these unsustainable trends, this paper describes
LDSP, a technology that enables extending the lifespan of older
Android phones by repurposing them as embedded platforms for
audio application development. LDSP provides an environment
that allows developers to leverage the full potential of the phones’
hardware and avoid the limitations imposed by Android’s runtime
environment. With LDSP, phones that would have otherwise be-
come obsolete can be given new life, decreasing the need for the
purchase of new programmable audio technology and reducing e-
waste. We discuss the implementation of LDSP, its capabilities and
how it can provide a significant boost in performance for audio ap-
plications. Additionally, we present the results of our experiment
using an oscillator bank to compare the performance of LDSP with
that of a typical Android audio app, addressing the open problem
of effectively employing Android phones for audio synthesis and
processing.

2. BACKGROUND

2.1. Technology, E-waste and Upcycling

In the field of audio and music hardware design, there is a larger
issue at play regarding the obsolescence and progress mindset sur-
rounding technological products. This is in part enabled by manu-
facturers seeking to drive trends and increase consumption [6] and
strongly resonates with humans’ innate curiosity and will to exper-
iment. This mindset is economically and environmentally harmful,
given the decreased lifespan of equipment and the increased pro-
duction of e-waste [7]. This issue has underlying epistemologi-
cal roots, where technology-based or electronic arts are tied to the
notion of progress, ‘new is better’, and consumerism, which is un-
sustainable [4]. The process of creating new technologies and their
discard negatively affects the land, water, air, and all living beings.

Among consumer technologies, mobile phones are notorious
for their short product cycles, with an average use time of around
two years [8]. In many cases, phones are replaced with newer
models even if they are still functioning, as a result of the expi-
ration of support for essential apps or the operating system itself.
In the case of Android phones, open software can be leveraged
to extend the life span of the device beyond the end of support
and continue its intended. Examples includes: Lineage OS 3, a
mostly open-source operative system based on Android and main-
tained by a large community of developers; /e/ OS 4 and iodé OS

3https://lineageos.org/
4https://e.foundation/
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5, both open-source mobile operative systems forked from or pow-
ered by Lineage OS that focus on privacy; or the Free Software
Foundation Europe’s initiative Upcycling Android 6 that intends
on teaching the possibilities given by free and open software to im-
prove user agency against technological obsolescence. However,
the applicability of these solutions tends to depend on the specific
model of the phone and support for functionalities can only be ex-
tended for a finite period of time. For example, one of the two
LG G2 Mini phones used in this work to test LDSP (see Section
4) is running Lineage OS 14.1 that is equivalent to Android 7.0,
while the last official Android version that specific model can run
is 5.0.2. This extended the overall life span of the phone of two
years, from 2016 to 2018—i.e., when support for Android 5.0.2
and 7.0 officially ended, respectively. Furthermore, phones fre-
quently encounter significant damage to their screens, batteries,
or other crucial components that render them unusable for daily
use, irrespective of software support. Repairing such devices is in-
creasingly expensive and intricate due to the miniaturized design
of the products, the presence of glued-in parts, and the overall con-
cept of economical obsolescence, where the cost of repairs often
outweighs the value of the device itself [8]. Nonetheless, in many
cases damaged/broken phones can still be turned into different but
functional devices.

There is a tradition of technological disobedience found world-
wide through different approaches that involve recycling and re-
using materials, from hackerspaces [9] to Gambiarra [10] and oth-
ers [11, 12]. These practices recover components and devices that
would otherwise be discarded, finding novel uses for them by sur-
passing limitations in innovative ways, which resist consumerism
and planned obsolescence practically. Such practices shift our un-
derstanding of when an object becomes useless or expendable if it
is not related to its functionality or lack thereof, forcing us to think
critically about how we use, buy, and discard technology.

Various art-related projects and instruments are specifically
aligned with the upcycling of materials and the political implica-
tions of such endeavors. For instance, the Echo project [13] ex-
plores creative and alternative uses of outdated and damaged tech-
nologies, fostering an atmosphere where audiences can engage in
critical and aesthetic debates surrounding the possibilities of these
technologies, away from their intended purposes. Similarly, the
Gatorra instrument [14] was created through a hobbyist approach
to circuitry, repurposing electronic and non-electronic components
to create a unique final product, emphasizing the autonomy of the
creator and promoting innovative ways of engaging with hardware.

Certain composers and musicians, including Yasunao Tone,
Nicolas Collins, and the group Oval [15], use the glitching and
skipping of compact disks to generate new sounds, chance-based
compositions, and indeterminate performances. Though their ap-
proaches to technology may differ, they share an interest in using
seemingly broken technology to encourage novel sounds.

Other instruments, such as the Concentric Sampler [16], re-
purpose outdated technology, like floppy disks and floppy disk
drivers, with additional circuitry that loops and uses time-based
granular synthesis for live performances of lo-fi noise. The au-
thor of this project discusses their motivation for fostering creativ-
ity through physical limitations and misuse of audio technologies.
Similarly, Disky [17] is a D.I.Y. USB turntable that utilizes the
mechanical parts found in obsolete hard disk drives, providing an

5https://iode.tech/
6https://fsfe.org/activities/upcyclingandroid/

[Accessed on 2023/05/26]

accessible, reliable, and low-cost project for audio control. In both
cases, the authors emphasize their motivations driven against the
novelty-driven discard of technology due to its current way of pro-
duction encouraged by consumerism. They see their upcycling
methodology as a creative way of dealing with technology that is
considered obsolete while fostering creativity and community.

2.2. Android Audio Programming

There have been various efforts to turn Android phones into plat-
forms for audio processing and synthesis, with applications like
Nexus [18] and MoMubPlat [19] using web technologies and Pure
Data/libpd, respectively. However, faust2api appears to be the
most comprehensive project to date, offering optimized Faust au-
dio/sensors processing code and graphical user interfaces designed
to explore the acoustic features of handheld devices [20].

Despite their capabilities, all these platforms and environments
are limited by the Android audio stack, which consists of sev-
eral layers and buffers that can introduce significant computational
overhead and latency in audio processing and synthesis applica-
tions. As a result, it is difficult to achieve the satisfactory audio
performance, especially on outdated phones. This problem has
been known to audio processing and synthesis communities for
some time, as discussed in research such as [21].

These issues arise from the structure of the Android applica-
tion framework that allows for hardware-agnostic development,
even for code written in native languages like Faust or C++ us-
ing the Android NDK. Such code has to pass through multiple
layers of the audio stack before it can exchange samples with the
audio driver in kernel space. These layers include the applica-
tion layer, Android’s mixer and the audio HAL, each of which in-
troduces some level of buffering and scheduling that can increase
CPU workload and cause inconsistent latency. Figure 1 represents
the typical audio stack in modern Android app architecture. An-
other crucial detail emphasized in this figure is that developing a
high-performance Android app often requires combining at least
two programming languages: Java for the overall app structure
and C++ for the performance-critical components. Additionally,
in most cases, a graphical user interface (UI) is necessary, which,
in modern Android development, is typically implemented using
yet another language, Kotlin.

Researchers have proposed various solutions to address this
problem, including the technique described in [1], which leverages
the Exclusive Mode of the AAudio API introduced by Google in
2017 to bypass many layers of the audio stack. However, this so-
lution is available only on relatively modern devices (running An-
droid 8 or above). And, in general, more work is needed to fully
address these issues in Android audio processing and synthesis,
particularly for interactive applications.

3. LDSP

LDSP is an open-source cross-platform environment designed to
enable developers to create native C++ audio applications for An-
droid devices. Unlike traditional Android apps that run within the
Android Run-Time Environment/Dalvik Virtual Machine, LDSP
generates executables that are dealt with directly by the kernel and
can directly access memory and hardware resources. Essentially,
LDSP turns Android phones into generic Linux embedded boards,
with the only requirement being that the phone is rooted. This
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Figure 1: Audio stack comparison: LDSP stack (on the right) and
modern Android audio app stack (on the left).

approach has a significant impact on code performance, as demon-
strated later in this work. Currently, LDSP can be downloaded to a
host computer, and developers can use it to cross-compile their na-
tive application and deploy it to their Android phone. The frame-
work includes a C++ API, libraries and examples tailored to mo-
bile audio development, with also direct access to the phone’s sen-
sors, buttons, touchscreen, LED lights and vibration motor. More
details about the compilation process, libraries, features and exam-
ples can be found here [22], while the full source code is available
at LDSP official GitHub repository7.

LDSP is designed with portability in mind, and the low-level
development and deployment workflow allow LDSP applications
to bypass any resource allocation restrictions that standard apps
may encounter. Moreover, LDSP is widely compatible across phones.
Retro-compatibility with older Android versions is one of the most
challenging aspects of Android development. The Android devel-
opment framework is continually advancing, to support upcoming
devices, better streamline general purpose app design and comply
with security and privacy regulations. These are important issues,
but contribute to the quick obsolescence of phones that are oth-
erwise still functional. LDSP offers a solution to give new life
to older devices regardless of the Android version they run or the
hardware features they have. Thanks to the pure C++ implementa-
tion of LDSP, the same code can be built and run on most official
Android versions, including phones with installed custom ROMs8

based on Android.
At the core of the LDSP C++ framework lies a custom audio

7https://github.com/victorzappi/LDSP.git
8‘ROM’ refers to the combination of firmware and operative system.

engine that is built around the TinyALSA library9 and designed to
directly control the Advanced Linux Audio Architecture (ALSA)
kernel drivers. The audio engine provides an API to open any
of the phone’s capture and playback devices, synchronize them
and set up a user-defined audio callback function—called ‘render’.
This render function runs on a dedicated thread and has direct ac-
cess to the audio buffers used by the hardware ALSA driver (i.e.,
the ALSA period). Similarly to the API of Bela, a ‘setup’ and a
‘cleanup’ function are called before the start and after the termina-
tion of the render loop. LDSP’s simple audio implementation op-
timizes the use of the phone’s resources, enabling advanced audio
algorithms and buffer sizes that would typically be prohibitive for
Android apps (see next section). Additionally, LDSP can change
the mode of operation of the CPU’s scaling governor to keep the
clock speed at maximum. And as many Android ROMs run pre-
emptive kernels, the framework is designed to try to assign real-
time priority to the audio thread, hence further improving timing
and performance on supported phones. Figure 1 depicts LDSP au-
dio stack and compares it with that of the modern Android audio
app architecture.

4. COMPUTATIONAL PERFORMANCE ANALYSIS

4.1. Software Benchmark

We developed a C++ oscillator bank class to evaluate the com-
putational performance of LDSP. Oscillators are essential com-
ponents of traditional synthesis techniques and are also used in
unconventional DMIs, as demonstrated in previous works (e.g.,
[23, 24]). While the number of oscillators that can be run in par-
allel is not a universal metric of an audio application’s sonic po-
tential, it provides valuable insight into the musical capabilities
of Android phones running LDSP. To further assess the perfor-
mance gain of LDSP compared to the ‘standard’ Android audio
programming environment, we ran the same code within a cus-
tom mobile audio app and quantified the results. Additionally, we
benchmarked the oscillator bank on a Bela board for reference.

The oscillator bank is initialized with the number of oscilla-
tors and a frequency range when instantiated. The frequencies of
the oscillators are linearly spaced within the specified range. Each
oscillator consists of a sinusoidal wavetable with linear sample in-
terpolation. When a new sample is requested, the oscillator bank
advances all the oscillators, retrieves their samples and sums them
into a single value. The total amplitude is normalized to prevent
clipping. The source code can be found in the LDSP GitHub repos-
itory, under examples.

Although the code could be optimized and tailored to individ-
ual hardware features, such as multicores or vector floating-point
units, we purposely kept the focus on the audio environments and
ran identical code on each device. Moreover, our goal was to mea-
sure the performance of an application designed by a creative with
moderate audio programming skills, as we believe this represents
a valuable test case for LDSP, which is designed with accessibility
in mind.

When used within LDSP, the oscillator bank is initialized in
the setup function and the oscillators’ samples are constantly re-
trieved in the render loop to fill the output audio buffer, following
the same code structure used on Bela. In contrast, running the code
within an Android app required additional work. We designed a

9https://github.com/tinyalsa/tinyalsa [Accessed on
2023/05/26]
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simple application following the latest Android app architecture
guidelines10, comprising a minimalistic UI and a small audio en-
gine. The audio engine runs the oscillator bank and sends samples
to the phone’s audio device, while the UI is used to pass initial-
ization parameters to the oscillator bank, select the audio buffer
size and start/stop the audio stream (Figure 2). This app was in-
spired by the tutorial on wavetable synthesizer by Jan Wilczek11.
As discussed in Section 2.2, Android app development involves
a combination of different programming languages. We built the
UI in Kotlin, utilizing the Jetpack Compose framework, which has
become a standard for modern Android UI development. For op-
timal performance, we implemented the audio engine in C++ and
used the Oboe audio library, which serves as a wrapper for both the
modern AAudio library and the legacy OpenSLES library. Oboe is
designed to ensure high performance and provide backward com-
patibility with older phones and Android versions, which is rele-
vant to our project’s aim.

Figure 2: Phone running the oscillator bank Android audio app.

The audio engine includes a setup function that initializes and
starts the playback stream, as well as a user-defined callback that is
invoked whenever the application’s audio buffer needs to be filled.
This structure allows the oscillator bank class to be used in a simi-
lar fashion as in LDSP. The parameters and functions of the audio
engine are mirrored in a Kotlin model, which can be directly ac-
cessed from the UI to set the number of oscillators and start/stop
playback. The Java Native Interface in Android is used to call the
C++ functions directly from the Kotlin model. The source code of
the Android application can be found here: https://github.
com/victorzappi/android-osc-bank.git.

4.2. Methodology

We measured the maximum number of oscillators that a selection
of phones could play in parallel using different buffer sizes, using
both LDSP and the Android app. In real-time digital audio, in-
creasing the number of samples buffered in memory can improve
computational capabilities. However, larger buffer sizes can also
increase action-to-sound latency, which tends to limit the usability
of the application in interactive scenarios [25]. To obtain a com-
prehensive view of phone performance, we tested a range of buffer

10https://developer.android.com/topic/
architecture [Accessed on 2023/05/26]

11https://thewolfsound.com/
android-synthesizer-1-app-architecture/ [Accessed
on 2023/05/26]

sizes, focusing on powers of two, which is a common set of values
for real-time audio applications. Our tests started from the lowest
buffer size supported by each phone (typically 32) and increased
up to 1024. Each oscillator bank configuration was tested 10 times
for a minimum of 45 seconds. If any underruns occurred during
this time, the configuration was deemed unreliable for real-time
use, and the number of oscillators had to be decreased. We used
steps of five oscillators. The first five seconds of each run were
discarded from the test window, as considered a warm-up period
for the application. All phones were set to airplane mode and no
other apps were running during the tests.

It’s worth noting that the choice of buffer size is limited by
the architecture of Android audio apps. This in turn depends on
both the specific hardware and the Android version running on it.
For this reason, our tests included also values that depart from the
initial pool and comply with each phone’s Android Audio HAL
as well as the inner workings of the Oboe library. We selected
the low-latency audio device, when available on each phone, for
testing. This is the audio device capable of supporting smaller
buffer sizes, and all tests were run using its native sample rate and
default number of channels (48 kHz and 2 channels on all tested
devices). These settings were retrieved via one of the helper scripts
available in LDSP.

In LDSP, we disabled audio capture, sensors, and control in-
puts/outputs using the appropriate command-line flags. This was
done to match the features implemented in the Android app’s audio
engine and avoid unfair computational overhead. We passed the
tested buffer size and the current number of oscillators as command-
line arguments to the LDSP executable. As illustrated in Figure 1,
the buffer size set within LDSP corresponds with the period size
requested from the ALSA driver. We fixed the ALSA ring buffer
to two periods.

Within the Android app, we paid particular attention to the au-
dio engine setup and the parameters used to build an efficient audio
stream12. The engine works with a high-priority callback, and the
stream requests exclusive access to the audio device for optimal
performance. We also explicitly set the Oboe performance mode
to low-latency, which is expected to improve Android’s mixer re-
sponsiveness.

Figure 1 shows that the audio signal synthesized by Android
apps has to pass through several buffering stages before reaching
the ALSA driver, namely: the application buffer, which is filled
at every Oboe callback; the mixer’s buffer, often referred to as the
‘internal buffer’; and the Audio HAL buffer, which is filled by the
mixer and then passed to the driver. All data transfers between
these buffers happen in bursts, whose size depends on the audio
device. Our app allows requesting the application buffer size from
the UI, along with the number of oscillators. Then, the audio en-
gine automatically tries to set the internal buffer to the same size as
the application buffer, which is the lowest value possible. In some
scenarios, this also allows for samples to be transferred in single
bursts (see Section 4.4.1). However, the ALSA period cannot be
modified with any Android audio library and is set by the Audio
HAL along with the size of the ring buffer, which was fixed to
twice the period size on all tested phones. Section 4.4 details how
these constraints were taken into account on each phone to assure
a fair comparison between LDSP and the app. As a general rule,
we started by checking what buffer sizes Oboe managed to set on

12https://developer.android.com/ndk/guides/
audio/aaudio/aaudio#optimizing-performance [Accessed
on 2023/05/26]
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each phone, and then we passed to LDSP a single buffer size that
combined all Android buffering stages.

4.3. Tested Devices

We tested a total of six phones, which varied in release year, An-
droid version, CPU specifications and overall tier. This hetero-
geneous pool of devices was selected for two reasons. First, we
wanted to assess the performance of LDSP across hardware with
different capabilities. Second, we wanted to gather some prelim-
inary data on the actual portability of the environment. This is of
particular importance when targeting the upcycling of obsolete de-
vices and was one of the bigger design challenges during the initial
stage of development of the project.

The first phone we tested is a Xiaomi Mi 8 Lite. It was released
in 2018 and is a high-end device running a stock Android 9 ROM.
The second phone is a Huawei P8 Lite from 2015 with Android 5.0
installed. At launch, it was considered a mid-tier device. The third
and fourth phones are different models of the Asus ZenFone line.
One is a ZenFone 2 Laser (Asus1) released in 2016, equipped with
Android 6.0. The other is a ZenFone Go (Asus2) from 2015, run-
ning Android 5.1; it was considered a ‘budget phone’ upon release,
but has a slightly higher clock speed than Asus1. The last two
phones are both old LG G2 Mini models released in 2014 (LG1
and LG2). LG1 runs Lineage OS 14.1, a custom ROM equivalent
to Android 7.0, while LG2 has a stock Android 4.4 ROM. The de-
tails and hardware specifications of the tested devices, including
Bela’s, are listed in Table 1.

Table 1: Tested devices’ details.

Device Year CPU RAM Android
Xiaomi 2018 octacore 1.8-2.2 GHz 6 GB 9
Huawei 2015 octacore 1.0-1.2 GHz 3 GB 5.0
Asus1 2016 quadcore 1.2 GHz 2 GB 6.0
Asus2 2015 quadcore 1.3 GHz 1 GB 5.1
LG1 2014 quadcore 1.2 GHz 1 GB 7.0
LG2 2014 quadcore 1.2 GHz 1 GB 4.4
Bela 2013 singlecore 1 GHz 512 MB -

4.4. Results

4.4.1. Android 9

The Xiaomi phone runs Android 9, enabling Oboe to utilize the
modern AAudio library. AAudio allows for exclusive access to
the audio device, bypassing the internal buffer, whose size was
therefor not taken into account when calculating the total buffers
tested via LDSP. The app reported a size of 192 samples for both
the Audio HAL buffer (i.e., the ALSA period) and the burst size.
Therefore, only total buffer sizes larger than 192 samples could
be tested on both the app and LDSP. We increased the applica-
tion buffer size in steps of 192 samples to optimize data transfer
to the HAL within the app and avoid unnecessary overhead. The
only exception is the starting value of 192 samples, which was ap-
proximated by setting a symbolic application buffer size of one
sample. Table 2 (left) shows the values we tested, expressed as the
combination of Android’s application and HAL buffers, as well as
the maximum number of oscillators measured in the two environ-
ments.

Despite careful choice of audio parameters that could benefit
the app, results are largely in favor of LDSP. For sizes that are in-
teger multiples of the HAL buffer, LDSP showed a performance
gain that ranged from slightly above 25% to 81%. At 192 sam-
ples, the impact of removing the application buffer stage is visi-
ble in Android, and the gain reaches almost 700%. Entries below
192, accessible only to LDSP, showcase that the phone is capable
of running large numbers of oscillators even with typically small
buffer sizes. This reflects the overall high-end specifications of the
Xiaomi.

4.4.2. Android 7.0–5.0

The Huawei, the two Asus phones and LG1 all run versions of
Android that do not support AAudio13. On these devices, Oboe
falls back to using the OpenSLES library for audio processing,
leading to a series of important limitations on the audio settings
and overall performance. Firstly, the audio device cannot be ac-
cessed in exclusive mode, meaning that the samples synthesized
by the application have to transit through the internal buffer of An-
droid’s mixer before reaching the Audio HAL. This was taken into
account when computing the total buffer sizes passed to LDSP.
Secondly, the buffer size requested by audio apps is ignored as
OpenSLES is set to use the most optimal configuration for both
the application and internal buffer, as reported in the Audio HAL.
The values in use can be checked by inspecting the mixer’s status
using the command dumpsys media.audio_flinger from
an Android Debug Bridge shell. Finally, depending on the im-
plementation of the HAL, there is no guarantee that the library
matches the actual size of the bursts employed by the audio de-
vice, leading to possible overhead during data transfer.

Table 2 (right) displays the results of the tests run on the Huawei.
The audio device on this phone only supports a single ALSA pe-
riod size of 960 samples, as smaller and even larger sizes result
in continuous underruns in the audio stream. When running the
app, the mixer reported the expected 960 samples for the Audio
HAL buffer (matching the supported ALSA period), plus a total of
1924 samples for the application and internal buffers—a surpris-
ingly large value given the overall specifications of the phone. De-
spite running with a buffer three times smaller, LDSP showcased
a performance gain of almost 340%.

Table 3 presents the results for Asus1 (top), Asus2 (middle)
and LG1 (bottom). In spite of their lower technical specifications,
these phones exhibit good overall audio performance and greater
flexibility than the Huawei. They all support Android’s fast mixer,
which enables the use of smaller buffer sizes and requires a lower
computational footprint. During app runtime, the fast mixer re-
ported 240 samples for all three buffering stages, resulting in a
total size of 720 samples.

On Asus1, OpenSLES effectively matches the optimal buffer-
ing configuration and manages to sustain 200 oscillators in real-
time. LDSP provides a moderate 22.5% gain at the equivalent
buffer size, but with a third of the app’s optimal buffer size, it
can still run 200 oscillators. Overall, Asus1’s audio hardware and
firmware are well-suited for interactive audio applications.

The performance of the app on Asus2 falls short compared to
other device, with a maximum of only 50 oscillators. This suggests
that the configuration employed by OpenSLES is sub-optimal in
this case. Nevertheless, LDSP demonstrates the real potential of

13AAudio was introduced with Android 8.0 and is not retro-compatible.
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Table 2: Results - Xiaomi Mi 8 Lite (left), Huawei P8 Lite (right) (*native ALSA period size).

Env.
Buff. 1024 960 768 576 384 192* 128 64 32

LDSP 355 350 335 320 290 235 225 190 85
Android app - 275 265 255 160 30 - - -

Env.
Buff. 2884 960*

LDSP - 175
Android app 40 -

Table 3: Results - Asus ZenFone 2 Laser (top), Asus ZenFone GO
(middle), first LG G2 Mini (bottom) (*native ALSA period sizes).

Env.
Buff. 1024 720 512 240* 128 64 32

LDSP 255 245 235 200 180 165 40
Android app - 200 - - - - -

1024 720 512 240* 128 64 32
LDSP 185 180 175 165 150 135 120

Android app - 50 - - - - -
1024 720 512 240* 128 64 32

LDSP 180 180 180 175 175 160 110
Android app - 165 - - - - -

the phone. When using the same total buffer size as the app, perfor-
mance improves by 260%. Other buffer sizes yield good numbers
of oscillators, albeit lower than those measured on Asus1. Notably,
the phone stably runs 120 oscillators at the small buffer size of 32
samples. None of the other tested phones reach this count when
using the lowest buffer size supported.

The test results for LG1 reveal good audio capabilities and
overshadow the age of the phone. LDSP’s performance gain com-
pared to the Android app is at just under 10%. This is likely due to
the fact that the CPU has already reached a plateau at a buffer size
of 720 samples, where further increase in buffer size does not lead
to significant improvements in the maximum count of oscillators.
However, LDSP still manages to run a significant number of os-
cillators at lower buffer sizes, including as low as 32 samples. In
fact, at this end of the scale, LG1 outperforms the high-end Xiaomi
phone.

4.4.3. Android 4.4 and Bela

LG2 was the last phone to be benchmarked. Unfortunately, we
discovered that it is not possible to build the Android app for its
outdated Android 4.4 operating system, which is not compatible
with the Jetpack Compose framework. Although alternative UI
design packages are available for Android versions below 5.0, im-
plementing such a change would have required a massive redesign
of the app architecture, as well as a complete re-run of the previous
tests. We deemed the app redesign beyond the scope of this work
and we decided to only run LDSP on LG2. Table 4 presents the
results from LG2 and Bela, both tested using the same buffer sizes,
but neither having a direct comparison with the Android app.

LG2’s maximum number of oscillators is identical to LG1, ex-
cept for the value reported at 32 samples. This may be due to the
differences in the ROMs loaded on the two phones. Android 4.4 is
likely less optimized for real-time audio than Android 7.0; further-
more, LG1 runs a custom ROM, based on Android 7.0 but much
more lightweight. Despite these disadvantages, the similar results
between the two phones suggest that LDSP’s optimizations still
manage to harness most of the device’s computational power for

audio synthesis.
Bela’s performance is limited by the BeagleBone Black’s lower

specifications, but its buffer size scale reaches values that are inac-
cessible to all the other devices, showcasing its unique ultra-low-
latency capabilities.

5. DISCUSSION

LDSP outperforms the Android app in terms of the number of os-
cillators that can be run on all tested devices and buffer sizes. This
suggests that LDSP can better utilize the computational power of
the devices for audio synthesis. While this is in line with our ex-
pectations due to LDSP’s optimized audio stack structure, the de-
gree of improvement is sometimes beyond what we anticipated,
even exceeding 100%. As a result, even phones that were previ-
ously considered unsuitable for audio applications using standard
Android app development, such as ASUS1 and LG2, reveal the
actual potential of their underlying hardware when using LDSP.
This may open up new musical possibilities for already discarded
technology and reminds us that we often underestimate the nature
and the origin of the objects we interface with [26, 5]. In fact, one
may be surprised to discover that a 2014 Android phone can reli-
ably run more than 150 real-time oscillators using an audio buffer
of only 64 samples.

However, when viewed through the lens of sustainability, this
seemingly favorable scenario may pose some risks. Like circuit-
bent devices [27, 5], upcycled LDSP phones may not age linearly.
LDSP’s unconstrained access to CPU and hardware capabilities
enables the design of audio and musical applications that may
put components under significant strain, such as CPU overheating,
battery draining and constant high memory data rates. This can
lead to a quicker decrease of the phone’s lifespan. Nonetheless,
we designed LDSP as a tool to repurpose phones that have already
reached the end of their product life cycle, at least by modern con-
sumeristic standards. From this perspective, we believe that even
reckless phone usage via LDSP would result in an almost neutral
environmental impact.

The oscillator bank experiment shows how LDSP empowers
developers to optimize the balance between performance and re-
sponsiveness of their applications, by fine-tuning buffer size. While
this may seem like a minor detail to experienced audio program-
mers and creatives, our tests expose the limitations of Android in
this regard. Modern Android versions offer little flexibility when
it comes to adjusting the overall buffering mechanism, while older
versions such as Android 7.0 and lower straight remove this possi-
bility.

Our experiments with various Android devices have helped us
understand the rationale behind these architectural constraints. For
instance, some devices like Huawei have limited audio codecs that
support fixed periods only. To overcome this, Android relies on a
multi-stage buffering mechanism that sits atop the Audio HAL and
low-level audio driver, granting applications enough time to com-
plete audio synthesis or processing even when the native period
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Table 4: Results - second LG G2 Mini (LG2) and Bela.

Env.
Buff. 1024 512 256 128 64 32 16 8 4 2

LG2 180 180 180 175 160 100 - - - -
Bela 100 105 105 80 80 80 80 75 70 25

may not be enough. Conversely, LDSP buffers are always con-
strained by the native period size of the audio device. While the
Android multi-buffering mechanism is useful for general-purpose
multimodal applications, it adds unnecessary overhead and can in-
troduce buffers whose sizes are inappropriate for responsive audio
applications, as our results suggest.

Portability is an important feature that emerges from LDSP’s
results. We could have possibly either upgraded the ROM or down-
graded the UI package to run the Android app on LG2. Yet, the
fact that LDSP seamlessly runs on all phones including this very
old one is a way more valuable result. The presence of ALSA low-
level drivers is the only strict requisite for LDSP to be supported
on a phone. ALSA started being included in the Android kernel
since Android 2.3 and it is now the most widely used audio driver
across all brands and models of phones. This means that phones
released as early as 2010 are very likely to support LDSP and run
the same that code we tested on our 2018 Xiaomi. While harder
to find and more modest in terms of hardware as well as software
capabilities, such old phones can still be spotted in flee markets,
garages and even in secluded drawers within our very homes. We
believe they can be instrumental to unleashing creativity in spite of
and because of their limitations [23], and we are looking forward
to testing one.

Compared to standard Android development, LDSP offers a
streamlined solution that eliminates the need for developers to learn
and use different packages and frameworks based on the phone’s
age and setup. Instead, LDSP is based on standard C++, making
it a one-size-fits-all solution that also requires less hardware and
software for development. Whereas Android Studio is typically
the only option for deploying an application on a phone, LDSP is
development environment-agnostic and allows for the use of leaner
editors, resulting in faster and less memory/power-intensive com-
pilation.

Additionally, the comparison with Bela showcases how LDSP
offers a low entry fee for creatives. Bela can leverage block-based
processing on the onboard NEON vector floating point unit to
reach 700 oscillators [23]. When combining C++ and Assem-
bly, these results hold for buffers as small as 16 samples. While
similar optimization techniques can be carried out on phones via
LDSP14, a person who wants to repurpose old technologies may
not be familiar with the hardware specifics of a discarded phone,
nor may they want to delve into low-level optimization audio prac-
tices. Nonetheless, our entry-level code yielded better results than
Bela’s even on budget/old phones, suggesting a larger audio appli-
cation domain with minimal coding effort.

6. CONCLUSIONS

In this paper, we discussed how LDSP can be used to harness the
potential of old Android phones and foster the design of creative
audio applications. We ran an experiment using six different An-

14All the tested devices come equipped with the NEON.

droid phones to test the performance of an oscillator bank appli-
cation built using the LDSP C++ framework. Results suggest that
LDSP outperforms the standard Android app in terms of the num-
ber of oscillators that can be run on all tested devices and buffer
sizes. This is likely due to LDSP’s optimized audio stack struc-
ture, which better utilizes the computational power of the devices
for audio synthesis.

While often referring to the impact that the size of the buffer
has on the responsiveness of the application, more tests are neces-
sary to measure the actual latency of audio applications designed
with LDSP and compare them with results obtained with equiva-
lent Android applications.

In our judgement, the central emphasis placed by LDSP as a
project on upcycling and reclaiming conventional technology in-
vites innovative approaches to engage with it, both practically and
politically. This engagement entails acknowledging our agency
and responsibility towards the technologies we have created, used
and discarded. By reusing and exploring new ways to interact with
off-the-shelf devices, we shift our focus towards sustaining them
in a manner that nurtures creativity rather than solely pursuing the
allure of the latest technology [28].

The utilization of ready-made technologies also holds the po-
tential for maintenance through community-driven practices and
shared knowledge [29]. Given the abundance of Android tech-
nology expertise available in varying degrees, the likelihood of
continued support is somewhat assured. Therefore, it becomes
paramount for us to collaborate with musicians and developers, as
such partnerships would expand the project’s capabilities to cater
to diverse needs, interests, and skill sets while fostering a sense of
community across different spheres of action.

LDSP was designed with accessibility in mind, as evident th-
rough its collection of examples and libraries, as well as its overall
simplicity. However, it does require basic C++ or equivalent cod-
ing skills to fully explore its potential. In this study, we highlighted
the advantages of working with low-level C++ for achieving opti-
mal audio performance. However, it is important to note that this
comes at the cost of a less accessible environment compared to
other Android audio frameworks. To address this issue, we have
recently introduced support for Pure Data patches by integrating
libpd directly into the core low-level audio engine of LDSP. This
enhancement offers users the flexibility to build their LDSP appli-
cations using Pure Data exclusively or to combine Pure Data with
C++, allowing for a tailored balance between code complexity and
performance. In fact, it is worth mentioning that the use of libpd
introduces some computational overhead that may impact the per-
formance of audio applications (this is seen in Bela too). We plan
to conduct further tests to quantify this impact within the LDSP
environment.
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ABSTRACT
This paper combines recurrent neural networks (RNNs) with

the discretised Kirchhoff nodal analysis (DK-method) to create a
grey-box guitar amplifier model. Both the objective and subjec-
tive results suggest that the proposed model is able to outperform
a baseline black-box RNN model in the task of modelling a gui-
tar amplifier, including realistically recreating the behaviour of the
amplifier equaliser circuit, whilst requiring significantly less train-
ing data. Furthermore, we adapt the linear part of the DK-method
in a deep learning scenario to derive multiple state-space filters si-
multaneously. We frequency sample the filter transfer functions in
parallel and perform frequency domain filtering to considerably re-
duce the required training times compared to recursive state-space
filtering. This study shows that it is a powerful idea to separately
model the linear and nonlinear parts of a guitar amplifier using
supervised learning.

1. INTRODUCTION

Virtual analogue (VA) modelling [1, 2, 3] is a broad topic that still
offers room to combine different approaches to obtain faithful dig-
ital models of real devices. Approaches to VA modelling are of-
ten divided into “black-box” methods, which require almost no
knowledge of the target device’s inner workings [4]. These meth-
ods are limited because they typically do not allow for simulating
user controls, which are present in most analogue devices.

On the other hand, there are “white-box” VA modelling tech-
niques, which create discretised versions of the actual electrical
circuits and allow for simulation of the behaviour of variable com-
ponents such as potentiometers [5, 6, 7]. Typically, these methods
are based on wave digital filters [2, 8, 9] or nonlinear state-space
representations [10, 11, 12]. Nonlinear white-box models often re-
quire the utilisation of approximation or look-up tables in order to
run efficiently in real time [10]. The overall modelling accuracy
is also affected by the exactness of physical models of nonlinear
components, namely diodes, transistors or vacuum tubes, which
often require fitting to measurements from real components [13].
Furthermore, component values listed in schematics may need to
be optimised using data recorded from the device to account for
inaccurate schematics and component tolerances [14].

With the emergence of the concept of differentiable digital sig-
nal processing [15], recent works have shown that it is possible to
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Feb.–Mar. 2023.
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adapt white-box modelling methods in a deep learning scenario to
either discover unknown values of components in analogue circuit
models [16] or to replace some of the computationally demanding
nonlinear circuit elements with small neural networks [17, 18].

Finally, we can define the “grey-box” approach to VA mod-
elling. The methods that fall into this category require some knowl-
edge of the inner structure of given devices but also rely on mea-
surements [19], such as the state trajectory network method [20].
Various grey-box techniques were previously successfully applied
to create models of guitar amplifiers [21], time-varying effects [22]
or dynamic range compressors [23].

Simulation of vacuum tube guitar amplifiers is among the pop-
ular VA modelling subfields. Numerous works utilising deep learn-
ing methods for black-box guitar amplifier modelling have been
published in the last few years [24, 25, 26, 27, 28]. One way to
adapt these models to emulate user controls is to capture audio
datasets of various control settings and allow the model to learn
the dependencies from data using conditioning [29]. However,
simulating multiple controls with conditioning calls for a reliable
automated method for sampling numerous control combinations,
making this task unsuitable for manual data collection [30].

In this paper, we propose a grey-box model that combines re-
current neural networks (RNNs) for the nonlinear preamplifier and
power amplifier simulation, with a white-box linear state-space
model of a guitar amplifier equaliser section, commonly referred
to as the tone stack [31]. The main contributions of this paper are
as follows. We show that our model needs only a fraction of the
data to learn the tone stack behaviour accurately, when compared
to an RNN baseline model, whilst also generalising far better to
unseen data. Although the differentiable tone stack model was al-
ready presented in [16], we utilise the frequency sampling of the
tone stack state-space model for frequency domain filtering, which
results in considerably faster training times when compared to re-
cursive time domain filtering. In addition, we adapt the discretised
Kirchhoff nodal analysis (DK-method) to efficiently derive multi-
ple state-space filters in a deep learning framework.

The rest of the paper is structured as follows. Sec. 2 describes
the modelled guitar amplifier and the data acquisition process. In
Sec. 3, we describe the differentiable tone stack model, the fre-
quency sampling of the tone stack filter for deep learning purposes,
and a method used for frequency domain filtering. Sec. 4 describes
the proposed neural network model and the hyperparameters used
for training. Sec. 5 presents our experiments. Sec. 6 summarises
the objective and subjective results. Finally, Sec. 7 concludes.

2. MODELLED DEVICE

The device in question is a Marshall JVM 410H vacuum tube am-
plifier. For the channel setting modelled in the work, the circuit
topology consists of a preamplifier followed by a tone stack and a
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Figure 1: Frequency responses of the JVM tone stack model with each control (bass, middle, and treble) varied from 0 to 10.

Table 1: Tone stack settings for evaluation on parameter values
not seen in training. The values are normalised to the range [0, 1]
and denoted by cb for the bass control, cm for the middle control,
and ct for the treble control.

cb cm ct cb cm ct cb cm ct
0.1 0.3 0.7 0 0 1 1 0 0
0.3 0.7 0.1 0 1 0 1 0 1

0.65 0.85 0.35 0 1 1 1 1 0

power amplifier. The preamplifier is controlled by a “gain” knob,
which adjusts the signal level before the tube clipping stages. The
tone stack has a well known topology used in Fender, Vox, and
Marshall amplifiers (FMV), described in Sec. 3.1. Its frequency
response can be altered by three potentiometers, labelled as “bass”,
“middle”, and “treble”. Fig. 1 shows frequency responses of the
JVM tone stack model as each control is varied. After the tone
stack, the signal level is adjusted by a “volume” knob followed by
the power amplifier, which has three controls. A “master” knob
adjusts the signal level before the power tubes, and “resonance”
and “presence” knobs alter the low- and high-frequency content.

2.1. Dataset Description

It has previously been shown that the amount of training data re-
quired for black-box neural guitar amplifier modelling is relatively
low [28]. Thus, we composed a 6-min-long dataset of guitar and
bass audio files of different playing styles and genres. We split the
dataset into three parts: the first 4 min are used for training, and
the remaining 2 min are split in half for validation and testing. All
the sounds were taken from IDMT datasets described in [32, 33].

For the sake of simplicity, we model a single channel of the
amplifier, which is labelled as “OD1” and produces a relatively
high amount of distortion. We further limit ourselves to only mak-
ing the tone stack knobs fully controllable. Therefore, we set the
channel volume to maximum (10) and the gain, master, resonance
and presence to midpoint (5) in all cases. Then, the entire dataset
was processed through the amplifier multiple times with different
settings of the bass, middle, and treble controls. We varied each
knob from minimum (0) to 10 with a step of 2. Each time a single
control was varied, the remaining two were set to 5. This resulted
in 6 different output signals for each control. In addition, we also
recorded 3 output signals, where all knobs were set to 0, 5, and 10.

We captured 9 additional output signals whilst processing only
the 1-min test subset to further evaluate the model performance on
unseen parameter settings. These tone stack settings, normalised
to the range of [0, 1], are shown in Table 1. For the first three output
signals, the tone stack was set to values between the steps used for
capturing the training subset. In the remaining cases, the tone stack
was set to various combinations of extreme values to assess how
well the models were able to generalise the non-orthogonal control

behaviour described in [31].
The recording was carried out in the same fashion as in [29].

The output signals were recorded at a sampling rate of 44.1 kHz
from the speaker output of the amplifier using a Two Notes Tor-
pedo Captor 8 reactive load connected to a line input of an RME
UCX USB audio interface.

3. DIFFERENTIABLE TONE STACK MODEL

We identified the DK-method [5] as a suitable analogue circuit dis-
cretisation technique to implement a differentiable version of the
tone stack model. The DK-method allows an automated derivation
of the state-space model from a list of virtual electronic compo-
nents. We use the version of the DK-method proposed in [12]. In
comparison with the earlier version [5], it allows more efficient
handling of the variable components (potentiometers), which is
useful not only for inference but also for adapting it for deep learn-
ing using PyTorch [34] as shown in Sec. 3.1. In this work, we use
the DK-method only to derive a linear model. For more informa-
tion about modelling nonlinear systems with the DK-method, we
refer to other sources [10, 11, 35].

3.1. Derivation of the Tone Stack Model

The first step is to construct so-called incidence matrices that spec-
ify to which circuit nodes the individual components are connected.
The number of rows in the incidence matrix is equal to the number
of components, and the number of columns is equal to the number
of circuit nodes (excluding the ground node). Entries in each row
are given by positive and negative poles of the components, and
are marked by (+1) and (−1), respectively. The negative pole is
omitted for components connected to the ground node. In the case
of the tone stack model, we need to create five incidence matri-
ces where NR is for resistors, NV for variable resistors, Nx for
capacitors, Nu for the voltage source vin, and No for the output
voltage vout.

Next, we can build the system matrix S0, excluding the vari-
able resistors, defined as

S0 =

(
NT

RGRNR +NT
xGxNx NT

u

Nu 0

)
, (1)

where GR and Gx are diagonal matrices containing the parame-
ter values of each resistor and capacitor respectively. Following
the discretisation scheme from [12], the values in GR are conduc-
tances given by 1

Ri
, and the values in Gx are computed by 2Ci

T
,

where T is the sampling period.
To ensure the system matrix S0 is invertible, we augment the

matrices NR and GR with virtual constant resistors [10], which
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Figure 2: Schematic of the JVM tone stack circuit, where the po-
tentiometers VRi are adjusted by control knobs.

are connected in parallel to the resistors of the potentiometers VR3

and VR4. Consequently, we derive the coefficient matrices

A0 =
(
2GxNx 0

)
S0

−1 (Nx 0
)T − I (2)

B0 =
(
2GxNx 0

)
S0

−1 (0 I
)

(3)

D0 =
(
No 0

)
S0

−1 (Nx 0
)T (4)

E0 =
(
No 0

)
S0

−1 (0 I
)

(5)

and the helper matrices

Q =
(
NV 0

)
S0

−1 (NV 0
)T (6)

Ux =
(
Nx 0

)
S0

−1 (NV 0
)T (7)

Uo =
(
No 0

)
S0

−1 (NV 0
)T (8)

Uu =
(
0 I

)
S0

−1 (NV 0
)T (9)

where 0 and I are zero and identity matrices of appropriate dimen-
sions. Finally, we compute the state-space matrices A ∈ R3×3,
B ∈ R3×1, D ∈ R1×3, and E ∈ R1×1 as

A = A0 − 2GxUx(RV +Q)−1UT
x (10)

B = B0 − 2GxUx(RV +Q)−1UT
u (11)

D = D0 −Uo(RV +Q)−1UT
x (12)

E = E0 −Uo(RV +Q)−1UT
u (13)

where RV ∈ R7×7 is a diagonal matrix, which contains the resis-
tances of the variable resistors given by bVR2 for the bass control,
2(1−m)
2−(1−m)

VR3 and 2m
2−m

VR3 for the mid control, and (1− t)VR1

and tVR1 for the treble control. The coefficients t ∈ [0, 1], m ∈
[0, 1], and b ∈ [0, 1] denote the tone stack potentiometer settings.
The resistances of the volume potentiometer VR4 are derived in
the same way as in the case of VR3. However, they are left static
and define a load for the tone stack circuit. The schematic of the
modelled circuit with numbered nodes is shown in Fig. 2.

To adapt the model to be used in a deep learning framework,
we can easily define trainable coefficients αRi , αVRi and αCi to

0.0 0.2 0.4 0.6 0.8 1.0
cb, cm, ct
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Figure 3: Nonlinear potentiometer tapers.

Table 2: Component values of the JVM tone stack.

Name Value Name Value Name Value
R1 33 kΩ VR2 1 MΩ C1 470 pF
R2 39 kΩ VR3 20 kΩ C2 22 nF
VR1 200 kΩ VR4 1 MΩ C3 22 nF

optimise the component values from Table 2 during the model
training similarly to [16]. We do this because component values
taken directly from the schematic do not precisely correspond to
the values of real components. Additionally, we use a scaled sig-
moid function defined by f(α) = t1 + σ(α)t2, where t1 and t2
are fixed to limit the range in which the component values are ad-
justed. We set t1 = 0.8 and t2 = 0.4 to achieve ±20% tolerance.

The resistances of the variable resistors in RV are also de-
pendent on conditioning vectors cb, cm, and ct, which describe
how the controls were set on the amplifier. The number of el-
ements in a single conditioning vector is given by the number
of audio segments in the training batch of size s. The vectors
cb, cm, and ct cannot be used to directly alter the variable resis-
tances. Thus, we add nonlinear trainable tapers for potentiome-
ters VR1, VR2, and VR3, shown in Fig. 3. The same tapers
were used in [16] to form a two layer neural network defined by
f(x) = w1tanh(w2x+b2)+b1, where tanh is a hyperbolic func-
tion, x is the layer input, and w1–2 and b1–2 are trainable weights
and biases of the respective layers. We found that leaving w1 and
b2 unrestricted does not assure that the mapping output will stay in
the range of [0, 1], which is needed to compute the variable resis-
tances correctly. To solve this, we compute

w1 = 1/[tanh(w2 + b1)− tanh(b1)], (14)
b2 = −w1tanh(b1), (15)

which results in only two free parametersw2 and b1 as described in
[36]. The same work also specifiesw1–2 and b1–2 parameter values
for fitting either linear or logarithmic potentiometer tapers that we
use to initialise the parameters of the mapping neural networks.

Since we recorded the audio signals from the amplifier with
various settings of controls, each audio segment in a training batch
has different conditioning values assigned to it due to dataset shuf-
fling. As a result, the number of state-space representations we
need to compute is also equal to s. To achieve this, we exploit
the tensor broadcasting semantics of PyTorch1 and adapt the DK-
method to derive multiple state-space filters efficiently.

If we return to the equations (10)–(13), it can be seen that the
state-space matrices will be different each time the variable resis-
tances in RV change. Since each audio segment in the training

1https://pytorch.org/docs/stable/notes/broadcasting.html
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batch needs to be filtered differently according to the conditioning
vectors cB, cM, and cT, we can create RV ∈ Rs×7×7, which is a
tensor of variable resistances where the first dimension is equal to
the batch size s. In other words, it is a tensor containing the vari-
able resistances corresponding to the conditioning data for each
item in the training batch, which are in turn used to obtain dif-
ferent state-space filters for each audio segment. If we use this
tensor in computation of (10)–(13), we get tensors A ∈ Rs×3×3,
B ∈ Rs×3×1, D ∈ Rs×1×3, and E ∈ Rs×1×1 as a result. This
is relatively simple to implement using PyTorch, as the tensors
will be correctly broadcasted as long as the remaining dimensions
are compatible. Considering that we need to recompute the fil-
ters each time the neural network model parameters are updated,
this approach is much less computationally expensive than deriv-
ing multiple state-space representations sequentially.

3.2. Frequency Sampling of the Tone Stack Filter

Several related works have already described frequency sampling
of infinite impulse response (IIR) filters for deep learning purposes
[37, 38, 39, 40]. Although IIR filters can be applied recursively in
the time domain [41], the finite impulse response (FIR) approx-
imation by frequency sampling allows for much faster training
times [38]. Previous works investigated mainly frequency sam-
pling of second-order sections (biquads). Nevertheless, we can do
the same with state-space filters. Let us consider a single-input
single-output (SISO) discrete system with scalar input u[n] and
output y[n], that is defined by

x[n+ 1] = Ax[n] +Bu[n], (16)
y[n] = Dx[n] +Eu[n], (17)

where A is the system matrix, B is the input matrix, D is the out-
put matrix, E is the feedthrough matrix, and x is the state vector.
To obtain the transfer function of a linear state-space filter, first,
one has to take the Z-transform of (16), which yields

zX(z)− zx[0] = AX(z) +BU(z), (18)
where x[0] represents the initial conditions. Then, the transformed
state vector is given by

X(z) = (zI−A)−1zx[0] + (zI−A)−1BU(z). (19)

The transformed filter output (17) is equal to

Y (z) = DX(z) +EU(z)

= D(zI−A)−1zx[0] + [D(zI−A)−1B+E]U(z).

(20)

If we assume zero initial conditions (x[0] = 0), (20) can be rear-
ranged to obtain equation for the transfer function

H(z) =
Y (z)

U(z)
= D(zI−A)−1B+E, (21)

which can be reformulated to

H(z) =
det(zI−A+BD) + det(zI−A)E

det(zI−A)
, (22)

where det denotes the matrix determinant. Then, we derive a
polynomial-form transfer function from (22) defined by

H(z) =
b0z

m + b1z
m−1 + · · ·+ bm−1z + bm

a0zm + a1zm−1 + · · ·+ am−1z + am
, (23)
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Figure 4: Comparison of the ideal tone stack response with fre-
quency sampled responses using a sampling vector of different
lengths L, showing differences at low frequencies.

where m is equal to the order of the system, and b0–m and a0–m

are the numerator and denominator polynomial coefficients.
To frequency sample a linear state-space filter, first, we con-

sider its frequency response denoted as H(ejω), which can be
frequency sampled at angular frequencies ωk = 2πk/N where
k = 0, . . . , ⌊N/2⌋, and N is the length of the discrete Fourier
transform (DFT). If we set z to ejωk , then we can easily derive
H(ejωk ) from the transfer function H(z). Similarly as in [37],
we can frequency sample H(z) by combining frequency sampled
m-sample delays (z−m)N ∈ C⌊N/2⌋+1 and computing

H(ejωk ) = HN [k] =

∑M
m=0 bm(z−m)N [k]

∑M
m=0 am(z−m)N [k]

. (24)

A transfer function and frequency response of a linear state-
space model can be computed using MATLAB or SciPy Python li-
brary functions called ss2tf and freqz, respectively. However,
we need to compute several responses of state-space representa-
tions on a graphics processing unit (GPU) in parallel. To overcome
this issue, we implemented differentiable methods for the PyTorch
tone stack model to derive transfer functions and frequency re-
sponses for any number of SISO state-space filters simultaneously.

A few precautions must be taken when frequency sampling IIR
filters. First of all, a sufficient sampling vector length L must be
used to maintain the fidelity of the frequency response, especially
at low frequencies. We found that L = 2049 is satisfactory for
the tone stack model despite slight inaccuracies below 30 Hz as
shown in Fig. 4. Increasing L above 2049 makes it possible to get
even closer to the ideal response, but it is not necessary for model
training purposes.

A less obvious problem arises from the numerical precision
chosen for deriving the frequency responses. Deep learning li-
braries often use single-precision floating-point numbers for all
computations, which can result in incorrect frequency responses
due to rounding errors. This problem is not straightforward to
detect as, in the case of the tone stack model, the responses are
miscalculated only with particular settings of the virtual poten-
tiometers. A simple solution is to use double-precision numbers
when deriving the polynomial coefficients of the state-space trans-
fer functionH(z). The purple dash-dotted line in Fig. 5 represents
an incorrect response of the tone stack model with the controls set
to cb = 1, cm = 0, and ct = 1 when using single-precision.

3.3. Frequency Domain Tone Stack Filtering

To significantly speed up the training process, we use a similar pro-
cedure to [23], where a one-pole IIR filter was applied in the fre-
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Figure 5: Comparison of the ideal tone stack response with fre-
quency sampled responses using single- and double-precision.

FFT IFFT
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Figure 6: Frequency domain filtering of an audio sub-segment with
a tone stack frequency response.

quency domain. We use truncated backpropagation through time
(TBPTT) [42] for updating trainable parameters multiple times
when processing longer audio segments. The TBPTT length de-
termines Nin, which is the number of samples of the audio sub-
segments used for training. Each TBPTT batch consists of s au-
dio sub-segments ui[n] that get processed simultaneously during
a single training step. The filtering process for a single audio sub-
segment is depicted in Fig. 6.

First, an audio sub-segment ui[n] of length Nin is inserted
into a buffer of length Nb = 2Nin. Then, we perform a fast
Fourier transform (FFT) on the audio samples ubi [n] stored in the
buffer, and discard the negative frequency components, resulting
in ⌊Nb/2⌋ + 1 complex frequency coefficients Ubi [k]. Next, we
supply the conditioning values cbi , cmi , and cti which affect the
variable resistances of the tone stack model. After all virtual com-
ponents of the tone stack model are updated, we can derive the
state-space representation using the DK-method.

The tone stack transfer function Hi(z) and frequency sam-
pled response HNi [k] is then computed. This is used to perform
an element-wise multiplication of HNi [k] with Ubi [k], which re-
sults in filtered complex frequency coefficients Ŷbi [k]. Finally, we
take the inverse FFT of Ŷbi [k]. Since the beginning of the filtered
buffer ŷbi [n] contains the starting transient, we only keep the last
Nin samples, which allows for processing longer audio sequences
without producing discontinuities in the filtered signal. As a result,
there is no need to apply windowing functions during the filtering
process. Note that we set the buffer size Nb = 4096 in order to
obtain 2049 complex coefficients after performing the FFT so it
matches the length of the frequency sampled response HNi [k].

4. MODEL STRUCTURE AND TRAINING

The proposed grey-box model is composed of three blocks, as
shown in Figure 7. The first block is a long short-term memory

LSTM FC + GRU FC +tone stack 
model

preamplifier power amplifier

Figure 7: Block diagram of the proposed grey-box model, which
uses neural network models for the pre- and power- amplifier sec-
tions and a linear white-box model for the tone stack circuit.

(LSTM) RNN [43] followed by the differentiable state-space tone
stack model described in Sec. 3, and a gated recurrent unit (GRU)
RNN [44]. The RNNs are used for modelling the preamplifier
and power amplifier, respectively. Fully connected (FC) layers are
added after each RNN to transform the hidden state vectors into
single audio samples. We provide a reference PyTorch implemen-
tation, the dataset, and listening examples at2.

The architecture of the RNNs is identical to a previously pro-
posed black-box guitar amplifier model [28]. The hidden state size
determines the accuracy of these models. An extensive hyperpa-
rameter search was conducted in previous works [28, 29] to as-
sess the ideal hidden state sizes. We set the hidden size to 40 for
the LSTM and to 8 in the case of the GRU. These hyperparame-
ters were set empirically after initial training experiments on the
dataset presented in Sec. 2.1.

Note that our grey-box model assumes that the preamplifier,
tone stack, and power amplifier are decoupled in terms of their
interaction. The Marshall JVM 410H has a feedback connection
from the output transformer to the phase splitter, controlled by the
“resonance” and “presence”. We did not investigate how this feed-
back connection affects the interaction between the amplifier sec-
tions.

4.1. Objective Metrics

All models in this work were trained to minimise the Error-To-
Signal (ESR) loss, which has been used extensively for modelling
nonlinear audio circuits [26, 27, 28, 29]. The ESR is given by

EESR =

∑N−1
n=0 |y[n]− ŷ[n]|2∑N−1

n=0 |y[n]|2
, (25)

where y[n] is the target signal, ŷ[n] is the predicted signal, and N
is the length of the training segment.

Furthermore, we use a frequency domain error metric based on
short-time Fourier transform (STFT) from [45] denoted as ESTFT

solely for validation purposes. It is a linear combination of spectral
convergence and log-scale STFT-magnitude error. Contrary to the
ESR, it discards the phase information and provides insight into
how well the models perform regarding spectral similarity. We
utilise this metric because phase differences between the model
output and the target signal can result in high ESR with the model
still performing well perceptually [21].

4.2. Training Hyperparameters

To train the models, we use similar hyperparameters to those pro-
posed in [29]. The training dataset was split into 0.5 s audio seg-
ments. The first 1000 samples of each segment are processed with-
out updating the parameters of the network, which allows for the

2https://stepanmk.github.io/grey-box-amp
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Table 3: Number of trainable parameters, duration of a training
step on a GPU, and a real-time factor (RTF) at a sampling rate of
44.1 kHz for the baseline and proposed models.

Model Type Params. Train. Step (s) RTF
RNN (baseline [28]) 10417 0.16 21.28
TS (tone stack from [16]) 7208 26.59 11.49
TS (proposed recursive) 7208 14.17 19.61
TS (proposed freq. domain) 7208 0.45 19.61

initialisation of the RNN states and the tone stack buffer. The rest
of the samples were processed with TBPTT being applied every
2048 samples. The training batch size was set to s = 80. We
calculated the validation loss every 2 epochs, and the maximum
number of training epochs was set to 350. We applied early stop-
ping with a patience of 15 epochs whilst monitoring the validation
loss. The models were trained with the Adam optimiser with an
initial learning rate of 2× 10−3. The learning rate was decreased
by a factor of 0.5 if the validation loss did not improve for 10
consecutive epochs. The training time of the models before early
stopping varied but generally took approximately 10 to 40 min on
a GPU, depending on the size of the training dataset.

5. EXPERIMENTS

We hypothesise that the white-box tone stack will greatly improve
the ability of the model to generalise to the unseen values described
in Sec. 2.1, especially when only a small number of parameter
values are seen during training. To test this we train models using
different subsets of the training dataset.

As a baseline, we use a fully black-box RNN model from [28]
consisting of an LSTM of hidden size 48 followed by a FC layer.
We use a larger hidden size for the baseline model to compensate
for the fact that our proposed model includes an additional RNN
stage after the tone stack model. The black-box baseline RNN
model receives the conditioning values as additional input chan-
nels, and as such has an input size of 4.

Four different datasets were used for training, with the num-
ber of unique permutations of conditioning values varying from 1
to 21. The smallest dataset contains a single permutation, with all
the tone stack controls set to the midpoint (5). The second dataset
has 2 additional targets, where all the tone stack controls are set to
either 0 or 10. The third dataset includes all the targets from the
second dataset, in addition to cases where each tone stack control
is set to either 0, 2, 8, or 10, whilst the remaining controls are set to
5. This results in a total of 15 tone stack parameter permutations
in the third dataset. Finally, the last dataset includes the second
dataset, as well cases where each tone stack control is varied in
turn to either 0, 2, 4, 6, 8 or 10, whilst leaving the rest of the con-
trols set to 5. This results in a total of 21 unique permutations for
the fourth dataset. Note that we left the nonlinear potentiometer
tapers non-trainable in the case of our TS1 model, as only a single
conditioning value was presented during training.

6. RESULTS

The proposed model has less trainable parameters than the base-
line, however, as shown in Table 3, it is slightly slower to train.
Frequency sampling of the tone stack filter significantly improves
the training times on a GPU. The difference in an average training
step duration is even more pronounced when compared to a pre-

Table 4: Objective results for the baseline and proposed mod-
els. Bold indicates best-performing model. The numbering of the
model names corresponds to the number of unique permutations
of conditioning seen during training.

Test Test Unseen Train. Dataset
Model EESR ESTFT EESR ESTFT Duration (min)
RNN1 0.020 0.793 1.748 2.573 4
RNN3 0.025 0.933 1.446 2.511 12
RNN15 0.017 0.743 0.040 0.953 60
RNN21 0.015 0.693 0.039 0.893 84
TS1 0.011 0.760 0.048 0.854 4
TS3 0.020 0.764 0.023 0.715 12
TS15 0.029 0.780 0.038 0.805 60
TS21 0.028 0.924 0.039 0.955 84
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Figure 8: Further evaluation of the proposed TS1 and TS3 models
on unseen tone stack permutations: (top) time domain and (bot-
tom) spectral errors for (left) bass, (center) middle, and (right)
treble controls.

viously proposed differentiable tone stack model from [16], where
the filtering is applied in the time domain. In addition, the previous
approach uses a different discretisation scheme and does not al-
low direct derivation of the transfer function needed for frequency
sampling.

Furthermore, we measured how long it takes to process 1 s of
audio with a custom C++ implementation of our model expressed
as a real-time factor (RTF) computed according to [18]. An RTF
larger than 1 means the model can process the signal faster than
in real time. The baseline model was found to be negligibly faster
than the proposed model, as shown in Table 3.

Objective metrics for all trained models are shown in Table 4.
In the case of the baseline RNN models, it is clear that the more
tone stack permutations the models see during training, the bet-
ter they perform on unseen permutations. This is evident from
both the time and frequency domain metrics. The RNN21 that
was trained on 84 min of data performed the best in compari-
son to other baseline models. In contrast to this, the proposed
models performed well even when trained on very small datasets.
The TS1 model, trained on just a single tone stack setting (4-
min dataset), outperformed the best-performing baseline model in
terms of STFT error computed on unseen parameter values. The
TS3 performed the best of all the models, producing the smallest
error on unseen data, for both metrics.

As the TS1 and TS3 models were only trained on 1 and 3 tone
stack settings, we may also consider the rest of the training dataset
as unseen, and use this to further evaluate the performance of these
models, as shown in Fig. 8. It was observed during training that for
the models TS15 and TS21, the additional data seemed to impact
the model training negatively. An abrupt increase in the validation
loss occurs after a few epochs, and this behaviour was observed

DAFx.6

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

156



Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

consistently across different training runs. One possible explana-
tion could be that the trainable potentiometer tapers used in the
tone stack model might be sensitive to errors caused by manually
setting the tone stack controls on the real amplifier when recording
the dataset.

6.1. Listening Tests

A MUSHRA [46] listening test was conducted to evaluate the per-
ceptual quality of the models. In each trial, participants were pre-
sented with a reference clip that was processed by the guitar am-
plifier being modelled. Participants were asked to rate seven test
conditions on a scale of 0 to 100, based on perceived similarity
to the reference. The test conditions included five neural network
models: 3 black-box RNN models, which were trained using ei-
ther 1, 3, or 21 unique permutations of tone stack parameters, and
2 versions of our proposed grey-box model, trained with either 1
or 3 permutations of tone stack parameters. These were selected
based on the objective results of the previous section. Additionally
an anchor, created by processing the input with a tanh nonlinear-
ity, and a hidden reference, were included in the test.

Fourteen participants completed the listening tests. Two par-
ticipants identified as female and twelve as male. All participants
had experience completing listening tests, and their mean age was
28.5 years. One participant was excluded from the results as they
rated the hidden reference below 90 in more than 15% of the trials.

The listening test was conducted for two different tone stack
settings that the models had not seen during training. Results of
both test scenarios are shown in Fig. 9. First, the tone stack pa-
rameters were set to cb = 0.1, cm = 0.3, and ct = 0.7. In
this case, the conditioning values were in-between the steps used
to capture the training dataset. This represents a case that should
easier for the model to predict accurately. The RNN1 and RNN3
baseline models were rated as Poor and Fair, respectively. Inter-
estingly the RNN3 model, which was trained on more data than
RNN1, performed worse. The RNN21 model, on the other hand,
was rated as excellent as it was trained on a substantially larger
dataset. Our proposed TS1 and TS3 models were both rated as
Excellent, showing that adding the tone stack model greatly im-
proves generalisation, even though the models were trained only
on 4 and 12 min data, respectively.

In the second scenario, the tone stack parameters were set to
cb = 1, cm = 0, and ct = 0. In this case, the RNN models trained
on the small datasets were rated the worst, as in the first scenario.
The RNN21 model trained on the largest dataset was only rated as
Fair, contrary to how it was rated in the first scenario. This shows
that the RNN models must be supplied with additional permuta-
tions of the tone stack parameters to generalise better. Conversely,
the TS1 and TS3 models with the tone stack included were again
rated as Excellent as shown in the bottom half of Fig. 9. The TS3
model trained on 12 min of data was rated slightly worse than the
TS1 model, in contrast to the first test scenario. This also goes
against the objective results, however informal listening tests con-
firm only slight differences in the high frequencies. We encourage
readers to evaluate the models for themselves by listening to the
sound examples provided on the demo page.

7. CONCLUSIONS

In this work we present a grey-box approach for guitar ampli-
fier modelling, which allows for the inclusion of user parameters
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Figure 9: MUSHRA scores with 95% confidence intervals for the
tone stack settings of cb = 0.1, cm = 0.3, and ct = 0.7 (top) and
cb = 1, cm = 0, and ct = 0 (bottom).

whilst requiring minimal training data. The proposed approach can
be applied to many popular guitar amplifiers, as the modelled tone
stack circuit is ubiquitous in the industry. We also demonstrated
how a state-space model of a linear parametric circuit can be im-
plemented using the frequency sampling method, allowing for effi-
cient training within a deep learning framework. A subjective and
objective evaluation of our proposed method demonstrates excel-
lent generalisation to unseen data and excellent perceptual qual-
ity. Future work should validate our approach on other devices as
our study was limited to a single amplifier. Using the DK-method
combined with frequency sampling should also allow for incorpo-
rating other controllable linear circuits into neural network models
of guitar pedals and various analogue effects.

We acknowledge that modelling different guitar amplifiers,
which produce very high amounts of distortion, could result in
the need to use RNNs with larger hidden sizes, thus making the
model more expensive to run in real time. However, recent work
[47] has shown that it is possible to prune the trainable weights
of black-box RNN guitar amplifier models, resulting in a smaller
effective hidden size whilst slightly improving the perceptual mod-
elling quality. It is likely that this method could also be applied to
our grey-box model.
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   ABSTRACT 

In this paper, we propose the use of the transimpedance amplifier 
configuration as a simple generic circuit for electron device-based 
audio distortion. The goal is to take advantage of the non-lineari-
ties in the transfer curves of any device, such as diode, JFET, 
MOSFET, and control the level and type of harmonic distortion 
only through bias voltages and signal amplitude. The case of a 
nMOSFET is taken as a case study, revealing a rich dependence 
of generated harmonics on the region of operation (linear to satu-
ration), and from weak to strong inversion. A continuous and ana-
lytical Lambert-W based model was used for simulations of har-
monic distortion, which were verified through measurements. 

1. INTRODUCTION 

Since the beginning of electrical musical instruments, musicians 
are trying to achieve a unique sound through their gear with all 
kinds of effect units. Modulation, reverb, overdrive and distortion 
effects are widely used for electric guitars but nowadays also by 
any electric string instrument, synthesizers, keyboards or even vo-
cals. For example, a signal can be distorted through soft or hard 
clipping, or through any non-linear transfer function, symmetrical 
or asymmetrical. To achieve all these cases of signal distortion, the 
typical circuits used are single or multiple gain stages with or with-
out diode clipping. For the gain stages there are hundreds of dif-
ferent combinations that can be used: from vacuum tubes [1], [2] 
to opamps [3], from silicon to germanium diodes [4], from BJTs 
to JFETs and MOSFETs [5], [6], each circuit has a different trans-
fer curve and as a result a unique tone character, usually thanks to 
the devices’ non-linear response. Diodes are used for both soft and 
hard or shunt clipping, in different configurations: in amplifier 
feedback loop or shunt to ground, respectively. The clipping of the 
signal can also be symmetrical or asymmetrical, leading to purely 
odd or odd/even harmonics. 

To our knowledge, in all above cases, the non-linear devices 
are either used as non-linear resistors in an OPAMP’s feedback 
loop or as shunting elements. As a result, only specific amplitude-
dependent regions of non-linear response are being exploited. In 
this work, we propose a method with which one can make use of 
any non-linear I-V characteristic exploiting various voltage bias 
regions, while having complete control of the generated 

 
Copyright: © 2023 Christoforos Theodorou and Michail Ziogas. This is an open-

access article distributed under the terms of the Creative Commons Attribution 4.0 

International License, which permits unrestricted use, distribution, adaptation, and 

reproduction in any medium, provided the original author and source are credited. 
 

harmonics. Despite the fact that there has been an in-depth analysis 
of harmonic distortion in MOSFETs [7] and even more advanced 
FET structures [8], [9], it has not yet been used in the configuration 
that we propose, therefore we chose the MOSFET device as a case 
study to demonstrate the applicability and advantages of our 
method. 

2. DEVELOPMENT OF THE PROPOSED METHOD  

In this section, we present the step-by-step development of the pro-
posed method, presenting the case of a n-channel MOSFET as an 
example for electron device-based harmonic distortion. 

2.1. The transimpedance amplifier as an electron device 

characterization instrument 

The Transimpedance amplifiers (TIA) are widely used to trans-

late the current output of sensors like photodiode-to-voltage sig-

nals [10], since many circuits and instruments can only accept 

voltage input. Moreover, they are used as current preamplifiers in 

precision measurement instruments such as in current DC and 

noise characterization [11]. 

 
 

Figure 1: Typical current-to-voltage converter configura-

tion with transimpedance amplifier for electron device 

characterization (DC and noise) 

As shown in Fig. 1, the (TIAs) configuration of an operational 

amplifier (OPAMP) can be used as a current-to-voltage converter 
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for any device under test (DUT) connected at its input and con-

trolled by various bias voltages (V, Vbias). Since the current flow-

ing in the input of the OPAMP can be considered zero, and the 

negative feedback resistor guarantees the OPAMP’s linear re-

gime, the DUT current has to be equal to the current flowing in 

the feedback loop. Therefore IDUT = (Vo-V)/Rf, because the 

OPAMP functions in linear mode thus V+ = V- . So, the output 

voltage of a TIA would be: 

𝑉𝑜 = 𝑉 + 𝐼𝐷𝑈𝑇𝑅𝑓   (1) 

It becomes obvious that the DC voltage output is actually in-
dependent of any other device bias voltages other than the one con-
nected to the OPAMP. Of course, it has to be noted that we con-
sider an ideal OPAMP with linear response for a large range of 
voltage swings and with no input voltage offsets. In a real sce-
nario, one needs to correct the input offset and make sure the out-
put voltage does not exceed the linear response region of the 
OPAMP, which is directly limited by the supply voltage bias. For-
tunately, this can be easily regulated with the value of Rf, so that 
the output signal is never higher than the maximum allowed limit 
for linear OPAMP operation. Moreover, a real OPAMP has also a 
maximum output current above which it also saturates. The latter 
issue cannot be avoided by adjusting Rf, but only by choosing 
carefully the OPAMP model so that it can provide the maximum 
current of the connected DUT. 

Now if we consider an AC output after a high-pass filter (HPF) 
that cuts frequency content below 10 Hz for example, we could 
approximate the output voltage signal as: 

𝑣𝑜 = 𝑖𝐷𝑈𝑇𝑅𝑓                                     (2) 

where iDUT are the current variations of the DUT due to varia-

tions in one (or more) of the bias voltages. Therefore the voltage 

signal of the output is a direct linear function of solely the device 

AC current, with a gain equal to the feedback resistor value, Rf. 

An alternative way to obtain (2) without the use of a filter, which 

could impact the signal’s phase at low frequencies, is to connect 

a voltage subtractor circuit in series with the output, to remove 

the same DC voltage V that we apply at the OPAMP’s (+) input. 

Finally, as happens with all analog audio circuits, since both 

the DUT and the OPAMP have DC/AC characteristics and re-

sponses that vary for each copy of the device, some manual 

tweaking of supply bias and DUT bias may be needed to obtain 

exactly the same behaviour from one circuit to another identical 

one. 

2.2. Controlling the harmonic distortion through voltage 

bias and signal amplitude 

In the example of Fig. 1, the current flowing through the device 

under test can be expressed as IDUT = I(V, Vbias1, Vbias2). Therefore, 

an AC component, vin, is added to one of the bias voltages, and 

the rest are constant with time, the small-signal AC output of the 

OPAMP would be: 

v0 =
𝜕I𝐷𝑈𝑇

𝜕Vin
𝑣in𝑅𝑓 = f(Vin, vin, Vbias,1−2, … ) (3) 

where 
𝜕𝑖𝐷𝑈𝑇

𝜕Vin
 is a function of the DC bias voltages and corresponds 

to the 1st order sensitivity of IDUT to Vin. This means that the dy-

namic output response is unique and fully controlled by the choice 

of signal input and the bias voltages. Now, if we also account for 

higher order  components [7] introduced by a non-linear relation 

of IDUT with Vbias, we obtain: 

v0 = 𝑅𝑓 (
𝜕I𝐷𝑈𝑇

𝜕Vin
𝑣in +

1

2

𝜕2I𝐷𝑈𝑇

𝜕Vin
2 𝑣in

2 +⋯+
1

n!

𝜕nI𝐷𝑈𝑇

𝜕Vin
n 𝑣in

n) (4) 

We can therefore see that with the configuration of Fig. 1, 

even the generated harmonics that define the distortion levels 

only depend on the relation between IDUT and the voltage bias 

where the signal is applied, for the given DC biases.  

3. CASE STUDY: THE MOSFET 

3.1. TIA-based MOSFET current converter 

A simple example of a TIA-based circuit is the current measure-

ment schematic for a n-channel MOSFET (Fig. 2). The output 

signal’s (Vo) linearity is directly dependent on the region of oper-

ation (linear/saturation, weak/strong inversion) and the varying 

voltage. In case the signal is applied on the gate, G, only the input 

characteristics (Id-Vg) should be accounted for, whereas only the 

output ones (Id-Vd) if the drain, D, carries the signal.  

 

Figure 2: Current-to-voltage converter configuration for 

MOSFET characterization (DC and noise) 

To understand the potential advantages for distortion, com-

pared to a MOSFET amplifier, we underline that for the latter, the 

signal gain is also a function of the region of operation (linear/sat-

uration) which affects the DC operating point and the load line. 

In fact, in order for the gain to be independent from the drain bias, 

the MOSFET in linear amplifiers is always biased in saturation, 

where -supposing a perfectly saturated current- the current is no 

more dependent on the drain voltage. In conclusion, for each DC 

bias and signal amplitude, one would obtain a specific set of har-

monics, which only depends on the I-V transfer curves of the 

DUT and not in any other circuit elements, such as bias re-

sistances as is the case in MOSFET amplifiers. This way, a high 

level of control and predictability over the generated distortion 

can be achieved, only by knowing the static (DC) behaviour of 

the electron device.  

3.2. MOSFET modelling for simulations 

In order to simulate the precise response of such a circuit, we need 

MOSFET models that are continuous and analytical from weak to 

strong inversion and from linear to saturation regimes. Thank-

fully, such a modelling approach exists and utilizes the Lambert-

W (LW) function [12]-[13], which provides a very good descrip-

tion of the inversion charge behavior in all bias regions. This 

modelling approach is described by equations (5): 

Id =
W

L
μeff [(𝑞𝑠 − 𝑞𝑑) +

1

2𝜂𝑘𝑇Cox
(𝑞𝑠

2 − 𝑞𝑑
2)]         (5a) 

𝑞𝑠 = 𝜂𝑘𝑇𝐶𝑜𝑥𝐿𝑊(𝑒(𝑉𝑔−𝑉𝑡)/𝜂𝑘𝑇)                (5b) 
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𝑞d = 𝜂𝑘𝑇𝐶𝑜𝑥𝐿𝑊(𝑒(𝑉𝑔−𝑉𝑡−𝑉d)/𝜂𝑘𝑇)                (5c) 

where W, L the width and length of the channel, μeff the effective 

mobility, Vt the threshold voltage, η the sub-threshold ideality 

factor (=1 for 60mV/dec), kT the thermal voltage (≅26mV at 

room temperature), and Cox the oxide capacitance per unit area. 

The quantities qs and qd represent the carrier charge densities near 

the source, S, and drain, D, of the transistor, respectively. Fig. 3 

shows an example of input and output MOSFET transfer curves 

as calculated by (5), with W = 1 μm, L = 0.2 μm, Vt = 0.5 V, μeff 

= 100cm2/Vs, Cox = 1.2μF/cm2, and η = 1. 

The typical behavior of a MOSFET’s drain current, Id, with 

gate and drain bias voltages can be seen: 

1) exponential increase with Vg below Vt (weak inversion), 

whereas linear above Vt (strong inversion) for low Vd values  

and quadratic for Vd>Vg-Vt, whereas 

2) linear increase with Vd for Vd<<Vg-Vt (linear regime), con-

stant current (saturation) for Vd>Vg-Vt, and logarithmic behav-

ior between the two (triode region).  

 

Figure 3: Typical DC transfer characteristics for varying 

gate voltage (top/lin-log Y-scale) and drain voltage (bot-

tom) 

 

Thanks to the simplicity of the proposed TIA-based circuit 

(Fig. 2), these curves are actually translated into voltage transfer 

functions (Fig. 4), because V0 = Vd + Id Rf. The Rf value is adapted 

so that the maximum voltage does not surpass the power supply 

of the OPAMP (+15V). The offset in high Vd values can be cor-

rected by subtracting the DC bias of the drain from the output 

signal. 

Consequently, depending on the DC bias around which we 

apply our signal, as well as the signal amplitude itself, we can 

expect very different results in terms of distortion. This is graph-

ically demonstrated in Fig. 5, where an AC signal is applied at the 

MOSFET’s gate, around 2 different DC bias (moderate and strong 

inversion) and with two different amplitudes. The first signal, os-

cillating around moderate inversion, is objected to the exponential 

dependence of Id(Vg), resulting in a signal with almost clipped 

bottom half and an exponentially distorted top half.  

 

 

Figure 4: Transfer characteristics of Fig.2’s circuit with 

the I-V curves of Fig. 3. 

On the other hand, if we apply a signal around a Vg well above 

Vt, the signal has almost no distortion in linear region, while fol-

lowing a quadratic distortion in saturation (high Vd). It should be 

noted here that the signal amplitude was deliberately chosen to be 

significantly high, in order to capture the passage from weak to 

strong inversion and the quadratic dependence. If the signal am-

plitude is very small (mV range) and the DC bias is well above 

Vt, the distortion will be negligible. 

 

Figure 5: Graphic demonstration of the distortion effect of 

the proposed circuit (Fig. 2), depending on the DC bias 

and AC amplitude of a signal applied at the transistor gate 

(TIA: Transimpedance amplifier, HPF: high-pass filter). 

3.3. Harmonic distortion analysis 

Following the same simulation method, we examined many dif-

ferent scenarios of gate and drain DC bias and AC signal ampli-

tudes, to reveal the variety of different harmonic content. Fig. 6 

and Fig. 7 show two examples where both DC biases are kept 

constant at Vg = Vd = 1 V, but the signal (f = 1 kHz) is applied at 

the gate (Fig. 6) or at the drain (Fig. 7). The power spectra shown 

are obtained using the Welch periodogram method in SciPy (Py-

thon), whereas the signals have been normalized in amplitude so 

that they can be easily plotted and visualized together in the same  
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Figure 6: Power spectrum calculations for the case where 

a signal is applied at the MOSFET gate for 3 different AC 

amplitudes. DC bias: Vg = Vd = 1 V. 

 

Figure 7: Power spectrum calculations for the case where 

a signal is applied at the OPAMP’s (+) input for 3 differ-

ent AC amplitudes. DC bias: Vg = Vd = 1 V. 

graph; in any case, large amplitude differences can be com-

pensated at the output thanks to Rf.  

It becomes evident from Fig. 6 that when the signal amplitude 

is large enough to cover two different transistor operation re-

gimes, it can dramatically affect the harmonic distortion. That’s 

because in the case of varying Vg in saturation (Fig. 6), the signal 

is prone to the ~(Vg-Vt)2 behavior of Id, whereas varying Vd in 

strong inversion around 1 V (Fig. 7) can actually cause asymmet-

rical hard clipping of the signal due to the alternating between 

linear and triode regimes. As a result, the harmonic distortion in 

the latter case is much more severe, which is directly visible in 

the high amplitude of high-order harmonics. 

We repeated this type of simulations for many combinations 

of DC biases Vg and Vd, from 0 up to 2 V, and various signal 

amplitudes, vamp, from 50mV to 0.5V, and we extracted the power 

values of each harmonic in order to visualize their dependence 

with the applied voltages. Fig. 8 shows the relative (with regard 

to the fundamental’s power) power of four harmonics (2nd to 5th) 

for vamp = 0.5 V applied at the gate and Fig. 9 at the drain. For the 

case where the signal is around Vg (Fig. 8), a clear reduction of 

harmonic distortion with Vg is visible, whereas this reduction for 

the 2nd and 3rd harmonic can be cancelled out by high Vd bias. The 

4th and 5th harmonic seem to have a negligible amplitude, except 

for the case of very low Vg values (weak inversion).  

Concerning the case where the signal is applied at the drain 

(V+ input of OPAMP), high Vd values can make the harmonic 

distortion immune to variations in Vg bias, and it is worth noting  

 

Figure 8: Relative power levels of the 4 first harmonics for 

a signal of vamp = 0.5 V amplitude applied at the gate, and 

various combinations of Vg and Vd DC bias. 

 

Figure 9: Relative power levels of the 4 first harmonics for 

a signal of vd,amp = 0.5 V amplitude applied at (+), and 

various combinations of Vg and Vd DC bias. 

that here, even the 4th and 5th harmonics have very significant con-

tributions. 

By using formula (6), we also calculated the total harmonic 

distortion (THD) for various combinations of Vg and Vd, account-

ing up to the 5th harmonic. 

THD(%) = 100√
HD2+HD3+HD4+HD5

HD1
   (6) 

where HDx the power of the xth harmonic. The results are plotted 

in Fig. 10, for vamp = 0.2 V applied at the MOSFET’s gate, and in 

Fig. 11 for the case where the signal is applied at the (+) input. 

It is worth noting that in both cases (AC around Vg and around 

Vd), the THD reaches 100% for certain DC bias combinations, 

while it can also be decreased down to 0.1% for others. This is a 

direct confirmation of our hypothesis that with the circuit archi-

tecture of Fig. 2, any amount of THD can be achieved, provided 

that one examines all the possible bias conditions.  

Moreover, the THD has a characteristic value for each com-

bination of Vg, Vd and vamp, making it easy to use this concept as 

the basis for a variety of audio distortion (or even tone control) 

applications. For example, as far as vamp is concerned, Fig. 12 
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shows how it can impact THD when the signal is at the gate, for 

both linear (Vd = 0.1 V) and saturation (Vd = 2 V) regions. Simi-

larly, in Fig. 13 is plotted the THD versus vamp when the signal is 

at the (+) OPAMP’s input, for both weak (Vg = 0.5 V) and strong 

(Vg = 1.5 V) inversion regions. As it can be seen, the THD is al-

ways increasing with vamp, except when the DC bias is at weak 

inversion (Vg = 0.5 V), where THD reaches a plateau around vamp 

= 0.2 V. Note also how there is no signal for Vd = 1.5 V in weak 

inversion, because the signal amplitude needed to reach triode re-

gion is higher than the maximum value of vd,amp. Therefore the 

drain current is constant whatever the fluctuation of Vd. 

 

Figure 10: THD for a signal of vamp = 0.2 V amplitude ap-

plied at the gate, and various combinations of Vg and Vd 

DC bias. 

 

Figure 11: THD for a signal of vamp = 0.2 V amplitude ap-

plied at (+), and various combinations of Vg and Vd DC 

bias. 

 

 

Figure 12: THD versus varying signal amplitude vamp ap-

plied at the MOSFET’s gate, for linear (left) and satura-

tion (right) regimes. 

 

Figure 13: THD versus varying signal amplitude vamp ap-

plied at the OPAMP’s (+) input, for weak (left) and strong 

(right) inversion regions. 

4. MEASUREMENT RESULTS 

We constructed the circuit shown in Fig.2, using the Onsemi 

BS170 enhancement mode n-channel MOSFET as a device under 

test, which has a Vt around 2 V. Following the same methodology 

as in the simulations, we tested the output response for various Vg 

and Vd DC bias and signal amplitudes, with the signal applied at 

the MOSFET’s gate. Some examples are shown in Fig. 14 (linear 

regime) and Fig. 15 (saturation regime). The value of Rf was 

modified for every case, in order to avoid OPAMP saturation or 

negligible output amplitude. 

In Fig. 14 we note a verification of the bottom half soft clip-

ping due to alternating from strong to weak inversion in linear 

region (as in Fig. 5), while in Fig. 15 the quadratic dependence of 

Id(Vg) in saturation regime gives a smooth distortion to the signal. 

For higher signal amplitudes, a more severe low-half clipping is 

visible, due to the passage to weak inversion (as in Fig. 6). 
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 DAFx.6 

 

 

Figure 14: Measured input (yellow) and output (blue) sig-

nals for Vd = 50 mV, Vg = 3 V, vamp = 1 V (top) and 2 V 

(bottom) around gate voltage. 

 

 

 

Figure 15: Measured input (yellow) and output (blue) sig-

nals for Vd = 0.5 V, Vg = 2 V, vamp = 0.1 V (top) and 0.2 V 

(bottom) around gate voltage. 

5. CONCLUSIONS 

We have presented an analog circuit that can be used to exploit the 
non-linearities in any electron device, aiming the harmonic audio 
distortion. The n-channel MOSFET was shown and studied as an 
example, revealing a high level of control of the output signal har-
monics through the DC gate and drain bias voltages, the signal’s 
amplitude, as well as its input position (gate or drain). The effect 
was studied both through simulations and measurements. The pro-
posed circuit configuration could be potentially used in guitar ef-
fect pedals or analog synthesizers. 
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ABSTRACT

In recent years, virtual analog modeling with neural networks ex-
perienced an increase in interest and popularity. Many different
modeling approaches have been developed and successfully applied.
In this paper we do not propose a novel model architecture, but
rather address the problem of aliasing distortion introduced from
nonlinearities of the modeled analog circuit. In particular, we pro-
pose to apply the general idea of antiderivative antialiasing to a
state-trajectory network (STN). Applying antiderivative antialiasing
to a stateful system in general leads to an integral of a multivariate
function that can only be solved numerically, which is too costly
for real-time application. However, an adapted STN can be trained
to approximate the solution while being computationally efficient.
It is shown that this approach can decrease aliasing distortion in the
audioband significantly while only moderately oversampling the
network in training and inference.

1. INTRODUCTION

In the realm of audio signal processing, nonlinear systems are
widely used to create certain musical effects. The main class of
these effects is comprised of clipping or overdrive effects, which
add an amount of harmonic frequency content to the output, in order
to achieve a distorted sound. Historically these kinds of effects were
designed in the analog domain. The sound and behaviour of these
analog devices are sought after until today. Consequently, there is
a natural interest in recreating them in digital models, a process
referred to as virtual analog modeling. Over the last decades many
different approaches have been developed for converting the analog
circuit into a virtual model. In [1, 2, 3], the authors show that Wave-
Digital filters can be used to create a digital model of nonlinear
stateful systems. [4] and [5] construct a discrete-time state-space
model from circuit schematics, while [6] uses a Port-Hamiltonian
formalism to create gueranteed-passive systems. Another approach,
which in the recent years experienced an increase in popularity, is
to use artificial neural networks. In this work we are using so called
state-trajectory networks, which approximate the trajectory in the
state-space using a feedforward neural network.

Since nonlinear systems introduce harmonic frequency content
that can exceed the Nyquist frequency, all before-mentioned ap-
proaches can suffer from aliasing distortion. The most commonly
used technique to reduce this aliasing distortion is to oversample

Copyright: © 2023 Lasse Köper et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

the signal with a very high sampling rate. Obviously this increases
computational complexity and memory consumption. In order to
keep real-time capabilities as good as possible, we propose in this
work an antialiased neural network model, which uses only modest
oversampling.

This paper is organized as follows. In section 1.1 we give a
detailed problem statement, followed by a derivation of the pro-
posed method in section 2. Sections 3 and 4 discuss the neural
network structure and training data generation. In section 5 the
proposed method is applied to different example circuits, providing
the results for this work, followed by some concluding remarks in
section 6.

1.1. Problem statement

We consider an analog circuit which is described by an implicit
ordinary differential equation

g
(
ẋ(t),y(t),x(t),u(t)

)
= 0 (1)

where the state x(t), the input u(t), and the output y(t) may be
vector-valued. We assume an explicit solution

ẋ(t) = fx
(
x(t),u(t)

)
(2a)

y(t) = fy
(
x(t),u(t)

)
(2b)

exists, but does not have a closed form, i.e. may only be determined
numerically from (1) using an iterative approach. The system can
be transformed to discrete-time by various well-known methods
such as the trapezoidal rule, resulting in an implicit update rule of
the form

ḡ
(
x̄(n), ȳ(n), x̄(n−1), ū(n);T

)
= 0 (3)

where T denotes the sampling interval, ū(n) = u(nT ) is the sampled
input signal and ȳ(n)≈ y(nT ) approximates samples of the output
signal subject to the error introduced by the discretization scheme.
The states x̄(n) maintain a relationship to the continuous-time
states x(t), but do not necessarily correspond to samples thereof.

There are three problems associated with this approach:

1. Numerical solution of (3) is computationally expensive and
may prevent real-time operation. (Note that using an explicit
discretization scheme such as forward Euler will not help
here due to the implicit nature of (1)).

2. The discretization scheme introduces an error which may
become significant for high-frequency signals.

3. Even if the approximation error of the discretization scheme
is tolerable, samples of y(t) may not be the desired output:
The continuous-time output may contain high-frequency
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nonlinearity one T
averaging ȳ(n)

T

Figure 1: Underlying idea of antiderivative antialiasing.

content due to harmonics introduced by the nonlinearity of
the system which results in aliasing distortion when sampled.
Ideally, one would wish ȳ(n) to be samples of a band-limited
version of y(t).

Problems 2 and 3 can be mitigated by oversampling the system,
but this obviously aggravates problem 1. Problem 3 can also be
approached by antiderivative antialiasing [7, 8, 9], but only for
stateless and a very limited class of stateful systems [10, 11]. A
recent trend to tackle problem 1 is to approximate the solutions

x̄(n) = f̄x
(
x̄(n−1), ū(n)

)
(4a)

ȳ(n) = f̄y
(
x̄(n−1), ū(n)

)
(4b)

of (3)1 (which lack a closed form) with neural networks [12] which
are more efficient to evaluate than iterative numerical solution.

In this work, we explore the combination of the approximation
with neural networks with the idea underlying the development of
antiderivative antialiasing to attack all three problems simultane-
ously without imposing new restrictions on the considered systems.

2. ANTIALIASED NEURAL NETWORK APPROACH

Perfect aliasing suppression could be obtained by operating in
the continuous-time domain. That is, for the samples ū(n), the
continuous input signal u(t) could be formed by using an ideal
reconstruction lowpass filter. Then, the continuous-time non-linear
system of (2) could be applied to obtain y(t). Bandlimiting to
half the sampling-rate with an ideal lowpass filter before sampling
would then allow to obtain an aliasing-free output ȳ(n). While
theoretically perfect, this is clearly impractical.

However, by using non-ideal lowpass filters, one may actually
arrive at a practical system. In particular, consider linear interpola-
tion for the reconstruction filter and averaging over one sampling
interval for bandlimiting as depicted in figure 1. When implement-
ing a digital system, the continuous signals obviously still pose a
problem. The key insight of antiderivative antialiasing is that for
a stateless nonlinearity, an equivalent system can be derived that
operates solely on the sampled signals, but requires the antideriva-
tive of the nonlinear mapping function—hence the method’s name
(see [7] for details.) Unfortunately, this only works for stateless
nonlinear systems and for a limited class of stateful systems after
some modification [10, 11].

But now consider a general stateful nonlinear system of the
form (1). Focusing on the time interval from (n−1)T to nT , we
first observe that given both the state x((n−1)T ) at the beginning
of that interval and the input u(t) for the whole interval, the state

1Some modeling approaches yield an output equation dependent on x̄(n)
instead of x̄(n−1), i.e. of the form ȳ(n) = f̄ ∗y

(
x̄(n), ū(n)

)
. It may not always

be possible to express the solution of (3) like that, however. On the other
hand, it is always possible to rewrite from f̄ ∗y to f̄y via f̄y

(
x̄(n−1), ū(n)

)
=

f̄ ∗y
(

f̄x
(
x̄(n−1), ū(n)

)
, ū(n)

)
, so the case considered here is the more general

one.

ū(n)
↑ L with

linear
interp.

discretized
stateful

nonlinear
system

L sample
average ↓ L

↓ L

ȳ(n)

x̄(n)

Figure 2: Oversampled system to obtain training data for approxi-
mation with neural network.

trajectory x(t) and the output y(t) are fully determined during that
interval. Now if u(t) is assumed piecewise linear, i.e. linear in that
interval, it in turn is fully determined by its values at the beginning
and the end of the interval, namely its samples ū(n−1) and ū(n). So
from these input samples and the initial state x̄(n−1)= x((n−1)T ),
the state trajectory x(t) and the output y(t) can be determined up
to the interval’s end nT . In particular, this allows to determine
the state x̄(n) = x(nT ) at the end of the interval to be used as the
initial state for the subsequent time interval. Furthermore, we can
apply the averaging operation to the output to obtain the antialiased
output samples

ȳ(n) =
1
T

∫ nT

(n−1)T
y(t). (5)

So to summarize, we may conclude that input samples ū(n−1)
and ū(n) and initial state x̄(n− 1) are sufficient to determine the
next state x̄(n) and the antialiased output ȳ(n), or in other words,
that there exist functions

x̄(n) = f̄x
(
x̄(n−1), ū(n−1), ū(n)

)
(6a)

ȳ(n) = f̄y
(
x̄(n−1), ū(n−1), ū(n)

)
(6b)

that correspond to the approach from figure 1 applied to an arbitrary
stateful system. However, these functions lack a closed form and
in fact, evaluating them numerically requires a scheme like (3)
operating at a sampling rate high enough that discretization error
and aliasing distortion are sufficiently low. Thus, we are back
to oversampling, but with deliberately simple interpolation and
decimation filters.

At this point, the neural network comes into play. Given that (6)
describes a system with the desired properties except for the func-
tions being computationally rather costly, it suggests itself to ap-
proximate them using a neural network. We may therefore boil
down our approach to the following: Feed a suitable training stimu-
lus ū(n) to an oversampled, classical simulation approach to obtain
corresponding sequences of x̄(n) and ȳ(n) and use these as training
data for a neural network to approximate (6). But note that the
oversampling has to be of a particular form: Upsampling of the
input uses linear interpolation, downsampling of the output uses
averaging over one sampling interval. In contrast, downsampling of
the states uses no decimation filter at all, as these act like snapshots
of the oversampled system from which it could be restarted; i.e. it
must be possible to reconstruct the original state trajectory, which
would be impossible if the states were filtered. Thus, the system
for generating training data finally looks as depicted in figure 2.

The simple interpolation and decimation filters are required
to avoid additional states from appearing. Comparing (4) and (6),
only ū(n−1) needs to be newly introduced. It would be possible,
however, to utilize more sophisticated filters as long as more sam-
ples of ū are provided to fully cover the filters’ combined support.
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ly ŷ(n)

Ny
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Figure 3: Network structure during training, (a) trained on down-
sampled states, (b) trained on downsampled and averaged output.

3. NEURAL NETWORK ARCHITECTURE

For approximating a stateful nonlinear system like (6), many suit-
able neural network modeling approaches can be found. To name
a few, Wright et al. [13] employ recurrent neural networks in a
black-box model approach, while in [14] time-varying effects are
modeled with neural grey box models. Wilczek et al. [15] approx-
imate the underlying nonlinear differential equation by a neural
network and combine it with a numerical solver.

However, given that the system is in state-space form, it is
preferable to apply the neural network directly in the state-space.
Therefore using state-trajectory networks [12] seems to be the
natural choice. Furthermore, this has the advantage that modeling
of states and output can be performed in two different networks.
This can be helpful to reduce stability issues during inference, since
one network can be trained to solely model the dynamics of the
system, whereas the other is only responsible for the nonlinear
mapping from states to output.

Figure 3 shows the two models during training. The amount
of hidden layers in the state predicting model can be adjusted to
the complexity of the modeled analog circuit. In this work it was
sufficient to use small networks with up to three hidden layers,
which is also beneficial in terms of realtime capability. For the
network predicting the output, it is even possible to use only one
layer. Regarding the hidden layer type, we opted for fully connected
layers followed by a hyperbolic tangent activation function. The last
layer is a fully connected layer with no bias and linear activation.

All trainings were performed using a mean-squared error loss
function and an NAdam optimizer following the hyperparameter
settings of [16]. Figure 4 shows the model during inference. The
networks Nx and Ny correspond to the two networks trained in
figure 3 respectively. The predicted state vector x̂(n) is then used in
the next time step as an input of Nx following the typical structure
of a state-trajectory network. Similarly, by using the current and
previous input sample, as well as the previously predicted state,
the network Ny can approximate the averaging and downsampling
operation from figure 2 employing a simple static mapping.

4. TRAINING DATA GENERATION

Generating suitable training data for the models is a crucial point in
this work, since the antialiasing operation is in great part performed
during training data generation. One of the first questions arising is
whether to use measurement or simulation data. In this work it is
obvious that we have to use simulation data, since the antialiasing
lowpass filters in measurement hardware are in general not in the

ū(n)

z−1

z−1 Nx Ny

ŷ(n)x̂(n)

Figure 4: Network structure during inference time.

particular form required for the presented approach. Therefore the
proposed antialiasing scheme could not be applied. The training
data is generated by simulation using the ACME framework2 in
Julia3. This simulation is based on a state-space modeling approach,
discretizing a continuous-time state-space system obtained from
circuit dynamics using the trapezoidal rule [5].

We now use a low sampling rate fs1 to create our input sig-
nal ū(n). This sampling rate should already be a reasonably high au-
dio sampling rate, because this scheme is most effective if combined
with modest oversampling. Therefore, we choose fs1 = 96kHz for
all examples in the following section. Afterwards the input signal
is upsampled to a sampling rate fs2 like we saw in figure 2. Unless
otherwise noted, we use fs2 = L · fs1 with L = 4, i.e. fs2 = 384kHz.
The simulation is now run using the high sampling rate. After
averaging the output, as well as downsampling states and output,
the data is ready to be used for training. In order to evaluate the
proposed method’s antialiasing capabilities, we also create a ref-
erence training signal. This signal is obtained by just running the
simulation at the low sampling rate fs1 with the signal ū(n) as its
input. The reference signal and the antialiased training data are the
basis for all comparisons in the following examples. That means we
compare the network structure from 3, trained with the antialiased
data, against a standard STN using only the current input sample
and trained with the reference signal.

As the training input stimulus, we use the exponential sine
sweep

ū(n) = Asin

(
Ωl (N −1)

log Ωh
Ωl

exp
(

n
N −1

log
Ωh

Ωl

)
−1

)
, (7)

where N is the signal length in samples, Ωl and Ωh are the lower
and upper normalized angular frequency Ω. = 2π f.

fs
respectively

and A is the amplitude.
The signal length is chosen as N = 960000 and the lower and

upper frequency as fl = 20Hz and fu = 2000Hz, respectively. This
stimulus is then repeated for different amplitudes A from a range
differing between the examples as given in the next section.

5. APPLICATION

5.1. Example 1: 2nd Order Diode Clipper

As a first example we study the aliasing behavior of a second
order diode clipper. The schematic can be seen in figure 5 and
the corresponding component values are listed in table 1. For
the training, the model structure from figure 3 was used with two

2Analog Circuit Modeling and Emulation for Julia (v0.10.0):
https://github.com/HSU-ANT/ACME.jl

3The Julia Programming Language (v1.8.5): https://julialang.org/
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R1
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u(n)

C2

y(n)

Figure 5: Second-Order Diode Clipper.

Table 1: Second-Order Diode Clipper - Component List.

Element Value
R1 2.2 kΩ
C1 470 nF
C2 10 nF

Diodes Is = 1pA, vt = 25mV, η = 1
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Figure 6: Second-order diode clipper - reference model without
antialiasing, crosses mark the desired harmonics.

hidden layers, each comprising 12 neurons and a hyperbolic tangent
activation function. The output model from figure 3 uses one hidden
layer with 8 neurons.

In order to train the model on a variety of signal amplitudes, the
sinesweep from (7) was evaluated for a set of different amplitudes
and combined afterwards to form the final training signal. With the
goal of achieving a high amount of aliasing to show the capabilities
of the proposed method, we opted for rather high amplitudes in
the training signal, ranging from 0.2 V to 12 V. The model was
trained over 40 epochs after which the loss did not decrease signifi-
cantly further. The batch size was set to 1024 samples. To test the
aliasing reduction of the proposed model, a single sinusoid with
an amplitude of 10 V and a frequency of 1244.5 Hz was applied to
the reference(no antialiasing) and the antialiased model. Figure 6
shows the frequency content of the test signal, after being applied
to the reference model. As expected we can observe a high amount
of aliasing distortion between the desired harmonics. In compar-
ison, the output of the proposed model in figure 7 shows a high
reduction of aliasing in the audio band. The aliasing components
for higher frequencies experience a much smaller reduction than
for the low frequencies. However, this is a well-known property
of the antiderivative antialiasing approach from [7] and was to be
expected, since the proposed method is based on it.

It should be noted that the diode clipper is simple enough so that
it could also be treated with the antialiasing approach of [10, 11].
Indeed, applying that approach yields very similar results. Further-
more, when based on a lookup table, it is more straight-forward to
design than training a neural network and computationally cheaper
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Figure 7: Second-order diode clipper - model with antialiasing
L=4, crosses mark the desired harmonics.
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R5 C3
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Figure 8: Birdie Treble Booster.

at runtime. So the diode clipper serves as a proof-of-concept, but
does not exhibit the advantage of the present method. That will be
different for the following cases, where the method of [10, 11] is
no longer applicable.

5.2. Example 2: Birdie - Treble Booster

Our next case study is the guitar treble booster The Birdie. It is
sold as a DIY soldering kit by musikding 4 and is based on the
Electro-Harmonix Screaming Bird. Figure 8 shows the schematic
and table 2 the corresponding component values of the circuit. The
circuit itself is based on a common emitter amplifier, with a simple
highpass filter comprising R1, C1 and R2 at the input. Note that the
capacitor C5 is only used to stabilize the supply voltage. However,
we assume an ideal voltage source for the supply and can therefore
safely omit C5 from the simulation, reducing the circuit’s dynamics
to second order. We will also model the circuit at a fixed level of
the volume potentiometer P1 of 0.5.

Like in the previous example, we go for a model with two
fully connected hidden layers and 12 neurons each. The training
signal from (7) is adapted to a different set of amplitudes ranging
from 0.2 to 8 volts. The model was trained over 30 epochs with
a batch size of 1024 samples. As a test signal for inference, we
use again a single sinusoid with a frequency of 1244.5Hz but with
a slightly smaller amplitude of 8 volts. The frequency domain

4The Birdie: https://www.musikding.de/docs/musikding/birdie/
birdie_schalt.pdf
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Table 2: Birdie Treble Booster - Component List.

Element Value
R1 1 MΩ
R2 43 kΩ
R3 430 kΩ
R4 390 Ω
R5 10 kΩ
C1 2.2 nF
C3 2.2 nF
C5 100 µF
Q1 2N5088
P1 100 kΩ log
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Figure 9: Birdie - reference model without antialiasing, crosses
mark the desired harmonics.
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Figure 10: Birdie - model with antialiasing L=4, crosses mark the
desired harmonics.

output to this test signal can be seen in figure 9 (reference) and in
figure 10 (antialiased model). We can observe a similar behavior
as for the diode clipper. The reference shows a decent amount of
aliasing distortion between the desired harmonics of the output
signal, whereas the antialiased model shows only a small amount of
aliasing distortion. For low frequencies the aliasing components in
figure 10 are barely visible, but they increase for higher frequencies.

5.3. Example 3: Fuzzface

To conclude this section we show the effectiveness of the proposed
method on the Fuzzface guitar distortion effect. This circuit is a
useful addition to the previous examples, because in comparison
to the treble booster from the last section it provides a lot more

C1

u(n) Q1 Q2

R4 P1
C2

R3

R2

R1

-9V

C3

P2 y(n)

Figure 11: Fuzzface.

Table 3: Fuzzface - Component List.

Element Value
R1 33 kΩ
R2 470 Ω
R3 8.2 kΩ
R4 100 kΩ
C1 2.2 µF
C2 20 µF
C3 100 nF

Q1,Q2 AC128
P1 1 kΩ linear
P2 500 kΩ log

distortion to the output. Consequently it will produce more aliasing
distortion, due to the high amount of harmonic frequency content.

The schematic of the Fuzzface can be seen in figure figure 11
and the component values can be found in table 3. The circuit
basically consists of an input stage providing a high voltage gain,
an output stage and a feedback loop to stabilize the circuit. The
amount of distortion added to the input can be adjusted with the
potentiometer P1, which controls the amount of negative feedback
via R4. The output volume can be controlled with the remaining
potentiometer P2. For the sake of simplicity we train the models of
the system with fixed values of 0.5 for both potentiometers.

Since this circuit is more complex with respect to the number
of states and nonlinear behavior than the previous examples, it
is necessary to adjust the simple STN from figure 3 in order to
reduce exposure bias and ensure stability. For this reason the net-
work is split into three separate sub-networks, where each network
is trained to solely predict one of the three states. This allows a
more precise prediction of each state. During inference the three
networks are connected in parallel and each predicted state is fed
to each individual network as the next input sample. The output
network remains the same as in the previous examples. Note that
the modification of the network does not effect the proposed an-
tialiasing approach and is only necessary to obtain a stable model
during inference.
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Figure 12: Fuzzface - reference model without antialiasing, crosses
mark the desired harmonics.

Regarding the model structure of each individual network, we
use two hidden layers with 12 neurons each. For this example, we
opted to normalize the states before training. This was necessary
because when using the capacitor’s voltages as states for the model,
they become very difficult to train. The reason for this is that the
bias voltage at the capacitors differ a lot from each other. Further-
more the amplitude around this bias values is fairly small. Training
the network with these physically meaningful states resulted into a
bad model performance. Consequently the states were normalized
to

xi,norm =
xi −µxi

max(xi −µxi)
, (8)

where xi are the individual states and µxi are the mean values for
each state.

The models for this circuit were trained over 40 epochs using
the same training sinesweep as before, but with adapted amplitudes
in the more reasonable range of 0.2 to 3 volts. Figure 12 shows
the frequency content of the reference model, when excited with
the signal u(n) = 2sin

(
2π ·1244.5 n

fs

)
. Between the desired har-

monics a lot of aliasing components are present. In comparison the
antialiased model in figure 13 can reduce these aliasing distortion by
a large margin using only an oversampling factor of L = 4. Using a
higher oversampling factor than L = 4 for this model does not result
into a significant increase in aliasing reduction. Figure 14 shows the
frequency content for L = 8. It can be seen that the improvement
in comparison to figure 13 is marginally small. However, since
the model uses the downsampled data there is no computational
overhead when running the model trained with L = 8 or higher.

6. CONCLUSION AND OUTLOOK

In this work, we presented an antialiasing approach for state-
trajectory networks. This approach uses the general idea of an-
tiderivative antialiasing [7, 8, 9, 10, 11] and applies an approxi-
mation of the method to the model’s training data. In contrast to
the original antiderivative antialiasing, the proposed method is not
limited to systems having only one nonlinearity with scalar input.
The necessary modification of the STN in order to incorporate
the method is straight-forward and easily implemented. Only one
additional input with the previous input sample has to be added.

The method was successfully applied to three different non-
linear circuits. In comparison to a reference model, which was
sampled with a sampling rate of 96 kHz, the antialiased model was
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Figure 13: Fuzzface - model with antialiasing L=4, crosses mark
the desired harmonics.
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Figure 14: Fuzzface - model with antialiasing L=8, crosses mark
the desired harmonics.

able to attenuate most of the aliasing distortion while using the
same sampling rate. Consequently the proposed method can reduce
aliasing with only the cost of one additional input. The aliasing
reduction works especially well for lower frequencies. Although
high frequency aliasing components receive a smaller attenuation it
is still an improvement compared to the reference model.

Generally speaking the proposed method is not only applica-
ble to STNs, but basically to all neural virtual analog modeling
approaches. The implementation should be straight-forward, since
most of the modifications happen during training data generation.
For the neural networks only minor adjustments should be neces-
sary.

Another possible extension is the use of more complex filters
for the up- and downsampling. E.g. one could replace the rectangu-
lar filter kernel of the decimation lowpass with a triangular one, just
as was also done in [7] and then add ū(n−2) as an additional input
to the neural networks. But it is also possible to use more complex
interpolation filters, which is problematic in antiderivative antialias-
ing. The only constraint is that the input samples provided to the
neural network have to cover the combined support of interpolation
and decimation filter. In practice, it may even be possible to violate
this constraint and provide fewer input samples than theoretically
needed.

In fact, preliminary simulations have shown that for many ap-
plications good results could be achieved by using only the current
input sample ū(n). This makes sense, because it basically reduces
the linear interpolation filter to a zero-order hold. This approxima-
tion is acceptable if the change in amplitude between two adjacent
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input samples is sufficiently small. Exploring this design space is
left to future work.
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ABSTRACT

The recently developed extension of Wave Digital Filters based
on vector wave variables has broadened the class of circuits with
linear two-port elements that can be modeled in a modular and
explicit fashion in the Wave Digital (WD) domain. In this paper,
we apply the vector definition of wave variables to nonlinear two-
port elements. In particular, we present two vector WD models
of a Bipolar Junction Transistor (BJT) using characteristic equa-
tions derived from an extended Ebers-Moll model. One, implicit,
is based on a modified Newton-Raphson method; the other, ex-
plicit, is based on a neural network trained in the WD domain and
it is shown to allow fully explicit implementation of circuits with
a single BJT, which can be executed in real time.

1. INTRODUCTION

Virtual Analog (VA) modeling [1] is an audio signal processing
field of research which focuses on the digital emulation of ana-
log audio equipment. Over recent years, a lot of research effort
has been dedicated to the faithful and efficient digital implementa-
tion of circuit nonlinearities, which concur to the well appreciated
timbral characteristics of analog audio gear. Forming the core of
countless amplifier models used in a broad range of audio equip-
ment, Bipolar Junction Transistors (BJTs) are arguably the most
relevant components in this regard.

In the literature, VA modeling approaches can be generally di-
vided into two categories: black-box approaches that infer a global
model of a reference circuit relying on pairs of observed input/out-
put data using, e.g., Volterra series [2] or neural networks [3], and
white-box approaches that emulate the reference circuit by sim-
ulating the corresponding system of ordinary differential equa-
tions, e.g., using state-space methods [4], the port-Hamiltonian
method [5], or Wave Digital Filters (WDFs) [6].

Among white-box techniques, WDFs have proved to be a very
promising framework for creating digital models of reference ana-
log circuits. Developed in the 70s by A. Fettweis to derive digi-
tal implementations of passive analog filters [7], WDFs rely on a
port-wise linear mapping of Kirchhoff pairs of variables (voltage
and current) into pairs of wave variables (incident and reflected)
with the introduction of a scalar free parameter per port called port
resistance. Circuit elements and topological connection networks
are modeled separately, in a modular fashion. The reference circuit

Copyright: © 2023 Oliviero Massi et al. This is an open-access article distributed
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is represented in the Wave Digital (WD) domain as an intercon-
nection of one-port and multi-port WD blocks, characterized by
implicit scattering relations between wave variables, called delay-
free loops. By proper choice of port resistances (through the so-
called adaptation process) and making use of stable discretization
methods [8] (e.g., trapezoidal rule), circuits containing linear one-
port elements can be implemented in a fully explicit fashion, i.e.,
removing all delay-free loops [7]. Furthermore, a WD structure
which relies on a scalar definition of wave variables is able to ac-
commodate a single nonlinear one-port circuit element by placing
it at the root of a tree-like structure and connecting it to an adapted
(reflection-free) port of a WD junction [9, 10]. In order to design
an explicit WDF, since nonlinear one-port elements cannot be gen-
erally adapted, the reflection-free port of the junction is necessary,
otherwise the instantaneous wave reflection from the junction back
to the nonlinearity would result in a delay-free loop [9, 10]. Such
a WDF design methodology, originally conceived for static non-
linearities, has been further extended to reference circuits with a
single nonlinear one-port element with memory [11, 12].

The previous considerations on traditional WDFs with a single
nonlinear one-port element are not directly applicable to WDFs
with a single nonlinear multi-port element. In fact, in that case,
computability issues might arise due to unavoidable delay-free
loops. More in general, when both ports of a generic two-port ele-
ment are connected to the same multi-port junction, as in Fig. 1, a
double delay-free loop passing through the element and the junc-
tion always arises, and it cannot be eliminated even in the case
in which both ports of the junction are locally made reflection-
free [13, 14, 15].

Figure 1: Example of traditional WDF based on a scalar definition
of waves that includes a WD two-port element. The dashed circles
indicate two delay-free loops that arise in the WDF.
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Several works in the literature of WDFs are devoted to the
modeling of multi-port nonlinearities and specifically to the mod-
eling of BJTs. Werner et al. [16] proposed a hybrid Kirchhoff/Wave
approach based on the K-method [4, 17, 18] to solve circuits with
multiple/multi-port nonlinearities that are grouped at the root of
the digital structure. Olsen et al. [19] used the Newton-Raphson
(NR) method to speed-up the computation of the same digital struc-
tures described in [16]. In [20], et al. defined a general WD model
for 3-terminal devices, whose number of ports can vary from 1 to
6, along with explicit WD realizations of MOSFET and JFET tran-
sistors and an implicit WD realization of BJTs based on the Ebers-
Moll model and implemented using a robust modified Newton-
Raphson solver. Kolonko et al. [21] introduced a modified Ebers-
Moll model where the forward and reverse conducting diodes are
considered individually and then connected through a suitable WD
junction.

All the WD models of BJT transistors presented in the liter-
ature are based on scalar definitions of port variables and this of-
ten causes unavoidable delay-free loops when two-port models are
employed. The recently introduced Vector WDFs [22] generalized
the scalar port-wise definition of wave variables in linear two-port
elements to a vector definition. Eventually, this allowed to over-
come several computability issues, such as delay-free loops that
are formed when connecting a two-port to a topological junction.

In this paper, we apply Vector WDFs to the implementation
of circuits containing a single two-port WD model of a BJT. The
nonlinear two-port element can be accomodated at the root of the
WDF, which allows to implement explicit WD structures preserv-
ing the modularity of Fettweis’ traditional WDFs [7]. We first pro-
pose an extension of the Ebers-Moll model [23] of a BJT and we
present two vector wave-based WD realizations. The first one is
implicit and it relies on a modified Newton-Raphson method [20]
to solve the characteristic equation derived from the extended Ebers-
Moll model. The second one is explicit and it is characterized by
a Multi-Layer Perceptron network trained in the WD domain; this
accompanies a growing trend in the WDF literature [24, 25, 26],
in which data-driven neural models of nonlinear devices are con-
nected to “traditional” WD blocks.

The remainder of this manuscript is organized as follows. In
Section 2, the design of WDFs containing a single nonlinear two-
port element is discussed. Section 3 introduces the two proposed
BJT models based on vector waves. In Section 4, the developed
methods are applied for the emulation of the input stage of a guitar
distortion pedal. Conclusions are drawn in Section 5.

2. VECTOR WAVE DIGITAL FILTERS

2.1. Scalar Waves

The design of WDFs is based on a port-wise description of a ref-
erence analog circuit. Circuit elements and topological connection
networks are modeled using one- or multi-port WD blocks char-
acterized by scattering relations. In traditional WDFs based on
voltage waves, each pair of Kirchhoff variables at a generic port j
of a circuit element, i.e., the port voltage vj and the port current
ij , is substituted with a pair of scalar WD variables defined as [7]

aj = vj + Zjjij , bj = vj − Zjjij , (1)

where aj is the incident wave, bj is the reflected wave andZjj ̸= 0
is a free real-valued parameter, usually called reference port re-
sistance and here renamed as reference one-port resistance. This

free parameter is set to adapt linear one-port circuit elements, thus
obtaining explicit WD scattering relations in the discrete-time do-
main in which the reflected wave does not instantaneously depend
on the incident wave [7, 8].

N -port topological connection networks, characterized by a
vector of port voltages vJ = [vJ1, . . . , vJN ]T and a vector of port
currents iJ = [iJ1, . . . , iJN ]T , are modeled in the WD domain
using N -port junctions characterized by the wave variables

aJ = vJ + ZJiJ , bJ = vJ − ZJiJ , (2)

where aJ = [aJ1, . . . , aJN ]T is the vector of waves incident to the
junction, bJ = [bJ1, . . . , bJN ]T is the vector of waves reflected
by the junction, while ZJ = diag [Z1, . . . , ZN ] is a diagonal ma-
trix having one-port resistances as diagonal entries. The relation
between aJ and bJ is

bJ = SaJ , (3)

where S is a N × N scattering matrix. General formulas for
computing the scattering matrix of arbitrary reciprocal or non-
reciprocal connection networks in the WD domain are discussed
in [27, 15].

When two-port circuit elements are present, a WDF struc-
ture based on scalar port-wise wave definition is generally affected
by computability problems. In Fig. 1, a generic WDF structure
based on scalar wave variables includes a (linear or nonlinear)
two-port element whose ports are both connected to the same topo-
logical junction. As highlighted by the dashed paths, two delay-
free loops involving cross-dependencies between wave variables
are unavoidably formed in the WDF: they cannot be eliminated
through any choice of the free parameters.

2.2. Vector Waves

With the purpose of encompassing both ports of the same two-
port element, we introduce the following vector definition of wave
variables [22], which generalizes (1):

[
a1
a2

]
=

[
v1
v2

]
+

[
Z11 Z12

Z21 Z22

] [
i1
i2

]

[
b1
b2

]
=

[
v1
v2

]
−
[
Z11 Z12

Z21 Z22

] [
i1
i2

]
.

(4)

[v1, v2]
T is the vector of the two port voltages, [i1, i2]T is the vec-

tor of the two port currents, [a1, a2]T is the vector of the waves in-
cident to the two-port element, [b1, b2]T is the vector of the waves
reflected by the two-port element and

Z1,2 =

[
Z11 Z12

Z21 Z22

]
(5)

is a full-rank 2×2 matrix of real free parameters Zıȷ, with ı ∈ 1, 2
and ȷ ∈ 1, 2, which we refer to as reference two-port resistance.
Since Z1,2 is full-rank, we have

|Z1,2| = det [Z1,2] = Z11Z22 − Z12Z21 ̸= 0 . (6)

The inverse mapping from WD variables to Kirchhoff variables
can be expressed as

[
v1
v2

]
=

1

2

([
a1
a2

]
+

[
b1
b2

])

[
i1
i2

]
=

1

2|Z1,2|

[
Z22 −Z12

−Z21 Z11

]([
a1
a2

]
−
[
b1
b2

])
.

(7)
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Analogously to one-port linear elements, a two-port WD element
based on the proposed vector definition of waves (4) can be adapted
through the assignment of Z1,2, which eliminates the instanta-
neous dependency between the vector of reflected waves [b1, b2]T

from the vector of incident waves [a1, a2]T in the scattering rela-
tion .

The approaches described for the WD modeling of topological
connection networks can be generalized for the design of topolog-
ical multi-port WD junctions based on mixed scalar and vector
definitions of waves [22]. An N -port topological junction which
is connected to other WD blocks through P two-port connections
and N − 2P one-port connections is characterized by the same
wave variable definition in (2), where ZJ is in this case a full-
rank block-diagonal matrix of free parameters (not simply a diag-
onal matrix as in WDFs solely based on scalar waves). Assuming,
without loss of generality, to number the P two-port connections
before the N − 2P one-port connections, ZJ can be written as

ZJ =




Z1,2 . . . 0 [0, 0]T . . . [0, 0]T

...
. . .

...
...

. . .
...

0 . . . Z2P−1,2P [0, 0]T . . . [0, 0]T

[0, 0] . . . [0, 0] Z2P+1 . . . 0
...

. . .
...

...
. . .

...
[0, 0] . . . [0, 0] 0 . . . ZN




(8)
where Z1,2, . . . ,Z2P−1,2P are 2 × 2 full-rank submatrices and
Z2P+1, . . . , ZN are scalar parameters different from zero.

The resulting WD junctions can be used to interconnect one-
port elements based on traditional scalar waves and two-port el-
ements based on vector waves, thus solving many of the com-
putability problems that would arise using just scalar definitions,
while preserving modularity, i.e., modeling circuit elements and
topology in a separate fashion.

2.3. WDFs with a Single Vector Nonlinear Two-Port Element

WDFs with a single nonlinearity can be organized into tree-like
structures called connection trees [10, 8]. Three types of consti-
tutive blocks can be identified in such WD connection trees: the
root, i.e., the nonlinearity, which has no upward-facing ports and
whose downward-facing ports cannot be adapted; nodes (typically
multi-port topological junctions), which have one upward-facing
port and one or more downward-facing ports; leaves, which have
upward-facing ports and no downward-facing ports [10, 8]. A WD
structure of the sort can be solved without employing any itera-
tive solver if the nonlinearity is characterized by an explicit map-
ping in the WD domain. In fact, delay-free loops can be removed
through the adaptation of all the leaves and upward-facing ports of
junctions. It follows that a WDF based on traditional scalar waves
and containing a single nonlinear one-port element with an explicit
scattering relation can be implemented in a fully explicit fashion.
As outlined in the above description of Fig. 1, a WDF based on
scalar waves with a single nonlinear two-port placed at the root
would instead be characterized by unavoidable delay-free loops.
However, the adoption of a vector definition of waves for modeling
the nonlinear two-port element allows us to make also this kind of
WD structures fully explicit, again, under the assumption that the
nonlinearity is characterized by an explicit WD mapping. In fact,
as shown in Fig. 2, through proper assignment of the free param-
eters Z11, Z12, Z21 and Z22 constituting the reference two-port

Figure 2: WD structure featuring a WD nonlinear two-port ele-
ment based on vector waves connected to a topological junction.
The T-shaped stub indicates port adaptation.

resistance Z1,2, it is possible to make the pair of junction ports
at which the nonlinear two-port element is connected reflection-
free. This means that the nonlinear element does not introduce any
delay-free loop despite being connected to the junction through a
double port connection.

(a) (b)

Figure 3: (a) Symbol of a BJT as a three-terminal device and (b)
corresponding two-port element definition.

3. BJT MODELS BASED ON VECTOR WAVES

A BJT is an electronic device characterized by three terminals
called base, emitter and collector - shown in Fig. 3(a) as node B,
E and C, respectively. Through the modeling approach discussed
in [20], it can be described as a two-port element, as shown in
Fig. 3(b). In fact, its behavior is completely described by the volt-
ages v1 (across base-emitter port) and v2 (across base-collector
port). In the following, we introduce an extension to the Ebers-
Moll model (EMM) [23], probably the most widespread large sig-
nal BJT model appearing in the literature. As shown in Fig. 4,
a series and a parallel resistor are introduced at each of the two
ports: (Rs1, Rp1) at port 1 and (Rs2, Rp2) at port 2. The series
resistances encapsulate the contribution of several structural resis-
tances of the device, while the parallel ones are mainly due to cur-
rent leakage at the two p-n junctions forming the BJT. Typically,
Rp1, Rp2 have high values, whileRs1, Rs2 are very low [28]. The
introduced resistors also attenuate numerical problems that might
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Figure 4: Proposed extended Ebers-Moll model.

arise when regions of the v-i characteristic curves of the diodes
with extremely high (or extremely low) slopes are visited, espe-
cially when dealing with large-amplitude signals [8, 29].

Our extended EMM is mathematically described by the fol-
lowing system of equations

{
i1 = i′1 +

v1−i1Rs1
Rp1

i2 = i′2 +
v2−i2Rs2

Rp2

, (9)

where

i′1 = Is1

(
e

(
v1−i1Rs1

ηfVt

)

− 1

)
− αrIs2

(
e

(
v2−i2Rs2

ηrVt

)
− 1

)

i′2 = Is2

(
e

(
v2−i2Rs2

ηrVt

)
− 1

)
− αfIs1

(
e

(
v1−i1Rs1

ηfVt

)

− 1

)
.

(10)
In equations (9) and (10), i1 is the current through the base-emitter
port, i2 is the current through the base-collector port, αf is the for-
ward common-base current gain, αr is the reverse common-base
current gain, v1 is the base-to-emitter voltage, v2 is the base-to-
collector voltage, Vt is the thermal voltage, Is1 is the saturation
current of the base-emitter p-n junction, Is2 is the saturation cur-
rent of the base-collector p-n junction, ηf is the ideality factor of
the base-emitter p-n junction and ηr is the ideality factor of the
base-collector p-n junction.

3.1. Implicit WD Model based on Modified NR Method

Reformulating (9), the BJT two-port model in Fig. 4 can be char-
acterized by the following system of nonlinear equations in the
Kirchhoff domain

h

([
v1
v2

]
,

[
i1
i2

])
=

[
i′1 +

v1−i1Rs1
Rp1

− i1
i′2 +

v2−i2Rs2
Rp2

− i2

]
= 0 , (11)

where [v1, v2]T is the vector of port voltages, [i1, i2]T is the vector
of port currents. Since (11) is composed of two coupled transcen-
dental implicit equations, finding an explicit scattering relation in
the WD domain is not possible in general, even though some ex-
plicit WD mappings based on simplifications have been proposed
in some particular cases [30]. To overcome that difficulty, we ad-
just the NR method to the local resolution of two-port nonlinear
WD blocks based on a vector wave definition. To this aim, rela-
tionships between port vector variables, (4) and (7), are rewritten
as follows [30],

[
i1
i2

]
=

1

|Z1,2|

[
Z22 −Z12

−Z21 Z11

]([
a1
a2

]
−
[
v1
v2

])
, (12)

[
b1
b2

]
= 2

[
v1
v2

]
−
[
a1
a2

]
. (13)

Replacing (12) into (11) leads to a vector nonlinear equation g (φ)

= 0, where φ = [v1, v2]
T . Given the vector wave [a1, a2]

T =[
a
(k)
1 , a

(k)
2

]T
incident to the nonlinear two-port element and the

reference two-port resistance Z1,2, which is set in such a way to
make reflection-free the pair of junction ports to which the non-
linear two-port element is connected, the equation g (φ) = 0 can
be solved using the NR algorithm characterized by the following
update rule

φ(k+1) = φ(k) −
[
J
(
φ(k)

)]−1

g
(
φ(k)

)
, (14)

where φ(k) =
[
v
(k)
1 , v

(k)
2

]T
and φ(k+1) =

[
v
(k+1)
1 , v

(k+1)
2

]T

indicate the values of φ evaluated at iterations k and k+1, respec-

tively, and
[
J
(
φ(k)

)]−1

is the inverse of the Jacobian matrix of

g evaluated at φ(k). Solving g (φ) = 0 requires:

- taking a suitable initial guess φ(0);

- repeating (14) up to convergence, i.e., up to the case in
which ||φ(k+1) − φ(k)|| < ϵv and ||g

(
φ(k+1)

)
|| < ϵg ,

where ϵv and ϵg are small positive scalar thresholds.

Iterative solvers based on the NR method are arbitrarily accurate
and generally more efficient than tabulation methods [31]. The
main drawback of such iterative solvers is that their convergence
is generally not ensured, since it strongly depends on the chosen
initial guess φ(0) and it is further compromised by numerical is-
sues related to finite word length representation. To mitigate the
effect of such problems, the modified NR (MNR) method intro-
duced in [20] enforces control over the variables v(k)1 and v(k)2

iteration by iteration, through the use of compensation functions,
ϕ1 and ϕ2, designed to prevent overshooting and to increase the
NR method convergence rate (we hereby omit their definition for
reasons of space; the reader is kindly referred to [20] for a detailed
analysis on the topic). The update equation (14) is thus modified
according to

φ̃(k+1) = φ(k) −
[
J
(
φ(k)

)]−1

g
(
φ(k)

)
, (15)

where φ̃(k+1) =
[
ṽ
(k+1)
1 , ṽ

(k+1)
2

]T
, φ(k) =

[
v
(k)
1 , v

(k)
2

]T
, and

the two components of the vector φ(k+1) are given by

v
(k+1)
1 = ϕ1

(
φ̃(k+1)

)
, v

(k+1)
2 = ϕ2

(
φ̃(k+1)

)
. (16)
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Once the NR convergence condition is met, the two-port volt-

ages are set to [v1, v2]
T =

[
v
(k)
1 , v

(k)
2

]T
= φ(k) and the vector

of waves [b1, b2]
T reflected by the two-port nonlinear element is

computed by means of (13).

3.2. Explicit WD Model based on Neural Network

Even though a vector definition of waves allows us to eliminate
all the delay-free loops of WD structures containing up to a single
nonlinear two-port element, in the previous subsection, we have
shown that we still need a local iterative solver to compute the im-
plicit vector scattering equation of the nonlinear WD block char-
acterized by the extended EMM. In this subsection we aim at de-
signing an explicit WD BJT model, thus obtaining a fully explicit
WD structure with a single two-port nonlinearity. We propose a
data-driven model whose WD mapping approximates the nonlin-
ear scattering relation

b = f (a) , (17)

which relates vectors of incident waves a = [a1, a2]
T to vectors

of reflected waves b = [b1, b2]
T in a fully explicit fashion.

The two-port element behavior can be characterized through
suitable simulation or measurement campaigns: sets of port volt-
ages [v1, v2]T and port currents [i1, i2]T measures can be collected
forming a Kirchhoff domain dataset for the BJT model. The vector
definition of wave variables (4), where, again, Z1,2 is set in such a
way to make reflection-free the pair of junction ports to which the
nonlinear two-port is connected, allows us to transform the Kirch-
hoff domain dataset into a vector WD domain dataset of known
solutions to the nonlinear vector function (17). The task of mod-
eling the function f (·) can be consequently seen as a regression
problem, i.e.,

b̂ = f̃(a; θWD) (18)

where f̃ is the function approximation given by a suitable neural
network architecture [32, 33] whose parameters θWD are obtained
by training the network to predict the current value of the reflected
vector waves b̂ given the current value of the incident vector waves
a as input.

Since the adopted reference model of the BJT is characterized
by an instantaneous (static) nonlinearity, it is not necessary to rely
on neural network structures with memory, such as Recurrent Neu-
ral Networks [34] or LSTM networks [35]. For this reason, in the
next section, we employ a Multi-Layer Perceptron (MLP) network
composed of 2 fully-connected layers with 16 hidden units each
and Rectified Linear Unit (ReLU) activation functions (354 train-
able parameters).

4. CASE STUDY

As a case study, we develop a Virtual Analog model of the common-
emitter amplifier constituting the input stage of the Big Muff Pi
distortion pedal - see Fig. 5. The circuit is characterized by a single
nonlinear element, namely a 2N5089 BJT, whose extended EMM
parameters are reported in Table 1.

The implemented WD structure is shown in Fig. 6 and it is
characterized by series/parallel adaptors (S1, S2, P1, P2, P3) de-
signed according to [7] and a 6-port WD topological junction R1

implemented following [15], based on the vectorial definition of
waves at the ports of the BJT. Indeed, the matrix of free parame-
ters ZR1 of the junctionR1 has a 2×2 submatrix Z1,2 positioned

Table 1: 2N5089 BJT: values of the extended EMM parameters.

Parameter Value Description
Vt 25.85 mV thermal voltage
αf 0.9993 BJT forward current gain
αr 0.5579 BJT reverse current gain

Rs1, Rs2 10−5 Ω BJT series port resistance
Rp1, Rp2 1011, 108 Ω BJT parallel port resistance
ηf , ηr 1 BJT ideality factor
Is1 5.9151 fA B-E junction saturation current
Is2 10.595 fA B-C junction saturation current

at the ports where the BJT is connected. All the linear elements
at the leaves and all the upward facing ports of the junctions are
adapted according to traditional WDF principles [7]. The nonlin-
ear two-port element Q1 is the root of the designed connection
tree structure. The free parameters of the port resistance matrix
Z1,2 are set to zero out the four entries of the first 2 × 2 block on
the diagonal of the junction scattering matrix SR1 . As previously
mentioned in Section 2.3, this makes the pair of junction ports at
which Q1 is connected reflection-free.

Figure 5: Big Muff Pi input stage.

4.1. Dataset and Model Training

In order to generate a suitable Kirchhoff domain dataset for the
2N5089 BJT, we implement the extended EMM using Mathworks
Simscape and the model parameters reported in Table 1. The non-
linear characteristic of the model is sampled devising specific port
voltage signals to reproduce common device operating ranges. In
particular, the base-to-collector voltage v2 is assumed to vary in
the range [−10, 0] V, while the base-to-emitter voltage v1 varies
in the range [−0.8, 0.8] V. To sample the device, v2 is set to
103 different equally spaced DC values extracted from its oper-
ating range and, for each of these values, v1 is linearly increased
for a duration of 0.1 seconds to cover its entire operating range;
the corresponding base-to-collector current i2 and base-to-emitter
current i1 are acquired with a sample rate fs = 96 kHz. The
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Table 2: Values of the parameters of the Big Muff Pi input stage circuit shown in Fig. 5.

R2 R9 R13 R14 R22 Rout C1 C4 C10 Vcc

39 kΩ 470 kΩ 10 kΩ 47 kΩ 100 Ω 101 kΩ 1 µF 1 µF 470 pF 9 V

Figure 6: WDF realization of the circuit shown in Fig. 5.

complete simulation of the Kirchhoff domain signals v1, i1, v2, i2
amounts to 100 seconds.

The formed dataset can be expressed in the WD domain by us-
ing the vector wave transformation (4), where the free parameters
Z11, Z12, Z21 and Z22 are set according to the already discussed
port adaptation condition. From the total amount of data, the 80%
are used for training, while the 20% are held out for evaluation
purposes. The pairs of corresponding input and output wave vari-
ables

(
[a1, a2]

T , [b1, b2]
T
)

are assembled in batches containing
256 elements.

The MLP network described in Section 3.2 is implemented in
Python using Pytorch [36] and it is trained for 500 epochs using
Adam [37] to minimize the following loss function:

L = E
(
b1, b̂1

)
+ E

(
b2, b̂2

)
(19)

where

E (y, ŷ) =
∑

k (yk − ŷk)
2

∑
k y

2
k

(20)

is the Normalized Mean Squared Error (NMSE). Notably, the two
terms summed in the loss function (19) are related to the two com-
ponents of the output vector. To evaluate the model, we compute
the model predictions over the evaluation set. The NMSE com-
puted over those predictions is equal to 1.02× 10−8.

4.2. Results

In this subsection, we discuss the numerical results obtained from
the simulation of the nonlinear WD structure shown in Fig. 6 us-
ing the two different WD BJT models presented in Sec. 3.1 and
Sec. 3.2, respectively. Remarkably, thanks to the modularity of
WDFs, it is possible to test both the WD BJT implementations
employing the same WD structure and just substituting the nonlin-
ear WD block at the root. In case the MNR method-based model

is used, an iterative solver is needed to solve the two-port nonlin-
earity, while, in case the neural network-based model is used, the
WD structure can be implemented in fully explicit fashion, since
the nonlinearity is also expressed as an explicit wave mapping.

The circuit is tested with an input signal Vin = A sin(2πk
f0/fs), where k is the sampling index, while fs = 96 kHz and
f0 = 1 kHz are the sampling frequency and the fundamental fre-
quency, respectively. According to the circuit analysis in [38], we
set the input signal amplitude toA = 0.7 V to force the input stage
into saturation, therefore causing asymmetric clipping. The input
signal has a duration of one second. All the simulation algorithms
of the WD structures are implemented as MATLAB scripts and are
run on a laptop-mounted Intel Core i5-1240P 1.70 GHz CPU.

The simulation results related to the last 5 periods of the in-
put signal are reported in Fig. 7(a) and Fig. 7(b). Both the WD
implementations of the BJT closely match the same reference sig-
nal resulting from a Mathworks Simscape simulation of the cir-
cuit in Fig. 5, where the BJT has been modeled employing the ex-
tended EMM. The deviation between the reference Simscape sig-
nal and the neural network-based WD simulation is quantifiable
by a NMSE of 2.32 × 10−5, while the MNR method-based WD
simulation is able to achieve an NMSE of 1.88× 10−6.

For measuring the computational cost associated to the two
different WD implementations, Γ = 1000 identical simulations of
the two WD structures are executed and the Real Time Ratio (RTR)
is computed. The RTR is a dimensionless quantity indicating how
fast the simulation is with respect to real time. If we consider Γ
simulations having X samples as input and an execution time tci
for a single iteration over the input, the RTR can be computed
as RTR = (1/Γ)

∑Γ
i=1 (tci/ (X/fs)), where fs is the sampling

frequency. The algorithm runs in real time if RTR < 1.
We obtain RTR ≃ 1.65 for the MNR method-based WD im-

plementation and RTR ≃ 0.21 for the neural network-based WD
implementation. While the MNR method guarantees arbitrarily
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Figure 7: Voltage Vout measured across the resistor Rout. (a) Comparison between the MNR method-based BJT WD implementation and
Mathworks Simscape. (b) Comparison between the neural network-based BJT WD implementation and Mathworks Simscape.

good results in terms of accuracy, the iterative solver consider-
ably increases the algorithm execution time. However, with almost
comparable accuracy results, the WD structure containing the ex-
plicit neural network-based WD BJT model proves to be far more
efficient as far as execution time is concerned, being able to run in
real time in the MATLAB environment.

5. CONCLUSIONS

In this paper, we have shown that, by adopting a vector definition
of waves, it is possible to design WDFs which contain a single
two-port nonlinearity connected to a topological junction through
a pair of ports with no delay-free loops. It follows that, when the
two-port nonlinearity is characterized by an explicit WD mapping,
the resulting WDF is fully explicit. The proposed approach al-
lows us to preserve the desirable modularity property of traditional
scalar WDFs, according to which circuit elements and connection
networks are modeled with separate input-output blocks.

We proposed two vector wave-based models of BJT transis-
tors described with an extended EMM. The first one is implicit,
and it relies on a MNR method to solve its nonlinear scattering re-
lation. The second is fully explicit, as it relies on a neural network
model which approximates the explicit scattering equation relat-
ing the input vector of incident waves to the corresponding vector
of reflected waves. We finally provided an accuracy and perfor-
mance comparison of the two WD BJT models with reference to
a specific VA application scenario. The fully explicit WD struc-
ture including as root a neural network-based model of a two-port
BJT proved to be an excellent compromise between accuracy and
computational cost. This shows that the integration of efficient
data-driven blocks of nonlinear devices into the WDFs framework
might lead the way towards the real time implementation of in-
creasingly complex nonlinear circuits.

Future work might concern the application of vector WDFs
for the modeling of generic N -port nonlinear elements. A note-
worthy extension would also be considering data-driven methods
for the characterization of multi-port nonlinearities with memory,
leveraging models or experimental measurements of transistors or
vacuum tubes. Finally, the proposed strategy should be validated
from a broader perspective, comparing it to other approaches de-
veloped in the literature.
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ABSTRACT

Memoryless waveshapers are commonly used in audio signal pro-
cessing. In discrete time, they suffer from well-known aliasing ar-
tifacts. We present a method for applying antiderivative antialising
(ADAA), which mitigates aliasing, to any waveshaping function
that can be represented as a piecewise polynomial. Specifically,
we treat the special case of a piecewise linear waveshaper. Further-
more, we introduce a method for for replacing the sharp corners
and jump discontinuities in any piecewise linear waveshaper with
smoothed polynomial approximations, whose derivatives match
the adjacent line segments up to a specified order. This piecewise
polynomial can again be antialiased as a special case of the gen-
eral piecewise polynomial. Especially when combined with light
oversampling, these techniques are effective at reducing aliasing
and the proposed method for rounding corners in piecewise linear
waveshapers can also create more “realistic” analog-style wave-
shapers than standard piecewise linear functions.

1. INTRODUCTION

Memoryless nonlinearities are commonly used in audio signal pro-
cessing algorithms, as waveshapers and wavefolders used in syn-
thesizers [1–3], to model guitar amplifier distortion [4, 5], ring
modulators [6], as models of electrical elements in virtual analog
modeling (for instance, real electrical components like Shockley’s
diode model [7] or imaginary electrical components [8]), as gain
computers in dynamic range controllers, as utility saturators to re-
strict a signal output to a certain range, etc. Given a continuous-
time input signal x(t), a memoryless nonlinearity f(·) produces a
continuous-time output signal y(t) by

y(t) = f (x(t)) . (1)

In a digital signal processing context, with discrete time index n,
a naive implementation is

y[n] = f (x[n]) . (2)

This naive implementation suffers from one well-known artifact:
aliasing distortion. The nonlinear function f(·) expands the band-
width of the input signal x[n], and if any frequency component
arises that is above the Nyquist rate (half of the sampling rate:
fs/2), it will end up aliased down into the baseband. Although
aliasing is sometimes introduced deliberately as a creative effect

∗ Early stages of this research were conducted during the 1st author’s
employment at iZotope, Inc., Boston, MA.
Copyright: © 2023 Kurt James Werner et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution 4.0 International Li-

cense, which permits unrestricted use, distribution, adaptation, and reproduction in

any medium, provided the original author and source are credited.

or to mimic a hardware device with audible aliasing distortion [9],
it is usually considered detrimental and bad-sounding. As such,
audio DSP designers typically use several types of approaches to
mitigate aliasing distortion: 1. Oversampling, 2. Non-oversampled
antialiasing (such as ADAA), and/or 3. Altering the waveshape to
expand the signal bandwidth less. Oversampling is a classic and
effective approach [4, 10], but can be quite costly if a large over-
sampling ratio is needed. Non-oversampled antialiasing is a class
of techniques that include those specialized to waveform synthesis
and for memoryless nonlinearities, including the recent and well-
known Antiderivative Antialiasing (ADAA) technique [11–17]. In
fact, we do not have to choose just one technique, but can often
combine them. For instance, ADAA works best when combined
with modest (at least 2×) oversampling.

If a designer is willing to allow small changes to the shape
of their memoryless nonlinearity, the last option should be con-
sidered quite attractive. First of all, sacrificing a small bit of ac-
curacy for increased sound quality is often a valid tradeoff. Sec-
ond of all, in certain circumstances, smoothing out and/or round-
ing corners on a memoryless nonlinearity is often more “realistic,”
in the sense that waveshapers created with analog electronic cir-
cuits (including diodes, tubes, transistors) typically have very soft
corners, whereas some of the classic techniques for creating dig-
ital memoryless nonlinearities, such as piecewise-linear represen-
tations (PWL) have sharp corners. For this reason, it can be useful
to specify a PWL model augmented with smoothness controls for
each corner. In fact, this approach is commonly used in digital
dynamic range control systems, which typically offer “knee” pa-
rameters on their gain computers.

In this paper, we will present a method for applying ADAA
to any piecewise-polynomial (PWP) waveshaping function. The
special case of a piecewise linear (PWL) waveshaper is discussed,
including how to convert from the more convenient breakpoint rep-
resentation to the standard line-segment representation, for which
ADAA can be applied in the identical fashion. Finally, we intro-
duce a technique for replacing any rounded corners and jump dis-
continuities in a PWL waveshaper with rounded corners, making
it a technique that combines all three of the aforementioned ap-
proaches. This method has a number of attractive features: 1. It’s
parameterized by piecewise line segments and finite jump discon-
tinuities. Jump discontinuities should be attended to, since they ap-
pear commonly in memoryless nonlinearities, such as “dead-zone”
and bitcrushers; 2. It has smooth corners made of finite-order poly-
nomials; and 3. It has controllable finite width of corners and de-
gree of smoothness at splice points.

This method combines the well-known ADAA approach with
aspects of the canonical piecewise linear representations (CPLR)
[18, 19] and the smoothed corners are based on a piecewise poly-
nomial model of certain soft clipper curve, whose smoothness can
be set to an arbitrary level, as introduced and discussed at length
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Table 1: Polynomial coefficients for the piecewise polynomial from
(5) and Fig. 1 and its antiderivative.

j pj,0 pj,1 pj,2 Cj Ĉj Cj Pj,1 Pj,2 Pj,3

0 3 2 0 0 0 5
3

3 2 0

1 0 0 1 0 − 5
3

0 0 0 1
3

2 1
2

0 0 0 − 11
6

− 1
6

1
2

0 0

by Robert Bristow-Johnson, Olli Niemitalo, et al. [20–22], which
stands in as a smoothed approximation to the sign function, and
a related curve which is a smooth approximation of the absolute
value function. The first curve is related to a family of curves
known in the image processing field, including the simplest case,
SmoothStep [23] and higher-order generalizations, and its lowest-
order case is identical to a cubic soft clipper that is well-known in
audio signal processing [24, 25].

The paper is structured as follows. §2 reviews piecewise poly-
nomial (PWP) waveshaping functions and shows how to apply An-
tiderivative Antialiasing (ADAA) to them. §3 details a special case
of the PWP waveshaper, the piecewise linear (PWL) waveshaper,
again showing how ADAA can be performed. §4 shows how to
round the corners of a PWL waveshaper using polynomial seg-
ments, which can be parameterized by a PWL representation, cor-
ner widths, and the order of smoothness enforced at each corner,
again showing how ADAA can be applied. §5 presents several dif-
ferent ways to arrive at the same method for rounding the corners,
based on ensuring smoothness up to a certain degree. §6 gives two
brief case studies. §7 concludes.

2. PIECEWISE POLYNOMIALS WAVESHAPERS

A piecewise polynomial (PWP) with J + 1 segments is given by

f(x) =





p0(x), x < x1

p1(x), x1 ≤ x < x2

· · · · · ·
pJ−1(x), xJ−1 ≤ x < xJ

pJ(x), xJ ≤ x

(3)

each of the J + 1 polynomials has an order Φj and is defined as

pj(x) =

Φj∑

ρ=0

pj,ρx
ρ = pj,0 + pj,1x+ · · ·+ pj,Φjx

Φj . (4)

An illustrative piecewise polynomial

f(x) =





p0(x) = 2x+ 3, x < (x1 = −1)
p1(x) = x2, (x1 = −1) ≤ x < (x2 = 1)

p2(x) =
1
2
, (x2 = 1) ≤ x .

(5)

is shown in the top of Fig. 1.1

1It is worth mentioning two efficient methods for evaluating polynomi-
als: Horner’s method and Estrin’s scheme. Horner’s method uses fewer
operations but Estrin’s scheme is more parallelizable, so the more efficient
one will depend on implementation context. For higher-order polynomials,
it may be more efficient to bake the waveshapes into lookup tables rather
than evaluating the polynomials directly.

x

y

− 3
2

x1 = −1 x2 = 1

1

1
2

p0(x) = 3 + 2x

p1(x) = x2 p2(x) = 1
2

0
1

2

example piecewise polynomial curve

x

y

− 3
2

x1 = −1 x2 = 1

1
3

− 1
3

− 7
12

P
(1)
0 (x) = 5

3 + 3x + x2

P
(1)
1 (x) = 1

3x
3

P
(1)
2 (x) = − 1

6 + 1
2x0

1

2

its first antiderivative

Figure 1: An example of a piecewise polynomial curve (top) and its
first antiderivative (bottom), with constants of integration chosen
to enforce C0 smoothness.

2.1. Antialiasing Piecewise Polynomial Waveshapers

We can antialias any piecewise polynomial using the well-known
Antiderivative Antialiasing (ADAA) method [11], which works by
approximating the process of upsampling, applying a nonlinearity,
and downsampling without actually doing anything at an upsam-
pled rate. For a nonlinearity f(), ADAA produces expressions that
use additions, multiplications, and divisions of various antideriva-
tives F (N)(), where N indicates the antiderivative order. This re-
sults in potential divisions by zero (or near zero, which can cause
numerical issues), which must be dealt with using “escape condi-
tions”: special cases where a small signal linearization that avoids
the problematic division substitutes for the original expression.

The simplest form is first-order ADAA

y[n] =





F (1)(u[n])−F (1)(u[n−1])
u[n]−u[n−1]

, ϵ < |u[n]− u[n− 1]|
f
(

u[n]+u[n+1]
2

)
, otherwise ,

(6)

where ϵ is a very small number (we use ϵ = 10−8) and the second
case is used to escape numerical ill-conditioning issues. Again,
F (1)() is the first antiderivative of f(). u is the input signal.2

The antiderivative of a polynomial of order Φ is another poly-
nomial of order Φ+ 1

P
(1)
j (x) = Cj +

Φj+1∑

ρ=1

pj,ρ−1

ρ
xρ . (7)

2Note that we draw a distinction between the input to the waveshaping
function or its antiderivate (which we always call x) and the input sig-
nal itself, which we call u. This is because the input to the waveshaping
functions or antiderivatives (x) are sometimes filtered versions of the input
signal itself (u), i.e., during the escape condition.
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xj − ωj xj xj + ωj

y−j

y+j

x

y

j-1

j

Figure 2: Naming conventions around the single jth breakpoint,
where ωj is the “double-width” of the curved segment for the cases
of a PWL waveshaper with rounded corners, as discussed in §4.

However, we must be careful in setting the constants of integra-
tion Cj . In general, leaving them at zero will lead to large jump
discontinuities in the antiderivative. Instead, we must set the con-
stants of integration Cj so that the P (1)

j−1(xj) = P
(1)
j (xj), j ∈

{1, 2, · · · , J}. We can also consider one last degree of freedom,
the “global” vertical offset of the function. This can be set entirely
arbitrarily, since it will cancel out immediately in the numerator of
the antiderivative antialiasing equation (6). We choose it so that
F (1)(0) = 0, mainly for visual appeal on our plots.

To accomplish this, we start with a piecewise polynomialF
(1)

(x)
with all constants of integration zero: Cj = 0, j ∈ {0, 1, · · · , J}.
Next, we form a piecewise polynomial F̂ (1)(x) by first setting
Ĉ0 = 0. Then, for all other values of j ∈ {1, 2, · · · , J}, we
choose Ĉj so that the segments line up with C0 smoothness:

Ĉj = Ĉj−1+

Φj−1+1∑

ρ=1

(
pj−1,ρ−1

ρ
xρ
)
−

Φj+1∑

ρ=1

(
pj,ρ−1

ρ
xρ
)
. (8)

This can be accomplished by finally setting

Cj = Ĉj − F̂ (1)(0), j ∈ 0, 1, 2, · · · , J . (9)

Which finally gives us our polynomial F (1)(x). All of the poly-
nomial coefficients and intermediate steps of finding the constants
of integration for this example PWP curve are shown in Tab. 1 and
the resulting curve is shown in the bottom of Fig. 1.

2.2. An example

Starting with our example piecewise polynomial (5), we can antid-
ifferentate them to form the intermediate polynomial

F
(1)

=





P
(1)
0 (x) = 3x+ 2x2, x < −1

P
(1)
1 (x) = 1

3
x3, −1 ≤ x < 1

P
(1)
2 (x) = 1

2
x, x ≤ 1

, (10)

i.e., one where the unadjusted constants of integration are C0 = 0,
C1 = 0, and C2 = 0.

Using (8), we can form a piecewise polynomial of the an-
tiderivative with no jump discontinuities, where Ĉ0 = 0, Ĉ1 =

− 5
3

, and Ĉ2 = − 11
6

,

F̂ (1) =





P̂
(1)
0 (x) = 3x+ 2x2, x < −1
P̂

(1)
1 (x) = − 5

3
+ 1

3
x3, −1 ≤ x < 1

P̂
(1)
2 (x) = − 11

6
+ 1

2
x, x ≤ 1

. (11)

−0.9 −0.2 0.4 1.5

x1 x2 x3 x4
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−0.4

0.1

0.8

1.0
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y

0

1 2

3

4

piecewise linear waveshaper and rounded corner versions

ω = 0.05
ω = 0.1
ω = 0.25
original curve

−0.9 −0.2 0.4 1.5

x

y

0

1
2

3

4

their antiderivatives

Figure 3: An example of a piecewise linear curve (top) and its
antiderivative (bottom), including three versions with spliced-in
rounded corners of “double-width” ω, as discussed in §4. Here
we have ωj = ω,∀j.

Finally, by evaluating F̂ (1)(0) = − 5
3

, we form the actual con-
stants of integration C0 = 5

3
, C1 = 0, and Ĉ2 = − 1

6
and arrive at

the actual constants of integration

F (1) =





P
(1)
0 (x) = 5

3
+ 3x+ 2x2, x < −1

P
(1)
1 (x) = 1

3
x3, −1 ≤ x < 1

P
(1)
2 (x) = − 1

6
+ 1

2
x, x ≤ 1

. (12)

This is now suitable for use in the first-order ADAA equation (6)
or higher-order generalizations.

2.3. Higher-order antiderivatives

Higher-order [13, 26, 27] and other variations [12, 14, 16] on an-
tiderivatives antialiasing algorithms exist, for instance 2nd or 3rd
order ADAA, which involve expressions involving higher order
antiderivatives such as F (2)(x), F (3)(x), etc., as well as more
complex expressions and escape conditions. The process of defin-
ing F (N)(x) from F (N−1)(x) for any order N is identical to the
process of forming F (1)(x) from f(x), so needs not be discussed
in detail here. Because the antiderivative of any polynomial is an-
other polynomial of one higher order, we are guaranteed that we
can analytically produce as many antiderivatives as are required.
For other types of functions, analytic antiderivatives do not always
exist (although they can always be approximated numerically).
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Table 2: Breakpoint locations and extremal slopes and derived slope and offsets for the example curve shown in Fig. 3. The y-values and
σ value associated with jump discontinuities are shaded.

j xj y−j y+j bj mj βj µj αj σj Ĉj Cj Cj Pj,1 Pj,2

0 —— —— —— 1.0 0.0 —— —— —— —— 0 0 0.73 1.0 0.0
1 −0.9 1.0 1.0 −0.8 −2.0 −0.8 −1.0 −1.0 0.0 0 −0.81 −0.08 −0.8 −1.0
2 −0.2 −0.4 −0.4 0.0 2.0 0.0 0.0 2.0 0.0 0 −0.73 0.0 0.0 1.0
3 0.4 0.8 0.1 0.5 −1.0 0.0 0.5 −1.5 −0.35 0 −0.69 0.04 0.5 −0.5
4 1.5 −1.0 −1.0 −1.0 0.0 0.5 −0.5 0.5 0.0 0 0.435 1.165 −1.0 0.0

3. PIECEWISE LINEAR WAVESHAPERS

A special case that often arises is the case of piecewise linear
(PWL) waveshapers. A graphical representation of an example
piecewise linear curve is shown in Fig. 3. These are in fact a spe-
cial case of the previously discussed peicewise-polynomial wave-
shapers, where, again for J breakpoints xj , j ∈ 1, 2, · · · , J and
J + 1 segments, each polynomial segment is just a line segment

pj(x) = pj,0 + pj,1x (13)

To be more specific that it is a line we will call these ℓ(x) and to
match the conventional notation for a line, we will usem for slope
and b for offset. Now, the entire PWL function is given by

f(x) =





ℓ0(x), x < x1

ℓ1(x), x1 ≤ x < x2

· · · · · ·
ℓJ−1(x), xJ−1 ≤ x < xJ

ℓJ(x), xJ ≤ x

(14)

where each line segment is defined by

ℓj(x) = bj +mjxj , j ∈ {0, 1, 2, · · · , J} . (15)

We require that the xj , coordinates be ordered as

x1 < x2 < x3 < · · · < xJ . (16)

It’s often convenient, in defining a PWL function, to not deal
with the slopes and offsets directly, but rather to specify the end-
points of each line segments. A piecewise linear function with J
breakpoints and J + 1 line segments (which may have jump dis-
continuities between them) can be fully specified by

1. the slope of the furthest-left line segments: m0.

2. J breakpoints, j ∈ {1, 2, · · · , J}. They are written in the
form (xj , yj), with a single y coordinate, when there is no
jump discontinuity. They are written in the form (xj , y

−
j , y

+
j )

when there is a jump discontinuity, where the superscript
indicates which y coordinate is associated with the (−) or
right (+) line segment. When there is no jump discontinu-
ity, we will still need to refer to the y coordinate associated
with each line segment, but in that case we simply have
y−j = y+j = yj .

3. the slope of the furthest-right line segments: mJ .

Again, the x coordinates must be ordered by x1 < x2 < x3 <
· · · < xJ , essentially meaning that none of the line segments may
be vertical—instead, an instantaneous vertical jump should be rep-
resented as a jump discontinuity between two line segments—and
also that the line segments are indexed in increasing order from

left to right. Finally, all quantities should have finite values. These
naming conventions are shown graphically in Fig. 2.

Given this, the slopes m and offsets b are determined from the
breakpoints and extremal slopes by

mj =
y−j+1 − y+j
xj+1 − xj

, j ∈ {1, · · · , J − 1} (17)

b0 = y−1 −m0x1 (18)

bj = y−j −mj−1xj = y+j −mjxj , j ∈ {1, · · · , J − 1} (19)

bJ = y+J −mJxJ . (20)

and m0 and mJ are already given. The resulting slopes and off-
sets for the example piecewise linear curve (Fig. 3) are tabulated
alongside the original breakpoint locations in Tab. 2.

3.1. Antialiasing Piecewise Linear Waveshapers

Applying antialiasing to the PWL waveshaper is done identically
to the more general piecewise polynomial. For this special case,
the antiderivative of the PWL function is a piecewise-quadratic
function, i.e., the order of each line segment in the PWL is Φj = 1,
so the order of the each segment of its antiderivative is Φj = 2 and

P
(1)
j (x) = Cj +

pj,0
1
x+

pj,1
2
x2 = Cj +

bj
1
x+

mj

2
x2 . (21)

The constants of integration are set identically to the PWP case.

4. ROUNDED PIECEWISE LINEAR WAVESHAPERS

Now we will introduce a formulation that splices a rounded cor-
ner function gj(x), j ∈ {1, 2, · · · , J} between each line segment
ℓj−1(x) and ℓj(x). Without yet saying much the exact shape of
these rounded corners, the main quantity that they must be param-
eterized by is the double-width of each corner, denoted by ωj > 0,
which may be different for each corner. These must obey

xj + ωj < xj+1 − ωj+1, j ∈ {1, 2, · · · , J − 1} (22)

essentially guaranteeing that the corners do not overlap and that
the line segments do not shrink to have empty domains.

This representation is given by

f̃(x) =





ℓ0(x), x < x1 − ω1

g1(x), x1 − ω1 ≤ x < x1 + ω1

ℓ1(x), x1 + ω1 ≤ x < x2 − ω2

· · · · · ·
ℓJ−1(x), xJ−1 + ωJ−1 ≤ x < xJ − ωJ

gJ(x), xJ − ωJ ≤ x < xJ + ωJ

ℓJ(x), xJ ≤ x

(23)
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+
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Ṽ
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Figure 4: Plots of the sign function sgn (x) and its smoothed
variant s̃K(x) (top left), the absolute value function |x| and its
smoothed variants ṽK(x) (top right), as well as their antideriva-
tives S̃(x)

1 (bottom left) and Ṽ
(x)
1 (bottom right), all for K ∈

{0, 1, 2, 3, 4}.

where each line segment ℓj(x) is defined as in (15), and where,
still without saying much about their shape, each rounded corner
is given by an equation of the form [18]

gj(x) = βj + µjx+ αjωj ṽj
(

x−xj

ωj

)
+ σj s̃j

(
x−xj

ωj

)
(24)

where

βj = gj(0)− µj |xj | =





y−j −mjxj , xj < 0
y+
j +y−

j

2
, xj = 0

y+j−1 −mj−1xj , 0 < xj

(25)

µj =
mj +mj−1

2
, αj =

mj −mj−1

2
(26)

σj =
y+j − y−j

2
, j ∈ {1, 2, . . . , J} . (27)

where each slope mj is defined as in (17).
ṽ(x) is a “smooth” approximation of the absolute value

ṽ(x) ≈ |x| =
{
−x , x ≤ 0

x , 0 ≤ x (28)

and s̃(x) is a “smooth” approximation of the sign function

s̃(x) ≈ sign(x) =





−1 , x < 0

0 , x = 0

1 , 0 < x

. (29)

In the case where ṽ(x) := |x| and s̃(x) := sign(x), the represen-
tation (24) would be identical to the standard PWL representation

(with no rounded corners). The idea of decomposing a corner with
a possible jump continuity into a constant, linear, scaled absolute
value, and scaled sign function comes from the “canonical piece-
wise linear representation” literature [28]. The advantage of per-
forming this decomposition is that we only need to deal with defin-
ing ṽ(x) and s̃(x) once, rather than defining a unique new function
for each corner, and can then shift and scale them appropriately
using the αj , σj , ωj , and xj parameters used in (24)–(27). The
resulting constants for the example piecewise linear curve (Fig. 3)
are tabulated in Tab. 2. Again, we have ωj = ω,∀j for these
curves, where Fig. 3 shows plots for three values of ω whereas the
values in Tab. 2 are calculated for the case of ω = 0.25.

5. DERIVATIONS FOR SMOOTHED CORNERS

We could imagine defining ṽ(x) and s̃(x) in many ways. Here,
we will propose a specific way of defining these functions based
on polynomials that match the values and one or more derivatives
of the linear functions they are spliced to.

Now we will give details on how to derive functions that are
suitable for ṽ(x) and s̃(x). The key concept here is that these
functions are both piecewise polynomials, comprising three seg-
ments each, with the outer two segments as straight lines and the
inner segment, defined on the open interval x ∈ ]−1, 1[, is a poly-
nomial that is designed to match the value and a certain number of
derivatives of the outer segments at the splice points x = ±1.

The smoothed absolute value function is

ṽ(x) =





ṽ−(x) = −x, x ≤ −1
ṽK(x), −1 ≤ x ≤ 1

ṽ+(x) = x, 1 ≤ x
(30)

and the smoothed sign function is

s̃(x) =





s̃−(x) = −1, x ≤ −1
s̃K(x), −1 ≤ x ≤ 1

s̃+(x) = 1, 1 ≤ x
. (31)

ṽ(x) and s̃(x) with no subscripts refer to the entire smoothed ab-
solute value and sign functions, whereas the subscripted versions
ṽK(x) and s̃K(x) refer to the inner polynomial segments. The
subscript K refers to the degree of smoothness—Our goal will be
to choose the polynomial coefficients so that ṽ(x) and s̃(x) have a
specified degree of differentiability CK . Specifically, Ck smooth-
ness means that all derivatives up to order k exist and are continu-
ous. Since ṽ−(x), ṽK(x), ṽ+(x), s̃−(x), s̃K(x), and ṽ+(x) (and
all polynomials) all have C∞ smoothness, this amounts choosing
the ṽK(x) and s̃K(x) coefficients so that their values and first K
derivatives match those of ṽ±(x) and s̃±(x) at x = ±1. For a
given degree of smoothness K, these constraints are:

ṽK(±1) = ṽ±(±1) = 1 (32)
d

dx
ṽK(±1) = d

dx
ṽ±(±1) = ±1 (33)

dk

dxk
ṽK(±1) = dk

dxk
ṽ±(±1) = 0, k ∈ {2, 3, · · · ,K} (34)

s̃K(±1) = s̃±(±1) = ±1 (35)
d

dx
s̃K(±1) = d

dx
s̃±(±1) = 0 (36)

dk

dxk
s̃K(±1) = dk

dxk
s̃±(±1) = 0, k ∈ {2, 3, · · · ,K} . (37)
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Table 3: Tabulated coefficients for smoothed signum s̃K(x) and absolute value ṽK(x) for the lowest 7 values of K.

K N s1 s3 s5 s7 s9 s11 s13

0 1 1
1 3 1.5 −0.5
2 5 1.875 −1.25 0.375
3 7 2.1875 −2.1875 1.3125 −0.3125
4 9 2.4609375 −3.28125 2.953125 −1.40625 0.2734375
5 11 2.70703125 −4.51171875 5.4140625 −3.8671875 1.50390625 −0.24609375
6 13 2.9326171875 −5.865234375 8.7978515625 −8.37890625 4.8876953125 −1.599609375 0.2255859375

K N v0 v2 v4 v6 v8 v10 v12

0 0 1
1 2 0.5 0.5
2 4 0.375 0.75 −0.125
3 6 0.3125 0.9375 −0.3125 0.0625
4 8 0.2734375 1.09375 −0.546875 0.21875 −0.0390625
5 10 0.24609375 1.23046875 −0.8203125 0.4921875 −0.17578125 0.02734375
6 12 0.2255859375 1.353515625 −1.1279296875 0.90234375 −0.4833984375 0.150390625 −0.0205078125

The polynomials are defined as

ṽK(x) =

Φe∑

ρ=0,2,···
vρx

ρ = v0 + v2x
2 + · · ·+ vΦex

Φe (38)

s̃K(x) =

Φo∑

ρ=1,3,···
sρx

ρ = s1x+ s3x
3 + · · ·+ sΦox

Φo . (39)

Because |x| is an even function, ṽ(x) and hence ṽK(x) must be
even functions, so all of the odd coefficients of ṽK(x) are zero
and its polynomial order Φe must be an even (“e”) positive integer.
Because sign(x) is an odd function, s̃(x) and hence s̃K(x) must
be odd functions, so all of the even coefficients of s̃K(x) are zero,
and its polynomial order Φo must be an odd (“o”) positive integer.

In practice, since both s̃(x) and ṽ(x) may contribute to the
shape of the curve at each corner, we set their orders together by

Φe = 2K, Φo = 2K + 1 . (40)

The first five (K ∈ {0, 1, 2, 3, 4}) instances of ṽK(x) and
s̃K(x) are shown in Fig. 4. Note that the K = 0 case is only
shown as an aid to understanding—it is not actually of any real use,
since it is equivalent to just making a PWL with twice as many line
segments, and does not actually increase the smoothness compared
to the original PWL representation.

Our final task is to come up with the polynomial coefficients
v0, v2, · · · , vΦe and s1, s3, · · · , sΦo of ṽK(x) and s̃K(x).

5.1. Linear algebra

The simplest conceptual approach is to write all of the constraints
from (35)–(37) and (32)–(34) as two systems of equations, which
can each written as a single linear algebra equation and solved with
standard methods (matrix inversion, etc.).

For example, the s̃0(x) setup would be
[
1 1
1 −1

] [
s0
s1

]
=

[
1
−1

]
, (41)

and the s̃1(x) setup would be


1 1 1 1
1 −1 1 −1
0 1 2 3
0 1 −2 3






s0
s1
s2
s3


 =




1
−1
0
0


 . (42)

This process can be repeated to systematically form a linear
equation of arbitrary order, by forming each row of the matrix as

[
1 (±1) (±1)2 (±1)3 · · · (±1)Φo

] (
Dk
)⊤

(43)

where the matrix D represents differentiation

D =




0 1 0 · · · 0 0
0 0 2 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 Φo − 1
0 0 0 · · · 0 0



. (44)

The whole system can then be solved as-is, or we can preferably
enforce the odd symmetry of the smoothed sign function by elimi-
nating the even columns (since the even coefficients are guaranteed
to be zero) and eliminating the even rows (since the constraints at
x = −1 are now redundant, since odd symmetry is enforced).

The process for the smoothed absolute value function is nearly
identical, although the constraints on the right hand side will need
to match those in (32)–(34) instead, and even symmetry is instead
enforced by eliminating the odd columns.

In both cases, the coefficients v0, v2, · · · , vΦe and s1, s3, · · · ,
sΦo of ṽK(x) and s̃K(x) can be found with standard linear alge-
bra, such as matrix inversion. Tabulated coefficients of s̃K(x) and
ṽK(x) for K ∈ {0, 1, · · · , 6} are given in Tab. 3.

5.2. Closed-form

As an alternative to using linear algebra, we can used a closed-
form equation that arises from a recursive construction. Robert
Bristow-Johnson has discussed a soft clipper which is identical to
our smoothed sign function [20–22].

In [21], Olli Niemitalo gives a useful recursive construction

s̃0(x) = x (45)

s̃K(x) = s̃K−1(x) +
(2K)!

4K(K!)2
(1− x2)Kx (46)

=

K∑

k=0

(2k)!

4k(k!)2
(1− x2)kx . (47)
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Figure 5: Chirp response spectrograms showing the effect of
rounding corners and/or applying first-order ADAA.

The coefficients of s̃K(x) are given in closed form by [21]

s2k+1 =
(−1)k(2K + 1)!

4KK!(2k + 1)k!(K − k)! , k ∈ {0, 1, · · · ,K} . (48)

We can use this same technique to generate the smoothed ab-
solute value function ṽK(x) by recognizing that—in the same way
that |x| is an antiderivative of sgn(x)—the smoothed absolute value
function is itself an antiderivative of the smoothed sign function
s̃K(x), as can be seen in Fig. 4. This means that we can produce
s̃K(x) by first producing ṽK(x) using Niemitalo’s method and
then integrating it. Since these are piecewise functions, we need
to attend to the constants of integration in the same way that we
discussed in §2. The only difference is that in the final step, we
should not have ṽK(0) = 0, but rather ṽK(±1) = 1.

5.3. Shifting polynomials

When we are not applying ADAA, we can shift and scale the nor-
malized corner components ṽK(x) and s̃K(x) without any further
effort, as in (24). However, when we are applying ADAA, we may
prefer to deal with the raw polynomial coefficients directly. In this
case, we need to be able to apply shifting and scaling operations to
the polynomials. Vertically scaling a polynomial is trivial

Ap(x) = Ap0 +Ap1x+Ap2x
2 + · · ·+ApΦx

Φ . (49)

Horizontal scaling is also fairly simple

p(Ax) = p0 +Ap1x+A2p2x
2 + · · ·+AΦpΦx

Φ . (50)

Horizontal shifts are more complicated; we use the synthetic divi-
sion based algorithm from [29].
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Figure 6: Overtone amplitudes for K ∈ {1, 6} for a 5-second-
long 200 Hz sinusoid with an amplitude of 2.0.

6. CASE STUDIES

We will now look at the chirp response for the PWL waveshaper
shown in Fig. 3. Our input signal is a 60 second long logarithmic
sinusoidal chirp from 20 Hz to 20 kHz, with an amplitude of 2.0 to
drive it to hit all of the segments. Fig. 5 shows spectrograms of the
chirp response of the “sharp” PWL waveshaper, a rounded version
(all corners with ω = 0.25), and versions of both with 1st-order
ADAA applied. In all cases, the sampling rate is fs = 44100 Hz
(with no oversampling), and the curve smoothness is K = 2.

The “sharp” PWL waveshaper produces excessive aliasing,
whereas the rounded version has far less, due to generally produc-
ing fewer overtones. For both the “sharp” PWL and rounded cases,
applying ADAA is successful at eliminating most of the aliasing,
coherent with results [11] for other waveshapes presented in the
literature. In practice, due to the inherent filtering of ADAA, it
should be used with at least 2× oversampling, which will mitigate
the filtering as well as adding extra alias suppression.

A second case study looks at what happens when the order of
smoothnessK is varied. Fig. 6 shows the strength of the overtones
for a 5-second-long static 200 Hz sine wave with an amplitude of
2.0 as input, fed into the same waveshaper from shown in Fig. 3,
again with ω = 0.25, and with 1st-order ADAA applied. We can
glean a few things from this plot. First, the amplitudes of the lower
overtones are somewhat unaffected by K. Second, we can see
that increasing K raises the amplitudes of the middle-frequency
overtones. Third, increasing K decreases the amplitudes of the
higher-frequency overtones.

7. CONCLUSION

In this paper, we’ve shown how to apply the ADAA technique to
any piecewise polynomial waveshaper, including the crucial step
of manipulating each segment’s constant of integration to ensure
at least C0 smoothness of each antiderivative used. This greatly
expands the class of waveshaping functions that can be used with
ADAA, while also providing a template for how to handle other
piecewise waveshaping functions. We looked specifically into two
special cases: the classic case of piecewise linear waveshaping
functions and a proposed technique for rounding the corners on
a piecewise linear waveshaper using special polynomial corners
that enforce smoothness up to a certain order.

For these smoothed corners, we’ve shown how to derive s̃K(x)
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and ṽK(x) for positive integerK, which enforcesCK smoothness
on our rounded corners. If one wanted to use K as a smoothly
controllable parameter, the discrete nature of the set of curves that
make up s̃K(x) and ṽK(x) (as shown in Fig. 4) will be disappoint-
ing. However, there is an easy way to form a set of polynomials
with continuous K with smoothness C⌊K⌋,

s̃K(x) = (⌈K⌉ −K)s̃⌊K⌋(x) + (K − ⌊K⌋)s̃⌈K⌉(x) , (51)

which would allow the corner shape to be varied smoothly.
For the case of the piecewise linear waveshaper with rounded

corners, an obvious question arises: what order of smooothnes
should we choose? Increasing the order of a polynomial wave-
shaper increases the number of overtones it produces, so it may
seem that increasing the order of the smoothness would increase
the number of overtones. However, in fact the number of overtones
in a non-trivial piecewise polynomial waveshaper is infinite. So,
reasoning about the number of overtones is not the right approach.
Thinking instead of the relative amplitudes of the overtones, we
saw in the second case study that increasing the smoothness did
not greatly affect the low-frequency overtones, increased the am-
plitude of middle-frequency overtones, and decreased energy for
the higher overtones. It is hard to say conclusively for all situations
whether this is good or bad—What we can say for sure is that be-
ing able to control the spectral profile in this way is a useful timbral
control that has implications for the amount of aliasing, since sup-
pressing the amplitude of high-frequency overtones (beyond the
Nyquist limit) reduces aliasing. One downside of increasing the
order is that it can increases numerical error in the calculation of
the coefficients and evaluation of the polynomials. In practice, al-
gorithm designers will have to be careful not to create a situation
where this numerical error, which manifests as harsh buzzing, is
audible. So, for now, we can only recommend choosing the order
to taste—a more rigorous evaluation and recommendation could
be the subject of future work.
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ABSTRACT

This paper reports on a new multi-label classification task for
guitar effect recognition that is closer to the actual use case of gui-
tar effect pedals. To generate the dataset, we used multiple clean
guitar audio datasets and applied various combinations of 13 com-
monly used guitar effects. We compared four neural network struc-
tures: a simple Multi-Layer Perceptron as a baseline, ResNet mod-
els, a CRNN model, and a sample-level CNN model. The ResNet
models achieved the best performance in terms of accuracy and ro-
bustness under various setups (with or without clean audio, seen or
unseen dataset), with a micro F1 of 0.876 and Macro F1 of 0.906
in the hardest setup. An ablation study on the ResNet models fur-
ther indicates the necessary model complexity for the task.

1. INTRODUCTION

The task of guitar effect recognition is to build an algorithm that
recognizes which kinds of effects are used in a given piece of guitar
audio. It is common to see multiple, nonlinear effects cascaded to
produce a rich guitar timbre. This makes it difficult to build an
effective recognition algorithm. Additionally, unlike some other
music information retrieval (MIR) tasks such as pitch tracking or
music tagging, resources for guitar effect recognition are relatively
limited. The lack of data and evaluation standards makes it difficult
to standardize the setup.

As we review in section 2, previous works on guitar effect
recognition have framed it as a typical classfication problem. How-
ever, most previous research tend to form the question as a multi-
class but single-label classification task, which means the models
either work on samples with single effects or consider a group of
effects as one label. However, in practice, different types of linear
or nonlinear effects are often cascaded to create the final output.
A second challenge is that the audio samples only contain a single
sound event, either a single pluck or a single sweep, which makes
the performance unpredictable on common guitar recordings that
usually contain more complex temporal and spectral components.

1.1. Our Contributions

In this paper, we constructed the task of guitar effect recogni-
tion as a multi-label classification task by applying two improve-
ments: First, we created a workflow that renders arbitrary guitar

∗ This paper is based on the master’s thesis research performed by the
first author while studying at New York University
Copyright: c⃝ 2023 Jinyue Guo et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

Figure 1: Proposed method of effect rendering and multi-label
classification.

recordings with all combinations of effects using SoX. Second, we
adapted several Neural Network models that can handle the multi-
label classification task. The models were modified and bench-
marked with several task setups: using the original clean audio
as a hint or not, and zero-shot classification on unseen data dis-
tributions. As a complement of this paper, source-code and result
sheets are provided online12.

2. RELATED WORKS

The question of guitar effect recognition was first formed into a
classification task by Stein et al. [1, 2]. They formed a single-label
classification task by using only one effect at a time [1] or only
classifying the group of effects [2]. The classifiers are built with
hand-crafted audio features such as spectral centroid and cepstral
features, and then feed into a Support Vector machine for clas-
sification. They also introduced a new dataset, IDMT-SMT-Audio-
Effects. The dataset was manually processed using a Digital Audio
Workstation, containing 55,000 samples of processed guitar audio
files, recorded with two electric guitars and two electric basses.
The samples are monophonic or polyphonic, but each includes a
single sound event only.

Schmitt and Schuller [3] continued on the direction of hand-
crafted audio features with a comprehensive research on features,

1https://github.com/fisheggg/SFXlearner
2DOI: 10.5281/zenodo.7973536
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Table 1: Effects used, the corresponding pysox function, and parameters. Parameters not listed are default values in pysox.

Effect type Effect name pysox function parameters
Non-linear Overdrive sox.overdrive() gain_db: 5

Distortion sox.overdrive() gain_db: 15
Modulation Chorus sox.chorus() n_voices: 5

Flanger sox.flanger() depth:5,
phase:50

Phaser sox.phaser() default
Tremolo sox.tremolo() default

Ambience Reverb sox.reverb() reverberance: 80
Feedback delay sox.echos() n_echos: 3

delays: [200,400,600]
decays:[0.4,0.2,0.1]

gain_out:0.5
Slapback delay sox.echo() n_echos: 3

delays: [200,400,600]
decays:[0.4,0.2,0.1]

gain_out:0.5
EQs Low boost sox.bass() frequency: 200

gain_db: 10
Low reduct sox.bass() frequency: 200

gain_db: -10
High boost sox.treble() frequency: 8000

gain_db: 20
High reduct sox.treble() frequency: 8000

gain_db: -20

including zero-crossing rate (ZCR), root-mean-square (RMS) en-
ergy, etc. They also introduced the concept of Bag-of-Audio-Words
(BoAW), which generates a codebook of frame-level features. The
classification setup and dataset are the same as Stein et al. [1, 2].

Neural network methods were first introduced to the task by
Jürgens et al. [4] and Comunità, M. et al. [5]. Both of these works
attempted to recognize not only the types of effects but also the pa-
rameters. Since the IDMT-SMT-Audio-Effects dataset did not pro-
vide any parameter information, both of these works have created
their own setups. Jürgens et al. [4] continued to use the afore-
mentioned effect settings [1] and built specific Multi-Layer Per-
ceptron (MLP) [6] parameter regressor for each class after being
classified. On the other hand, Comunità et al. [5] used a different
setting. Instead of using the 10 classes [1], they focused on non-
linear effects. Thirteen overdrive, distortion and fuzz effect units
are selected and tested on unified parameters (Gain and Tone/EQ).
Instead of building specific regressors for each effect, a uniform
Convolutional Neural Network (CNN) is trained to classify the ef-
fects and estimate their parameters.

Meanwhile, some of the latest neural network methods have
been introduced to similar Music Information Retrieval tasks. The
ResNet model [7] was originally proposed for Computer Vision
tasks, but is proven to be also effective on genre recognition [8].
The CRNN model [9] combines the idea of convolutional neural
network and recurrent neural network, achieved great results on
music classification. Unlike the previous models that use spec-
trogram as their input, the Sample-Level CNN model [10, 11]
applied 1-D convolution on raw waveforms and achieved great
results on music auto-tagging. These models have been proven
on solving audio-based multi-label classification problems, but are
not adapted to guitar effect recognition yet.

3. DATA PREPARATION

3.1. Clean Datasets

Instead of recording sounds from physical guitar effect units, we
chose to use clean guitar audio datasets, and manually render audio
effects. There are two main benefits of this process. The first is to
have huge flexibility in controlling the types, numbers, orders, and
parameters of the effects we apply to each audio. The richness of
data variation can contribute to the robustness of the model. The
second benefit is that we can get a clean version of the processed
audio, which can be used as a reference in the model.

We use two different clean guitar datasets in our rendering
progress. GuitarSet [12] contains more than 10,000 seconds
of guitar audio recordings, played by 6 different players in 5 dif-
ferent styles. The variety of this dataset can make our model ro-
bust on the timbre difference of the guitars and play styles of dif-
ferent guitarists. However, the instrument and recording setting
of GuitarSet is fixed. As a complement, the fourth subset of
IDMT-SMT-Guitar dataset [13] contains 384 guitar samples
of 64 different music pieces that are played in 2 different tempi
and 3 different guitar models, and recorded with two different se-
tups. The audio files are sliced into 5-second excerpts with the
tails dropped. After the process, we have 2004 samples from
GuitarSet, and 650 samples from IDMT-SMT-Guitar.

3.2. Effect Selection and Dataset Rendering

We use SoX [14] and its python wrapper pysox [15] to create
the pipeline and render effects to the clean datasets. We chose
13 often-used sound effects, including nonlinear effects, modula-
tion, and EQs. Compared to the standard effect types proposed
by Stein et al. [1], we added EQ effects since they are often used
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in pedalboards. The vibrato effect is replaced by chorus, since it
could be considered as a special case of chorus when the number
of voices equals to 1. One limitation here is that SoX only provides
one clipping algorithm, hence the Overdrive and Distortion actu-
ally use the same function but with different values of gain. The
parameters of effects are hand-picked to provide audible changes
to the audio samples and are fixed during the generation process.
Table 1 shows the selected effects.

Using the pysox API, we can create effect chains that con-
tain combinations of effects with various numbers and orders. The
labels are generated as a multi-hot vector in length 13, each el-
ement indicates the presence of one effect. For example, an ar-
ray [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] indicates an effect chain with
overdrive, chorus, and high-reduct EQ. The labels are used as the
ground truth during training and evaluation. We further split the
effects into 6 different groups. Effects within a group are mutu-
ally exclusive: only one effect in the group is chosen in one effect
chain. This is to avoid cancellation, such as applying Low boost
and Low reduct at the same time. Table 2 shows the grouping.

Table 2: Effect groups.

Group number Effect name
1 Overdrive

Distortion
2 Chorus

Flanger
Phaser

Tremolo
3 reverb
4 Feedback delay

Slapback delay
5 Low boost

Low reduct
6 High boost

High reduct

During generation, we can choose the number of groups to ap-
ply, and the pipeline iterates over all combinations of groups, and
combinations of the effects. Let En denote the total number of ef-
fect chains when applying n groups of effects,Gk denote the num-
ber of effects in the k-th group, and Cn

k denote a k-combination
with n elements, we can calculate En using equation 1.

En =
∑

gi∈{Cn
6 }

∑

k∈gi

C1
Gk

(1)

For example, when n = 2, it iterates over the combinations of
two groups: (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5),
(2, 6), (3, 4), (3, 5), (3, 6), (4, 5), (4, 6), (4, 5). Within each set of
groups, the combinations of effects are also iterated. For example
in set (5, 6), the combinations are (Low boost, High boost), (Low
boost, High reduct), (Low reduct, High boost), (Low reduct, High
reduct).

Each 5-second clean sample are rendered with all combina-
tions of effects. We choose to use n = [1, 5] in our generation
process, where n = 1 is the case of single effect recognition and
n = 5 means only one group is not used. As a result, 221 combina-
tions of effects, 442,884 samples from GuitarSet and 143,640
samples from IDMT-SMT-Guitar are created. We further split
GuitarSet samples into a training split of 327,522 samples and

a validation split of 115,362 samples. We made sure the sam-
ples from the same audio source are in the same split to avoid the
’album effect’ [16]. The IDMT-SMT-Guitar samples are only
used during evaluation.

4. EXPERIMENTAL SETUP

We form two different setups: using the rendered audio with the
clean audio (’with_clean’), or using the rendered audio only
(’no_clean’). The ’with_clean’ setup is a simpler task, since the
model can compare the difference between the two signals and ig-
nore unrelated variables, such as the type of guitar or the recording
settings. Additionally, to compare with previous works on single-
effect recognition, a reduced dataset with only n = 1 is used as a
simpler setup.

To compare with previous works that use hand-crafted fea-
tures, we use a traditional Multi-Layer Perceptron (MLP) model
with Mel-Frequency Cepstral Coefficients (MFCC) [17] as input.
The MFCCs are extracted from audio samples at 44, 100Hz with
n_mfcc = 20, n_fft = 4096 and hop_length = 2048. The
MLP has three hidden layers with hidden_dim = 4096, 512, 13
for each layer, and a ReLU function after each layer. The input
shape of MLP is 2× 20×Nf for ’with_clean’, and 20×Nf for
’no_clean’, where Nf = 108 is the number of frames. As for the
DC coefficient in MFCC, since it represents the overall volume of
the audio, the MLP should be able to learn by itself whether the
volume information is related to output labels.

On the other hand, three newly developed Neural Network
models are used: the ResNet model [7], the CRNN model [9]
and the Sample-Level CNN model [10]. We use Mel spectrogram
in dB scale as the input feature map for ResNet and CRNN, ex-
tracted from audio samples at 44, 100Hz with n_fft = 2048,
n_mels = 128, hop_length = 1024. The shape of one spectro-
gram is (128, 216), with each time frame containing the informa-
tion of 23.2ms. For the ‘no_clean’ task, the number of channels
simply equals 1, while for ‘with_clean’ it becomes 2. The Sample-
level CNN model uses raw audio downsampled to 22, 050Hz as in-
put. The kernels and layers are slightly modified to suit the change
of input and output size of our task.

The Models are built and trained using the PyTorch library
[18]. For single-effect recognition, Categorical Cross-Entropy loss
is used, while Binary Cross-Entropy loss is used for multi-effect
recognition. Model weights are updated using Adam optimizer
[19] with a learning rate of 0.001 for a maximum of 500 epochs.
The batch size is set to 64 for baseline, ResNet and CRNN, and 16
for sample-level CNN due to memory limitation. The training set
is shuffled before each epoch, but the random seed is fixed. An
early stopping mechanism is performed if the validation loss over
Guitarset validation split does not decrease for 2.5 epochs. For
inference, the threshold of 0.5 is used. A computer with 16G RAM
and one NVIDIA 2060 super GPU is used for training.

5. EVALUATION

5.1. Single-Effect Results

Table 3 shows the F1 scores of the baseline model and resnet18
model under the two setups. The resnet18 model has outperformed
the baseline model in both setups. For the single effect setup, the
’with_clean’ setup is relatively simple and both models achieved
good performance. However, when the clean signal is removed,
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(a) no_clean setup. (b) with_clean setup.

Figure 2: Single-effect confusion matrices of the baseline model under two setups, both on GuitarSet validation split.

the baseline model has a significant performance drop, while resnet18
can still achieve a score above 0.9.

Table 3: Result of single effect recognition, evaluated on
GuitarSet test split.

Model Setup F1 score
baseline with_clean 0.956
resnet18 with_clean 0.999
baseline no_clean 0.742
resnet18 no_clean 0.924

Figure 2 shows the single-effect confusion matrices of the base-
line model under two setups. The characteristics of each effect
class are different since they have different mechanisms. In the
’no_clean’ setup, overdrive and distortion are often confused, the
reason might be that we actually used the same SoX function, only
with different parameters. Since the data samples have different
loudness levels, the clipping ratio varies according to the sample’s
own loudness level, which might cause the confusion. The feed-
back delay and slapback delay are similar, while the former has
a feedback loop that also delays the previous outputs. More sam-
ples of feedback delay are classified as slapback delay, while fewer
slapback delay are classified as feedback delay. The reason might
be for samples without explicit note onsets, the differences be-
tween these two delays are too subtle for MFCCs to catch. Another
confused group is flanger, phaser, and tremolo. Interestingly, it is
the tremolo but not the chorus that is misclassified, since tremolo
is amplitude modulation while chorus, flanger and phaser are all
delay-based modulation. Since the baseline model is a plain MLP
with no inductive bias for shift invariance, it did not capture the
difference between delay modulation and amplitude modulation,
but instead captured the difference in modulation patterns. In the
pysox implementations, the Low Frequency Oscillators (LFO)
are sinusoids in flanger, phaser and tremolo, while for chorus the
LFO shape of each voice is randomly chosen between triangular

and sinusoidal.
With the help of the clean signal, the model gained better per-

formances in most of these groups. The model performed perfectly
on overdrive and distortion when it knows the original loudness
level of the signal. The volume information also helps to clas-
sify tremolo successfully from the other modulations. However,
the model still struggles with feedback delay and slapback delay,
which probably indicates that the MFCCs cannot catch such sub-
tle timbre differences. There are still errors between flanger and
phaser, which is more difficult when the audio sample only con-
tains short impulses.

5.2. Multi-Effect Results

For a multi-label classification problem, we use both micro F1

score and macro F1 score as our evaluation metric. Figure 3 shows
the benchmark of four models under two setups, two datasets.
Among all the setups, the resnet18 and CRNN model outperforms
the baseline model under every setup, while the sample-level CNN
only achieved a better micro F1 score in one setup. The difference
between micro F1 and macro F1 is relatively small for all models
except sample-level CNN, which indicates that the performance of
sample-level CNN is imbalanced between classes.

We can see a performance drop on IDMT-SMT-Guitar com-
pared to the GuitarSet validation split. This indicates that even
though the ‘album effect’ is avoided when splitting GuitarSet, the
two splits are still inherently correlated. The F1 scores of CRNN
and resnet18 on Guitarset validation split even reached 0.999
under ‘with_clean’ setup. Therefore, using IDMT-SMT-Guitar
as the evaluation dataset is more meaningful.

In the hardest and most practical setup (IDMT-SMT-Guitar,
‘no_clean’), the resnet18 model achieved the best performance,
while CRNN is slightly below. The other two models were able to
solve the problem in the simpler setups, but failed in this practical
setup. However, although the performance of resnet18 and CRNN
are similar in the hardest setup, we noticed that resnet18 converges
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Figure 3: Model benchmark of multi-effect recognition.

much faster than CRNN during training.

Although the performance on GuitarSet validation split
cannot directly represent the model’s actual performance, we can
analyze the robustness of models by comparing their differences
in performance among two datasets. In both setups, the baseline
model has the biggest performance drop on IDMT-SMT-Guitar
dataset, while resnet18 achieves the best robustness among the
four models. All models had a bigger drop in ’no_clean’ since
the task is more difficult.

5.2.1. Per-class analysis

We used the best performing model, resnet18 to analyze the re-
sult for each effect class. Figure 4 shows the confusion matri-
ces of resnet18 model under two setups. The performance under
’no_clean’ setup is acceptable in most of the classes, except over-
drive and distortion. The model achieved F1 scores around 0.93
for these two classes on GuitarSet validation split, but dropped
significantly on IDMT-SMT-Guitarwhile other classes achieved
the same level of performance among two datasets. The reason
might be that we used the same SoX implementation for these two
classes, only with different gain levels. When testing on another
dataset with a different distribution of loudness levels, the distribu-
tion compression rate also varies significantly. On the other hand,
when clean audio is given to the model in ’with_clean’ setup, it is
easier to learn the relationship between input and output gain, and
the model achieved a better performance on the two classes. Other
classes benefit from the additional information as well.

5.3. Ablation study

We performed an ablation study on resnet by removing groups of
convolutional layers at the output end. Since resnet18 already per-
formed well under both setups and both datasets, we want to in-
vestigate the minimum number of layers required to get such per-
formance. The ablation models are trained using the same config-
uration as described in Section 4. For each ablation model, the last
group of convolutional layers is removed, and the number of layers
decreases by 4. Metrics are evaluated on IDMT-SMT-Guitar
dataset.

Table 4: Model complexity and performance for resnet ablations.
Metrics are evaluated on IDMT-SMT-Guitar.

Model Setup Number of Micro Macro
parameters (k) F1 F1

resnet18 with_clean 714.7 0.968 0.970
resnet14 with_clean 188.3 0.963 0.955
resnet10 with_clean 56.2 0.958 0.950
resnet6 with_clean 34.4 0.926 0.917

resnet18 no_clean 714.3 0.876 0.906
resnet14 no_clean 187.9 0.848 0.832
resnet10 no_clean 55.6 0.860 0.844
resnet6 no_clean 34.0 0.830 0.811

Table 4 shows the complexity and performance of the abla-
tion models. The performance drop has a nonlinear relationship
with respect to the number of parameters. We see that resnet14
and resnet10 have similar performance, and resnet10 even slightly
outperformed resnet14 under ’no_clean’ setup. On the other hand,
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(a) ’with_clean’ setup (b) ’no_clean’ setup.

Figure 4: Confusion matrices and class-wise F1 scores of resnet18, multi-effect IDMT-SMT-Guitar.

resnet6 has a performance drop of about 0.03 under both setups.
Generally, the performance under ’no_clean’ setup is a fair trade-
off between complexity and performance. For the ’with_clean’
setup, the smallest model is still able to perform relatively well,
since the task is much simpler with the clean signal.

6. CONCLUSION

In this paper, we reconstructed the task of guitar effect recognition
to make it closer to the actual use-case of guitar effect pedals. We
created a workflow that renders arbitrary guitar recordings with
all combinations of effects using SoX, which increases the vari-
ation compared to existing datasets. Secondly, we adapted novel
Neural Network models to solve the multi-label classification task
under two setups, ’with_clean’ and ’no_clean’. The best perform-
ing model is modified from the resnet18 model, achieving a micro
F1 of 0.876 and macro F1 of 0.906 on an unseen dataset under
’no_clean’ setup. Class-wise analysis indicates that the model is
able to distinguish most of the effects except a small confusion on
overdrive and distortion. An ablation study shows that the deep
structure is necessary to achieve the performance, but a trade-off
between complexity and performance is optional. Possible im-
provements include randomizing the effect order and parameters,
or using better effect plugins, even real effect units.
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ABSTRACT

The sound of magnetic recording media, such as open-reel and
cassette tape recorders, is still sought after by today’s sound prac-
titioners due to the imperfections embedded in the physics of the
magnetic recording process. This paper proposes a method for
digitally emulating this character using neural networks. The sig-
nal chain of the proposed system consists of three main compo-
nents: the hysteretic nonlinearity and filtering jointly produced by
the magnetic recording process as well as the record and playback
amplifiers, the fluctuating delay originating from the tape trans-
port, and the combined additive noise component from various
electromagnetic origins. In our approach, the hysteretic nonlinear
block is modeled using a recurrent neural network, while the de-
lay trajectories and the noise component are generated using sep-
arate diffusion models, which employ U-net deep convolutional
neural networks. According to the conducted objective evaluation,
the proposed architecture faithfully captures the character of the
magnetic tape recorder. The results of this study can be used to
construct virtual replicas of vintage sound recording devices with
applications in music production and audio antiquing tasks.

1. INTRODUCTION

Magnetic recording has had a profound impact on the history of
recorded music, providing a dramatic leap in the quality of the
stored audio in comparison to the earlier direct-to-disk techniques.
The advances in magnetic recording grounded practices such as
multitrack and sound-on-sound recording within the industry, and
as the technology matured and became cheaper, allowed for en-
tire generations of professional and amateur musicians alike to ex-
periment with these powerful production techniques. Reel-to-reel
tape recorders, an example of which is shown in Fig. 1, have been
largely replaced by digital recording techniques for sound capture
and reproduction. However, the idiosyncrasies of the magnetic
recording process are now used as a creative effect. This paper
studies the imperfections of the magnetic recording process and
emulates them digitally and with neural networks.

Virtual analog (VA) modeling is an area of digital signal pro-
cessing with a rich lineage in the past decades, aiming at mod-
eling analog audio devices and making the emulations available
as software [1]. The techniques used for the modeling are tradi-
tionally divided into white-box, grey-box, and black-box methods,
depending on the type of information used as the basis for the task.

∗ This work was supported by the Nordic Sound and Music Computing Network
(NordForsk project number 86892).

Copyright: c⃝ 2023 Otto Mikkonen et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which
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provided the original author and source are credited.

Figure 1: Akai 4000D reel-to-reel tape recorder.

White-box techniques use exact knowledge of the underlying cir-
cuits to reconstruct the physics in the digital domain in order to
match the observed behavior. Black-box techniques use observa-
tions collected from the target as the basis and optimize a general-
purpose method to replicate the behavior. In grey-box modeling, a
combination of white- and black-box methods is used. Over the
last decade, advances in deep learning have given rise to their
increased application also for VA modeling, with the techniques
capable of exhibiting state-of-the-art performance in a number of
different tasks [2, 3, 4].

While the physics underlying magnetic recording has been
studied thoroughly in the past [5, 6], it has been applied for the
purpose of digitally emulating the recording process only recently
[7]. Pertinent to this topic is the lineage of work related to the
modeling of tape delay devices, which has been covered more ex-
tensively [8, 1, 9]. In our work, we build up from earlier literature
on emulating the sound of the magnetic tape, and propose a grey-
box system for the emulation task. We consider the sound of the
tape recorder to be build up of the nonlinear hysteretic magneti-
zation of the tape medium, the filtering produced by the recording
and playback heads, a fluctuating delay induced by the imperfec-
tions in the tape transport mechanism, the tape hiss, as well as the
subtle nonlinearities and filtering of the input/output amplifiers.
The proposed system uses a hybrid array of modern deep-learning
techniques as the backbone for modeling these different aspects of
the character.

The rest of this paper is organized as follows. Sec. 2 reviews
the background theory regarding the effects of magnetic recording.
Sec. 3 gives an overview of the system proposed for the modeling.
Sec. 4 provides details concerning the data used to evaluate the
proposed method, while Sec. 5 describes the training process for
the different network architectures. The experimental procedure
is divided into two sections depending on the type of data used
for the evaluation: in Sec. 6, toy data collected from a virtual tape
machine is used, while Sec. 7 uses data from a real machine. Sec. 8
concludes the work.
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Figure 2: (a) Real and (b) VA system block diagrams.
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Figure 3: Tape magnetization nonlinearity exhibits hysteresis.

2. MAGNETIC RECORDING

The block diagram of a typical magnetic recorder is shown in
Fig. 2a. The system consists of a recording amplifier, a recording
head, the moving tape medium, a playback head, and a playback
amplifier. The following paragraphs briefly discuss each of these
components and their contribution to the overall character, based
on earlier literature [7, 5, 6, 1, 8, 9].

The recording head takes the input current from the recording
amplifier, and produces a spatial magnetic field determined by both
the properties of the recording head and the magnitude of the input
current. When the moving magnetic tape is exposed to this field,
the magnetic dipoles in the substrate take the form of the field,
which is retained as it passes the volume of the field. Since the
characteristic magnetization of the tape takes a hysteretic nonlinear
shape, shown in Fig. 3, a high-frequency bias is added to the input
signal to reduce the nonlinearity produced by the hysteresis.

As the tape moves past the playback head, the changing mag-
netic field induces a current within its internal coil, restoring part
of the stored signal into electrical form. This recovery of the signal
is a spatial integration over the magnetized volume of tape, which
leads to tape-speed-dependent filtering, shown in Fig. 4. The fil-
tering consists of components related to the spacing between the
head and the tape, the tape thickness, and the playback head gap.

To counterweight the spatial filtering induced by the playback
head, the recording and playback amplifiers are used as pre- and
post-filtering stages. This also serves to maximize the dynamic
range of the tape and condition the input and output signals of the
system. In our reference design shown in Fig. 1, these amplifiers
are implemented with cascaded transistor circuits, producing addi-
tional low-order harmonic distortion in the processed signal.

The tape movement speed is not perfectly constant, due to
small fluctuations produced by imperfections in the tape transport
mechanics. These imperfections include cyclical components pro-
duced by the moving parts in the transport mechanism as well as
stochastic behavior, shown in Fig. 5a, in the form of a delay trajec-
tory. These inconsistencies in the movement can be heard as small
fluctuations in pitch, known as wow and flutter.
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Figure 4: Three components of playback losses.

Magnetic tape recorders generate noise artifacts throughout
the recording and playback stages, which contribute to the dis-
tinctive qualities of the resulting audio signal. The noises could be
originated by multiple sources, such as the playback equipment,
the magnetic particles in the tape coating, modulation noises dur-
ing recording, or surface asperities, among others [10].

3. METHODS

We employ a grey-box model, shown in Fig. 2b, inspired by the
block diagram of the target device. The signal path for the pro-
posed system consists of three components: 1) a hysteretic nonlin-
earity for modeling the magnetic recording process lumped with
the record/playback amplifier responses, 2) a time-varying delay
line controlled by a delay trajectory generator, and 3) an additive
noise component. In the following, details concerning these com-
ponents as well as the capture of delay trajectories are given.

3.1. Delay Trajectory Retrieval

The fluctuating time delay between the record and playback heads
is captured using a pulse train-based measuring technique [8, 11,
7]. The measurement signal consists of a train of unit impulses
spaced T = 1/f apart, where f is the repetition frequency. This
signal is played through the target device, and the locations of the
input and output pulses are compared to determine the time delay
between the heads as it fluctuates over time. The frequency f of
the pulse train determines the sampling rate for the captured trajec-
tories and in our experiments f = 100Hz was used [8, 9]. An ex-
ample of a measured delay trajectory, as well as the measurement
signal at the input and output of a studied target are illustrated in
Fig. 5.

3.2. Lumped Nonlinearities

The lumped effects include the hysteretic nonlinearity of the mag-
netization process, the spatial filtering of the playback head, as
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Figure 5: (a) Delay trajectories and (b) measurement signal.

well as the low-order distortion components and filtering origi-
nating from the record and playback amplifiers. We choose a re-
cursive neural network (RNN) architecture for modeling these as-
pects, consisting of a gated recurrent unit and a linear output layer
[2]. The model details can be found in the original research arti-
cle. The choice of the model stems from the stateful nature of the
recurrent unit, which we hypothesize as being helpful in learning
the hysteresis shape. Three training schemes for training the RNN
are considered: two supervised and one adversarial, explained in
the following subsections.

3.2.1. Supervised Approaches

For the supervised approaches, we exploit the stereo nature of most
tape recorders. We construct stereo training signals with the audio
content on the left channel embedded with the measurement pulse
train signal on the right. Using the pulse detection algorithm to
construct the delay trajectories for each individual audio segment,
the time evolution of the tape medium can be captured and used to
restore the alignment of the targets and model predictions.

We implement and compare two approaches for restoring the
alignment, shown in Fig. 6. In the first approach (Fig. 6a), inspired
by Kaloinen’s work [9], we use the captured delay trajectory τ to
demodulate the target segment y∗

L = demod(yL, τ ), where ∗ de-
notes a signal which has been demodulated or has not had a delay
line applied to it. After this procedure, the demodulated signal and
the raw output from the nonlinear block become aligned and we
compute the loss L(ŷ∗

L,y
∗
L). In this scenario, the gradients flow

only through the nonlinear block, and the time-varying delay line
is only added during inference.

In the second approach, shown in Fig. 6b, we use the cap-
tured delay trajectory τ to delay the raw output from the nonlin-
ear block ŷL[n] = ŷ∗

L[n − τ [n]] in order to compute the loss
directly as L(ŷL,yL). In this approach, the gradients flow also
through the delay line, which needs to be differentiable. Linear
interpolation was used to implement the continuously variable de-
lay line, and the implementation was originally included in the
Magenta DDSP codebase [12]. Care must be taken to avoid non-
differentiable rounding operations such as the floor operator.

The delay line is initially filled from left to right with inte-
gers representing delay-line length, starting from N and decreas-
ing with a step size of 1, with the final value being 0. The desired
delay-line length is subtracted from each element of this vector
and the abs operator is applied. Each element of this vector is sub-
tracted from 1, and finally, the rectified linear unit (ReLU) function
is applied, resulting in a vector where all indices are filled with ze-
ros, except for the indices with indexes immediately above and
below the desired delay-line length. This vector can then be multi-
plied element-wise with a buffer of previous input values, and the
sum of this operation produces the output of the delay line.

3.2.2. Adversarial Approach

An alternative approach using an adversarial training method is
also proposed. This allows for the modeling of monophonic tape
recorders. In this method, measured or synthesized delay lines are
applied to the RNN model output. Instead of training the model
using a supervised loss function, which requires the delay line to
be known, an adversarial loss can be used such that the delay line
applied does not have to match the actual delay line applied in
the training data. In this case, a discriminator model is trained to
distinguish between real examples of processed audio from the tar-
get dataset, and synthetic examples which are produced using our
modeling approach. The discriminator model and training proce-
dure used are identical to those used earlier by Wright et al. [13].
The discriminator receives a time-frequency representation of the
audio as input, and consists of a stack of 1D convolutional layers,
with the first layer treating the frequency bins as an input channel.
The discriminator and the tape model are trained adversarially us-
ing the hinge loss function.

3.3. Noise Generator

The background noise component is modeled using a diffusion
probabilistic model [14], in a similar fashion to previous work
from Moliner and Välimäki [3]. A diffusion model is used as
a data-driven universal approximator of the probability distribu-
tion of all the additive disturbances that are introduced during the
recording, magnetization, and playback processes. The model can
be trained with recorded silent passages containing only the back-
ground textures produced by the reel-to-reel machine. By revers-
ing a diffusion process, white Gaussian noise segments are pro-
gressively morphed into noises from the training data distribution.
Based on the assumption that the noises are additive, the generated
noise samples are added to the output signal as a final step.

Although we have adopted the main concept from a previous
work [3] as a basis for our research, there are significant devia-
tions in the technical details of our approach due to our use of
more recent developments on diffusion models. We adopt some of
the design choices from Karras et al. [15], including the ordinary
differential equation (ODE) formulation, the neural network pre-
conditioning, the training objective, and the noise schedule param-
eterization, the latter being a Variance Exploding noise schedule
[16].

3.4. Trajectory Generator

Given the stochastic nature of the delay trajectories underlined in
Sec. 2, in this work, they are modeled using a probabilistic gen-
erative model. Similar to Sec. 3.3, a diffusion model is also used
to for this task. In this case, the model is trained to emulate the
distribution of the measured delay trajectories.
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Figure 6: Supervised approaches for training the nonlinearity: (a) Demodulation and (b) differentiable delay line.

4. DATA COLLECTION

This section provides details concerning the data used in the exper-
imental procedure, including the compiled datasets. The compiled
datasets are made available in the accompanying webpage 1.

As input data, we use a fraction of the inputs from Signal-
Train [17] for training the nonlinear block. The dataset consists of
short musical passages representing varying genres played using
various instruments, together with synthetic measurement signals,
sampled at 44.1 kHz. A total of 60 min, 20 min, and 15 min of
audio is used for training, validation, and testing, respectively.

4.1. Toy Data

We test the modeling architecture using synthetic data, generated
via wrapping the VST instance of CHOWTape [7], a white-box
modeled tape machine, using Pedalboard 2. During the generation,
the VST instance is set to 16× oversampling using an 8-iteration
Newton-Rhapson solver for the tape hysteresis ODE, which are
the highest quality settings available. To make sure the virtual tape
is sufficiently saturated, the tape drive, tape saturation, and tape
bias are set to (0.75, 0.75, 0.0) ∈ [0, 1], respectively. The timing
parameters—the flutter depth, wow depth, and wow variance—
are set to (0.75, 0.75, 1.0) ∈ [0, 1], respectively. We turn off any
additional processing from the VST which did not appear in the
original research article. Two datasets are collected for the exper-
iments with the toy data: one with only the tape effects enabled
and the timing effects disabled, and one with both of the effects
enabled.

4.2. Real Data

The real data for evaluating the modeling architecture was col-
lected using an Akai 4000D open-reel tape recorder (Fig. 1). The
device is a 1

4
inch, four-track, three-head, stereo recorder from the

1970s, capable of running at 3 3
4

and 7 1
2

inches per second (IPS)
and using discrete transistor circuitry for the input/output ampli-
fiers. The data was collected using two types of magnetic tape:
a Maxell low-noise/high-output tape and a Scotch low-noise tape
from the 1970s. An RME Fireface UCX audio interface was used
for recording and playback.

Using a three-head recorder allows for simultaneous recording
and playback to and from the tape, allowing the fluctuating time

1http://research.spa.aalto.fi/publications/
papers/dafx23-neural-tape/

2https://github.com/spotify/pedalboard

delay between the record and playback heads to be captured. In
practice, we connect a stereo line feed from the audio interface into
the line inputs of the tape recorder, set monitoring to TAPE, and
record both the stereo line feed from the tape recorder, as well as a
loopback signal from the interface outputs back to its inputs. The
recording level of the device was set such that when monitoring
the signal entering the tape (monitoring set to INPUT), a 0 dBFS
signal from the interface is just below the clipping threshold of the
record and playback amplifiers.

The collected data is divided into datasets used for training
the lumped nonlinearities, the delay trajectory generator, and the
noise generator. We collected two versions of each dataset using
the (tape branch, tape speed) configurations (MAXELL, 7 1

2
IPS)

and (SCOTCH, 3 3
4

IPS). While initially the same datasets were
intended to be used for training both the nonlinear block and the
delay trajectory generator, studying the extracted trajectories from
the lumped nonlinearity datasets revealed that the accuracy of the
trajectory generator would be severely limited by the considered
sampling rate of 44.1 kHz, and thus we collected separate high-
resolution datasets at 192 kHz for the trajectory generator, con-
sisting of the same upsampled audio. Finally, to train the noise
generator, two datasets consisting of only the hiss captured from
the line feed of the tape recorder were collected using the original
sampling rate of 44.1 kHz.

5. IMPLEMENTATION DETAILS

This section provides details concerning implementing the differ-
ent components in the modeling architecture, including modeling
training and the loss functions used.

5.1. Supervised Approaches

The first two approaches use supervised training to optimize the
weights of the nonlinear block, aligning the target and output seg-
ments using the proposed methods shown in Fig. 6. The RNN is
trained using truncated back-propagation through time (TBPTT)
[18], allowing the RNN state to initialize before tracking the gra-
dients. For the first approach, the RNN state is initialized for 1024
steps, and for the second, the initialization length is determined
by taking the next power of two of the maximum delay length
in samples encountered in the training dataset. We use a hidden
size of 64 as preliminary experiments indicated that increasing the
hidden size beyond this did not bring an improvement in model
performance. We use Adam with the default hyperparameters as
implemented in PyTorch as the optimizer. We use a learning rate
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of 1× 10−3 and reduce it with a factor of 0.75 every time the val-
idation loss has not improved for 10 epochs. A batch size of 32
is used for all the experiments and the models are trained using a
graphical processing unit for 4 hours.

To compute the prediction discrepancy against the target out-
put for the supervised approaches, the error-to-signal ratio (ESR)
loss is used [19]. Details concerning the loss function can be found
in the paper by Damskägg et al. [19].

5.2. Adversarial Approach

For the adversarial training method, TBPTT was also used. As
the time-varying delay line is initially filled with zeros, the ini-
tialization stage is run for a number of steps equal to the maxi-
mum measured delay-line length. This ensures that the delay line
is filled with real values during TBPTT. A segment length of 2
seconds was used during training, with parameter updates being
carried out every 16384 samples. The longer TBPTT length was
used as the discriminator model uses a time-frequency representa-
tion of the signal as input. As such, longer input lengths increase
the frequency resolution that is seen by the discriminator model.

The discriminator and RNN model are alternately trained us-
ing the hinge loss function described by Kumar et al. [20]. A batch
size of 16 was used during training. During validation, paired data
was used to evaluate the RNN model, with the measured delay line
being applied at the output of the RNN. Training was run for 50
epochs, with a multi-resolution log spectral magnitude loss being
used to select the best performing model weights.

5.3. Noise Generator

We train our diffusion models following the recommendations by
Karras et al. [15]. Considering that the standard deviation of the
recorded data is, approximately, σdata = 8×10−4, the noise sched-
ule is defined so that, during sampling, the Gaussian noise level
decreases logarithmically across the reverse diffusion process from
σmax = 0.1 (completely masking the data) to σmin = 5×10−5 (per-
ceptually insignificant). During training, the model is trained with
the L2 preconditioned objective from [15], where the noise level
is sampled randomly with a LogUniform distribution. The model
is trained with the Adam optimizer with the default momentum
hyperparameters and a learning rate of 2 × 10−4. An exponen-
tial moving average of the weights with a decay factor of 0.999 is
tracked during training and used as the final inference model.

A standard time-domain convolutional U-Net is used as the
backbone deep neural network architecture, which is conditioned
on a noise level embedding that allows weights to be shared across
different noise levels. The total number of parameters adds to
127k, which is relatively low when compared to standard practice
for diffusion models, but has proven qualitatively to be enough
for this particular use-case. Inference is performed with a denois-
ing diffusion implicit model (DDIM) [21] sampler with a subtle
amount of stochasticity, which allows for a trade-off between sam-
pling speed and quality by adjusting the number of sampling steps.
We use 16 steps in our experiments, but we observe that this num-
ber can be reduced down to 6 without a significant quality loss.

The noise generator model is trained with samples of 1.5-s at
the sampling rate of 44.1 kHz. However, given that the architecture
is fully-convolutional, the segment size could be freely adapted
during inference. In addition, arbitrarily long sequences can be
generated by applying a chunked autoregressive sampling strategy,
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Figure 7: Model hysteresis using toy data - Lumped nonlinearities
only.

where separate frames are concatenated and inter-frame coherence
can be ensured by applying a zero-shot outpainting technique [22].

5.4. Trajectory Generator

The delay trajectory generator is trained in a very similar way as
the noise generator, specified in Sec. 5.3, while only some im-
plementation details concerning the characteristics of the data dif-
fer. The model is trained with 5.2-s segments at a sampling fre-
quency of 100 Hz, defined by the measuring pulse frequency (see
Sec. 3.1), resulting on segments of 512 samples. During training,
every delay trajectory segment is mean-normalized, leaving only
the local fluctuations from the average delay as the distribution to
be modeled. The backbone neural network architecture is also a
standard convolutional U-Net with 77k trainable parameters; we
refer to the source code for further details. The noise schedule de-
sign is motivated analogous to Sec. 5.3 and depends on the statis-
tics of the dataset. For the toy data experiment (see Sec. 6), the
approximated data standard deviation is σdata = 6.8 × 10−3, and
the noise schedule is designed between σmax = 0.5 and σmin =
1× 10−5. For the real data experiment (see Sec. 7), the data stan-
dard deviation is approximately σdata = 1 × 10−4, and we found
that σmax = 0.01 and σmin = 1 × 10−5 were a suitable design
choice. The sampling is performed with a 10-step DDIM sampler
[21], but we observed that the number of discretization steps could
be reduced down to only 4 with minimal qualitative differences.

6. EXPERIMENT 1: TOY DATA

This section presents experiments using synthetic data in two sub-
sections. Sec. 6.1 studies the capability of the modeling method
for the hysteretic magnetization of the tape without the fluctuating
timing effects. Later, the timing effects are also enabled, allowing
the evaluation of the three training schemes for the nonlinearity
in Sec. 6.2 and the trajectory generator in Sec. 6.3. The toy data
does not contain a noise component, however. Audio examples for
these experiments are available on the accompanying web page 1.

6.1. Lumped Nonlinearities Only

To evaluate model performance, we use the ramped sine technique
for the hysteresis [23]. Additionally, we encourage readers to lis-
ten to the example predictions on the accompanying web page1.
The ramped sine technique is especially useful here, since it eval-
uates both the deadzone effect resulting from an under-biased tape
and the saturation at higher amplitudes.

The model hysteresis versus the target is shown in Fig. 7.
While the match is not perfect, the model clearly learns the shape
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Figure 8: Model hysteresis using toy data - Nonlinearities and tim-
ing effects.

of the hysteresis loop, including the deadzone effect, the saturation
of the tape, as well as the loop width. Listening and comparing the
model predictions against the target further validates this finding,
confirming the suitability of the RNN architecture for modeling
the type of nonlinearity.

6.2. Lumped Nonlinearities and Timing Effects

The various training schemes are evaluated as in Sec. 6.1, on top
of which the model losses over the test set are compared. Since
the adversarial models are not trained with a time-domain loss,
we include a multi-resolution short-time Fourier transform (STFT)
loss [24] in the comparison. We use the default hyperparameters
for the method as implemented in the Auraloss library [25]. Model
predictions can be found in the accompanying webpage1.

The hysteresis of the models trained using the three approaches
versus the target is shown in Fig. 8. While it can be seen that the
models trained using the supervised approaches match the shape of
the hysteresis well, the hysteresis shape of the adversarially trained
model deviates from the target. This can be explained by the ad-
versarial model being trained on a time-frequency domain loss,
which does not enforce strict time-domain matching, which is the
case for the two supervised models.

The LESR and LSTFT losses over the test set are listed in Ta-
ble 1, where the best (smallest) results are highlighted with bold
font. The losses for the first supervised approach are computed
either via using the real delay trajectories to demodulate the tar-
gets (Demodulated, similar to training) or applying the trajecto-
ries to the predictions (Delayed, similar to inference). As can be
seen from the results, the second supervised approach produces
the best overall performance across the considered metrics. While
the time-domain loss LESR is two orders of magnitude higher for
the adversarial approach than for the supervised approaches, their
time-frequency domain losses LSTFT are of similar magnitude. For
the first supervised approach, it can be seen that for both consid-
ered losses, the delayed computational method results in a smaller
error. This finding suggests that demodulating the outputs can pro-
duce a larger error in comparison to delaying them with an inter-
polated delay line.

Table 1: Toy Data: Nonlinearities and timing effects.

LESR LSTFT

Approach Demod. Delayed Demod. Delayed

Supervised I 0.031 0.029 0.645 0.536
Supervised II – 0.029 – 0.488
Adversarial – 1.567 – 1.772
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(b) GeneratedFigure 9: Measured (left) and generated (right) delay trajectories
using toy data.

6.3. Trajectory Generator

We experiment with the diffusion model approach to generate the
delay trajectories from the toy experiment, which have been syn-
thesized as described in Sec. 4.1. Despite our best efforts to devise
a methodology for objective evaluation, we found that the stochas-
tic nature of the data and the complexities involved made it difficult
to quantify its effectiveness in a reliable and consistent manner. As
such, we rely on a merely qualitative assessment, which we believe
provides sufficient evidence of the successful model capabilities.
In Fig. 9, we show a qualitative comparison between measured tra-
jectories and generated ones. In this case, 10 iterative steps were
used to sample from the diffusion model, requiring 10 function
evaluations of the neural network. The data contains a prominent
sinusoidal component with some spurious artifacts, which seem to
be accurately modeled by the diffusion model.

7. EXPERIMENT 2: REAL DATA

Next, the proposed method is evaluated using real data collected
from the Akai 4000D tape recorder. Since the toy data did not
include a noise component, this section serves as the first valida-
tion for the capability of the noise generator to learn the charac-
ter of the media, as well as further validates the performance of
the other two architectural components. Audio examples from the
conducted experiments can be found on the web page1.

7.1. Lumped Nonlinearities and Timing Effects

We start with the same evaluation strategy as in Sec. 6.2, but find
that the magnetic field produced by the recording head is not suf-
ficient to saturate the considered tape formulations, as has been
encountered earlier [1]. Thus, instead of comparing the hysteresis
of the trained models, we focus on the learned magnitude response
and nonlinear distortion components [26]. Only one configuration
(MAXELL 7 1

2
IPS) is evaluated here for the sake of brevity. The

model predictions can be found on the accompanying web page1.
We find the responses of the supervised models similar, and

only show the learned magnitude response and nonlinear distor-
tion components versus the target for the first supervised approach
in Fig. 10a. As can be seen, the model closely matches the shape
of the linear response: the attenuated middle frequencies, the sub-
tle emphasis of the highs, as well as the high and low-frequency
roll-offs. While the target also portrays the head-bump effect in
the low frequencies, this aspect is not matched by the model. We
suspect that this might have to do with the dataset used for train-
ing the models not having enough low-frequency content to suffi-
ciently learn this frequency band. While the model also learns to
produce nonlinear distortion from the target data, the shape of the
contours is not matched well, and the model starts to alias above
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Figure 10: Model magnitude responses (solid) and distortion components (dashed), MAXELL 7 1
2

IPS.
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about 5 kHz, as seen in the sudden increase of nonlinear distortion
components in Fig. 10a. The learned magnitude response and non-
linear distortion components for the adversarially trained model
are shown in Fig. 10b. Now the match is poor in both the linear
response as well as the nonlinear harmonic components.

The LESR and LSTFT losses over the test set for all of the ap-
proaches are listed in Table 2. Similarly as in Sec. 6.2, the two su-
pervised approaches outperform the adversarial approach in terms
of both of the considered metrics, with an order of magnitude
difference in the time-domain LESR loss. Unlike before, the first
supervised approach performs slightly better than the second ap-
proach, although the difference is not large. While the two meth-
ods for computing the losses for the first supervised approach pro-
duce similar evaluation metrics, this time the demodulated compu-
tational method brings slight improvements in the LSTFT loss. This
finding suggests that the error produced by the two computational
methods also depends on the type of data used.

7.2. Trajectory Generator

Fig. 11 shows delay trajectory samples from the measured data
compared to those generated with a 10-step diffusion model. The
generated delay trajectory waveforms look realistic at first glance
but, in order to provide more insights into the model behavior, we
conduct a spectral analysis. Fig. 12 shows the summary statistics
(mean and standard deviation) of the long-term spectrum of the
measured trajectories compared to that of a batch of 256 gener-
ated samples. The data presents some characteristic spectral peaks
that the diffusion model is succeeding at replicating. It can also

Table 2: Real Data: Nonlinearities and timing effects.

LESR LSTFT

Approach Demod. Delayed Demod. Delayed

Supervised I 0.066 0.065 1.597 1.649
Supervised II – 0.092 – 1.971
Adversarial – 1.193 – 2.437
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Figure 12: Average spectra and standard deviations of delay tra-
jectories using real data.

be observed that the average spectral magnitude of the generated
trajectories is slightly lower than the target; we attribute this to the
over-denoising phenomena that most diffusion models show, as it
was observed in [15]. Nevertheless, we believe that these minor
dissimilarities will pose no perceptual difference.

7.3. Noise Generator

We assess the diffusion noise generator qualitatively, similar to the
delay trajectory generator, since an objective evaluation is not fea-
sible. Fig. 13 displays the long-term spectra of the noise data and
compares it with that of the generated noises using the diffusion
model with 16 discretization steps. The plot in Fig. 13 has been
smoothed using a 1/6th octave band. The majority of the energy in
the target data distribution is concentrated in the low-frequency re-
gion, with some spectral peaks caused by electrical noise. The dif-
fusion model successfully replicates the spectral distribution, and
the over-denoising effect observed in Sec. 7.2 does not occur as a
consequence of using a stochastic sampler. Additionally, the noise
generator can effectively model some non-stationary local charac-
teristics in the noise data that are not adequately represented in the
spectral analysis. We refer the reader to the audio examples on the
companion webpage1.

8. CONCLUSIONS

This work proposed an architecture for modeling the character of
magnetic tape recorders, consisting of three components for repro-
ducing the different aspects of the target: 1) a nonlinear block for
the joint effects of the magnetic recording process as well as the
record and playback amplifiers, 2) a time-varying delay line con-
trolled by a delay trajectory generator for imperfections in the tape
transport, and 3) a noise generator for the tape hiss. The differ-
ent blocks were implemented using separate neural network archi-
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Figure 13: Average spectra and standard deviations of tape hiss.

tectures: an RNN for the nonlinear block and separate diffusion
models for the delay and noise generators. Three training schemes
were considered for the nonlinear block: two supervised and one
adversarial.

Our results indicate that the RNN architecture is suitable for
learning the characteristic hysteretic nonlinear behavior of the tape
magnetization. This was also found recently elsewhere for the
related case of audio transformers [4]. Based on objective and
qualitative evaluation and informal listening, the two supervised
approaches for the nonlinear block together with the generative
models for the delay trajectories and tape hiss capture the percep-
tual character of the tape recorder as a whole. While the proposed
supervised training schemes require the target machine to operate
in stereo, an aspect of which was circumvented by the adversarial
approach, this latter approach did not prove mature yet in learning
the nonlinear character of the tape.
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ABSTRACT
Modelling of analogue devices via deep neural networks (DNNs)
has gained popularity recently, but their performance is usually
measured using accuracy measures alone. This paper aims to as-
sess the performance of DNN models of a high-gain vacuum-tube
guitar amplifier using additional subjective measures, including
preference and realism. Furthermore, the paper explores how the
performance changes when genre-specific training data is used. In
five listening tests, subjects rated models of a popular high-gain
guitar amplifier, the Peavey 6505, in terms of preference, realism
and perceptual accuracy. Two DNN models were used: a long
short-term memory recurrent neural network (LSTM-RNN) and a
WaveNet-based convolutional neural network (CNN). The LSTM-
RNN model was shown to be more accurate when trained with
genre-specific data, to the extent that it could not be distinguished
from the real amplifier in ABX tests. Despite minor perceptual in-
accuracies, subjects found all models to be as realistic as the target
in MUSHRA-like experiments, and there was no evidence to sug-
gest that the real amplifier was preferred to any of the models in
a mix. Finally, it was observed that a low-gain excerpt was more
difficult to emulate, and was therefore useful to reveal differences
between the models.

1. INTRODUCTION

Analogue vacuum-tube guitar amplifiers are still valued in the au-
dio community, despite being heavy, expensive, and high-maintena-
nce. Historically, several methods have been proposed to emulate
vacuum-tube amplifiers [1], including white-box models such as
transient modified nodal analysis and wave digital filters [2], and
block-oriented grey-box methods such as the Wiener-Hammerstein
topology [3]. More recently, advances in deep neural networks
(DNNs) have seen promising results compared to traditional ap-
proaches [4, 5, 6]. Neural networks are particularly well suited
to the black-box modelling of the complex and non-linear internal
operations of a guitar amplifier, where training can be performed
based on input data (a direct-injected guitar signal) and output data
(the distorted, amplified signal) alone. In the literature, DNN mod-
els are normally evaluated using objective accuracy measures such
as error-to-signal ratio [7, 4] and mean square error based metrics
[8, 9, 10]. Subjective accuracy measures have also been seen in
the works of [4] and [5], where subjects were asked to rate mod-
els in terms of how accurately they approximated the timbre of

Copyright: © 2023 Will J. Cassidy et al. This is an open-access article distributed
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the reference, and in terms of perceived similarity to the reference,
respectively. However, the ‘realism’ and ‘preference’ of DNN am-
plifier models has not been studied to the same extent - is the accu-
racy of a guitar amplifier model as important as its realism? Also,
could a model be preferred to the real amplifier? This paper aims
to assess the subjective performance of two popular DNN topolo-
gies, namely a long short-term memory recurrent neural network
(LSTM-RNN) and a WaveNet-based convolutional neural network
(CNN), modelling a popular high-gain vacuum-tube guitar ampli-
fier, the Peavey 6505.

Guitar amplifiers are often specific to certain genres of music.
This is especially so for high-gain amplifiers, which are commonly
used in heavy rock and metal. Furthermore, certain types of gui-
tar hardware are used more than others, as well as certain playing
techniques. Several guitar recordings datasets are publicly avail-
able, including the Fraunhofer Institute for Digital Media Technol-
ogy (IDMT) guitar and bass datasets [11, 12]. These recordings
include a range of general techniques, notes and guitar types, and
have been used in [10], [8] and [13] to train DNN amplifier mod-
els. As Parker et al. point out [14], the state-space of an audio
system may require certain inputs in order for the target charac-
teristics to be learned effectively, such as for nonlinearities that
only occur above a magnitude threshold. On this basis, it is hy-
pothesised in this paper that DNN models of high-gain amplifiers
should be trained using data tailored to the target device. In this
paper, the IDMT dataset is compared to two genre-specific training
files, focused on rock and metal styles, respectively.

The paper is organised as follows. Section 2 describes the
target system, i.e. the amplifier and loudspeaker cabinet chain.
The DNN models used in this work are then detailed in Section 3,
the training of which is outlined in Section 4. The methodology
and results of the listening experiments are presented in Section 5,
and the results are discussed in Section 6. The main conclusions
are summarised in Section 7 with suggestions for further work.

2. TARGET SYSTEM

The target system consists of a guitar amplifier and a loudspeaker
cabinet. Only the guitar amplifier was modelled as part of the
DNNs, while the loudspeaker cabinet was modelled separately [13],
as a linear time-invariant (LTI) system.

The selected target amplifier is the high-gain vacuum tube
Peavey 6505, a popular choice in metal recording. High-gain am-
plifiers usually consist of a preamplifier stage with around 3-7
small vacuum-tubes, commonly 12AX7 dual-triodes, which pro-
vide the majority of the non-linear signal distortion [2, 15]. For
high-gain amplifiers, a ‘drive’ parameter applies gain to the input
signal before this stage to drive the preamplifier tubes, thus in-
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creasing the total harmonic distortion (THD) of the system. The
preamplified signal passes through a linear tone stack circuit be-
fore power amplifier vacuum-tubes provide signal gain to suffi-
ciently drive the loudspeaker cabinet [2]. These power tubes con-
tribute to the linear tonal characteristics of the amplifier, referred to
as the ‘British’ or ‘American’ tone depending on their model [15].

The selected target loudspeaker cabinet was a Marshall 1960-
AV, consisting of four 12-inch Celestion Vintage 30 loudspeakers
which were also used in [16]. The impulse response (IR) of the
loudspeaker cabinet was measured using a 30-second long expo-
nential sine sweep (ESS). The sweep was generated at -6 dBFS
which was routed to the line output of a Universal Audio Apollo
Twin X audio interface. A QSC RMX850 power amplifier was
used to apply clean gain to the ESS signal, the output of which was
connected to the matched-impedance input of the loudspeaker cab-
inet. The loudspeaker response was recorded using a Royer R-121,
a professional-grade figure-8 ribbon microphone with a 30–15,000
Hz ±3dB response and very high overload characteristics (135
dB SPL). The microphone was positioned at approximately 20mm
off-centre from the dust cap. The output SPL of the loudspeaker
cabinet was set high enough to provide sufficient SNR, yet not to
the extent where significant cone breakup was introduced.

3. DNN MODELS

Two DNN topologies that have been previously used for guitar
amplifier modelling are a feedforward variant of WaveNet and
an LSTM-based RNN, both of which are compared in [10], [13],
and [17]. The implementation used in this paper for the WaveNet-
based CNN is the PedalNetRT repository, while the one used for
the LSTM-RNN is the Proteus repository [18]. PedalNetRT mod-
ifies the original pedalnet repository [19], which was a recreation
of the WaveNet-based model from the paper by [7]. The modifica-
tion uses custom causal padding and reorganises conv1d layers to
allow trained models to be saved as .json files, which can be loaded
using the audio plugin from the WaveNetVA repository [20].

The Proteus project consists of an audio plugin built using RT-
Neural, a realtime C++ inferencing engine [21]. The plugin can
load models trained using the Automated GuitarAmpModelling re-
spository [18], forked from Wright’s repository [22], which is an
implementation of the LSTM-RNN network used by Wright et
al. [13] in their modelling of the Blackstar HT-1 amplifier and the
Big Muff Pi pedal.

Despite both of these models being capable of conditioned
training, where the effects of varying a parameter such as drive can
be learned, the models in this paper were designed to be a ‘snap-
shot’, i.e. a model of the amplifier with fixed parameters, since this
was sufficient for the scope of the experimentation.

The LSTM-RNN models used the hyperparameters recom-
mended by [18] for medium to high-gain amplifier emulation. This
used an LSTM hidden size of 40 as required by the Proteus audio
plugin, no pre-emphasis filtering, one recurrent block, and a skip-
connection. The WaveNet-based models in this experiment used
the default hyperparameters from PedalNetRT, i.e. 9 layers, 4 con-
volution channels, a kernel size of 3 and a batch size of 64. While
this is lower than what was suggested by Wright et al. [7], these
hyperparameters result in a running complexity closer to LSTM-
RNN. It is acknowledged that this hyperparameters configuration
does not represent the full potential of the WaveNet-based CNN,
and therefore the two DNN topologies are not compared directly
in this work.

4. TRAINING

This section details the process of producing the direct inject (DI)
and amplifier signals for three training sets: a general dataset,
an existing genre-specific dataset, and a proposed genre-specific
dataset. Both DNNs introduced in Section 3 were trained on each
training set, using back-propagation with a loss function based on
the error-to-signal ratio (ESR). Google Colab was used to train the
LSTM-RNN models, and the WaveNet-based models were trained
remotely using the University of Surrey High Performance Clus-
ter, utilising the Python preparation and training files provided in
the aforementioned repositories by Bloemer [18].

4.1. Existing Training Datasets

The training file used by Wright et al. [13] in their emulation of the
Blackstar HT-1 amplifier, accessible from [18] is used here. This
training set was constructed using excerpts from the Fraunhofer
IDMT databases, forming a 5 minute, 40 second file of half bass
and half electric guitar. A range of pickup selections and string
gauges were used, and the main playing techniques are described
in Table 1. This training is henceforth referred to as the general
training.

Bloemer [18] recorded a set of genre-specific training samples
featuring a wider range of techniques and notes than the general
file, lasting 3 minutes and 31 seconds. The excerpts in this training
are more rock-oriented than those of the IDMT database, and the
duration was weighted more towards electric guitar than bass. This
training dataset is henceforth referred to as the rock-specific train-
ing, and serves as a middle ground between the general training
and the training made specifically for the Peavey 6505.

4.2. Proposed Metal-specific Training

Rock and metal genres of music share many electric guitar tech-
niques, with some aspects being more exclusive to metal such as
pinch-harmonics and low tuning. In this paper, a training file is
proposed which was created by recording popular metal guitar ex-
cerpts, with a focus on more specific metal techniques highlighted
by [23], which were not present in the other datasets. These tech-
niques are outlined in Table 1.

The guitars used for the proposed dataset were the Schecter
KM-7 MKIII Artist, the Ibanez RG421 with Bareknuckle After-
math pickups, and the Dingwall NG-2 5-string. When recording
each guitar, the output was connected in series to a true-bypass
Peterson tuner pedal, a Radial J48 active DI box and the micro-
phone input of a Universal Audio Apollo Twin X interface. En-
gaging the -15dB PAD (passive attenuation device) on the DI box
was necessary for the active guitars as the input transformer was
being overloaded, and so it was engaged for all guitars for con-
sistency. The guitar volume/tone potentiometers were first set to
100% (most transparent), and the preamplifier gain was set such
that 10dB of headroom was present when palm-muting heavily.
The UAD Diezel Herbert amplifier simulator [24] was used for
monitoring purposes.This proposed training dataset lasts a total
of 5 minutes and 27 seconds and is henceforth referred to as the
metal-specific training.

4.3. Training Comparison

Table 1 presents musical aspects of the three training sets, where
the genre-specific training files can be seen to have a more ex-
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Figure 1: Signal chain for the amplifier recording process. Signal
levels are annotated to highlight the importance of each block.

Figure 2: Equipment setup for the recording of the amplifier out-
put.

tended range of techniques and notes compared to the general set.
The rock-specific training has the widest frequency range when
considering the exponential sine sweeps and noise samples at the
start of the file.

4.4. Recording the Amplifier Output

The direct output of the Peavey 6505 LEAD channel was recorded
for each of the three DI training files. The recording chain was set
up as per the block diagram in Figure 1, the equipment of which
is shown in Figure 2. A Radial X-Amp active re-amp box was
used to attenuate the line-level audio interface output to instrument
level, with an output impedance of 10kΩ. Typical electric guitar
output impedances are in the range of 5-12kΩ [25] - the values of
which are expected to be seen by the input of a guitar amplifier.
Presenting the correct output impedance is important to ensure the
voltage drop across the amplifier is within nominal levels, in order
for the amplifier to behave as expected.

The Rivera RockCrusher load box was used to attenuate the
high-power output of the amplifier to line level. This is required in
replacement of a loudspeaker cabinet, since powering a vacuum-
tube amplifier without sufficient load can be damaging [26]. As
[13] points out, the type of load may influence the behaviour of
the amplifier differently to a loudspeaker cabinet. Therefore, care
was taken to select a high-quality reactive load box to act as trans-
parently as possible. The load box output impedance of 560Ω [26]
allows for optimal voltage transfer to the line-level input of the
Apollo Twin X (rated at 10kΩ [27]). After a preliminary recording,
the preamplifier gain was increased to compensate for the voltage
loss resulting from headroom provided at earlier stages.

5. SUBJECTIVE LISTENING EXPERIMENTS

Each of the three training sets introduced in Section 4 were used
to train the LSTM-RNN and WaveNet-based CNN, resulting in 6
models of the Peavey 6505. Listening tests were conducted to in-
vestigate the perceptual preference, realism and accuracy of these
models, compared to the real amplifier. The test samples are made

Figure 3: The transfer function used as a static waveshaper to
produce the anchor test samples.

available on the Institute of Sound Recording’s GitHub page1.

5.1. Test Subjects

A total of 21 participants took part in the first three listening tests.
In an anonymous survey, 86% of subjects said they had critically
listened to rock or metal music before (i.e. in studio monitoring
conditions), 76% had previous experience with vacuum-tube gui-
tar amplifiers, and 81% had experience with hardware or software
amplifier simulators.

In the final two listening tests, 16 people took part, all of which
had used a vacuum-tube guitar amplifier before, 94% had used an
amplifier simulator before and 88% had critically listened to rock
or metal music.

All subjects were students of the BSc in Music and Sound
Recording course (Tonmeister) at the University of Surrey, all of
whom received critical listening training as part of their curricu-
lum.

5.2. Test Excerpts

A range of pickups were used to record 8 guitar excerpts as de-
tailed in Table 2. For each pickup, two excerpts from existing rock
and metal songs were chosen with different pitch registers. Playing
techniques were also different between excerpts, which included
variations of the guitar volume control. Acting as an attenuation
device before the amplifier, the volume control can be used to re-
duce the guitar output level to the ‘edge of breakup’ (also known as
breakup point [9]). These test samples were recorded as 44.1kHz,
16-bit integer linear PCM waveform files, and were each 5-8 sec-
onds in length.

An anchor was produced using a static waveshaper (as in [7]),
created using a piecewise transfer function shown in Figure 3. This
transfer function is based on the vacuum-tube-like waveshaper de-
signed by [28], and was intended to be distinguishable from the
real amplifier due to its simplicity.

The 8 DI guitar excerpts were sent through each of the 6 mod-
els, the real amplifier and the anchor waveshaper, resulting in 64
test samples. The models were captured via the WaveNetVA and
Proteus audio plugins in REAPER, and the real amplifier output
was recorded as part of the process in Section 4.4. The output
signals were then convolved with the loudspeaker cabinet IR, and

1https://github.com/IoSR-Surrey/
DNNAmplifierDemos
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Table 1: Information about each of the three training data sets from inspection. The pitch ranges consider the lowest and highest notes
played, excluding harmonic techniques.

Training Data Set Set 1: General [13] Set 2: Rock-specific [18] Set 3: Metal-specific
(proposed)

Excerpt Durations Approx. 10-30s Approx. 1.5s Approx. 5-10s
Pitch Range E1-A#4 (3.5 octaves) E1-C6 (4.67 octaves) C1-C6 (5 octaves)

Picked bass Picked bass Picked bass
Fingerstyle bass High-velocity strumming Pinch harmonics
Slap bass Palm-muting Tapped harmonics
Strummed dead-notes High-pitched monophony Tremolo picking
Fingerstyle arpeggios Double-stops Double-stops
Monophonic notes Low-velocity arpeggios Strummed chords
Staccato chords Full-tone bends Vibrato
Picked arpeggios Rapid monophonic picking Intermod. distortion
Background tone Strummed chords Full-tone bends

Palm-muted scales Hammer-ons/pull-offs
Scales high and low Fast picking runs
Natural harmonics Fast legato
Vibrato Volume roll-off

Techniques

Heavy palm-muting

equalisation was applied (-9.7dB notch filter at 3.8kHz, Q = 19) to
reduce the rate of fatigue of each test subject.

5.3. Experimental Methodology and Statistical Analysis

The experimental methodology involved MUSHRA-style tests [29],
which have been previously used in this context [4, 5, 6]. Since
this work investigated subjective measures beyond model accu-
racy, a reference was not used in tests where this would bias the
subject’s opinion. An ABX test was also used to evaluate model
accuracy, which is recommended for the evaluation of smaller dif-
ferences [30]. The listening tests were conducted inside an acous-
tically treated room in the Institute of Sound Recording at the Uni-
versity of Surrey. The stimuli were presented to subjects via a
Max/MSP patch on a 2019 MacBook Pro, monitored over Audio-
Technica ATH-M40X headphones. Before the listening tests, each
participant was guided through familiarisation, training and blind
grading phases. Subjects were made to familiarise themselves with
all the unlabelled stimuli and the GUI before conducting the test.
During this process, listeners were encouraged to set the monitor-
ing volume to a comfortable level.

The statistical analysis of all MUSHRA-style tests was based
on (non-parametric) Friedman tests [31] and post-hoc Wilcoxon
pairwise signed-ranks tests. Considering that the paper aims to as-
sess the effect of training within each model, and how well each
model performed against the real amplifier, only the following
pairwise tests were run: (a) differences between the 3 LSTM-RNN
models, (b) differences between the 3 WaveNet-based CNN mod-
els, and (c) differences between all models and the real amplifier,
for a total of 12 comparisons. The Bonferroni correction was ap-
plied to adjust for multiple comparisons.

5.4. Experiment 1 - Preference

The aim of the first experiment was to gauge which amplifier the
subjects preferred, be it real or artificial. The test samples were
presented in a mix of drum kit and bass guitar to simulate the lis-
tening conditions the consumer would experience when judging

the guitar recording of a song. The test prompt was worded as:
“Rate your preference of the electric guitar in samples A-G".

5.4.1. Methodology

The test used a MUSHRA-style methodology, but without a la-
belled reference of the real amplifier, so as to account for the pos-
sibility of the real amplifier not being the preferred stimulus. Also,
an anchor was omitted to reduce the compression of results since
the samples appeared to sound very similar. Subjects were asked
to rate 7 test samples (i.e. the 6 models and the real amplifier) side
by side for 4 different excerpts. Each excerpt was presented on a
different page, and each page was repeated once. The scale ranged
from -50 to 50 with -10 to 10 labelled as “Indifferent", -50 labelled
as “This sounds worse than the others" and 50 labelled as “I prefer
this to the others".

5.4.2. Results

The results of the preference test are presented in Figure 4. The
mean scores and 95% confidence intervals for each model and the
real amplifier were each within the -10 to 10 category, labelled “In-
different". A Friedman test revealed that there was a statistically
significant difference between some of the models (χ2(6, N=168)
= 14.409, p = 0.025). However, post hoc Wilcoxon signed-ranks
tests showed that there was no statistically significant difference
between the three LSTM-RNN models (i.e. the three different
training sets) or between the three WaveNet-based models. Simi-
larly, there was no statistically significant difference between each
of the 6 models and the real amplifier.

5.5. Experiment 2 - Realism

This experiment aimed to investigate what subjects believed sound-
ed like a ‘real’ amplifier given their previous experience of vacuum-
tube guitar amplifiers, without a reference. Two MUSHRA-style
listening tests were conducted. The first test asked subjects to rate
how ‘real’ the samples sounded, and the second test asked subjects
to compare the samples to their previous experience of what a real
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Table 2: Information about each of the 8 excerpts used to form the listening test samples. ‘EOB’ refers to ‘edge of breakup’: the lowest of
the gain levels. Under ‘Song Based On,’ the artist is not included for space reasons (full details are provided in the Github repository 1).

Excerpt Pickup Model Pickup
Passivity Song Based On Tuning Pitch

Register THD

A EMG Humbucker Active B.Y.O.B. 0:41-0:46 Drob Db Low Med/High
B EMG Humbucker Active Tears Don’t Fall 0:00-0:06 Drob Db Mid Med
C Fishman Fluence Humbucker Active Death Inside 2:21-2:27 Drop Bb Low High
D Fishman Fluence Humbucker Active Catalyst 1:31-1:39 Drob Db Mid High
E Fishman Fluence Split-coil Active Cry of Achilles 0:32-0:39 Eb Standard Mid High
F Fishman Fluence Split-coil Active My Curse 0:00-0:08 Drop C Mid/High EOB
G Bareknuckle Aftermath Humbucker Passive My Curse 1:01-1:09 Drop C Low High
H Bareknuckle Aftermath Humbucker Passive Buried Alive 4:14-4:20 Standard High High

Figure 4: Means and 95% confidence intervals for the listening
test in experiment 1. The results are averaged across all excerpts
(C, D, E and G).

vacuum-tube amplifier sounds like. Only subjects that had used a
vacuum-tube guitar amplifier before were permitted to participate
in the second experiment. A total of 21 subjects participated in the
first test, while 16 participated in the second test. These samples
were not presented with accompaniment unlike Section 5.4, since
realism should not depend on other instruments - using a mix may
cause unnecessary masking effects.

5.5.1. Methodology

The first test of this experiment asked subjects to “rate samples
regarding how ‘real’ they sound" on a scale of 0-100 labelled from
“This sounds artificial" to “This sounds like a real amplifier". The
test consisted of 8 pages, each of which involved comparing the 6
models and the real amplifier using one guitar excerpt as an input.
The excerpt was randomly changed for each page, using excerpts
A, C, E and G from Table 2 and repeating them once.

The second test asked listeners to “rate each sample based on
how similar it sounds to a real vacuum-tube guitar amplifier". On
each page of the second test, 8 unlabelled samples were compared
(the 6 models, the real amplifier and the anchor). The rating scale
was also 0-100, labelled from “Not similar" to “Sounds the same".
This was completed for 6 excerpts (A, B, C, F, G and H) and re-
peated once, resulting in a total of 12 pages.

Figure 5: Means and 95% confidence intervals for the first listen-
ing test in experiment 2. Asterisks and bars indicate a significant
difference (*: p < .05, **: p < .01 , ***: p < .001 at post-hoc test,
Bonferroni corrected).

5.5.2. Results

The results of the first realism test are shown in Figure 5. A
Friedman test showed a significant difference between some of
the models (χ2(6, N=168) = 35.907, p < 0.001), so post hoc
Wilcoxon signed-ranks tests were performed. There was no statis-
tically significant difference between the LSTM-RNN models. For
the WaveNet-based models, on the other hand, the general model
was significantly more realistic than the metal-specific model (p
= 0.0097, adjusted). When comparing each model with the refer-
ence, the real amplifier was only significantly more realistic than
the metal-specific WaveNet-based model (p = 0.0034, adjusted).

Figure 6 shows the mean realism scores of the second test,
where a Friedman test also returned statistically significant differ-
ences (χ2(6, N=192) = 16.412, p < 0.012). Post hoc Wilcoxon
signed-ranks tests showed no statistically significant differences
between the LSTM-RNN models. Within the WaveNet-based mod-
els, the general model was significantly more realistic than the
metal-specific one (p = 0.0269, adjusted), as was seen in the first
test. For all of the models there was no statistically difference from
the real amplifier.

To examine the effects of the model and excerpt on the mean
realism scores of the second test, Friedman tests were run for each
of the 6 excerpts used. For the results of excerpt F, a Friedman test
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Figure 6: The mean scores of each model with 95% confidence
intervals for the second listening test in experiment 2.

returned a statistically significant difference in realism between the
models (χ2(6, N=32) = 16.162, p = 0.013). Performing post hoc
Wilcoxon signed-ranks tests showed that the rock-specific LSTM-
RNN model was rated as significantly more realistic than the real
amplifier (p = 0.0383, adjusted), and the general WaveNet-based
model was also significantly more realistic than the real ampli-
fier (p = 0.0234, adjusted). For higher-gain excerpts B, C, G and
H, Friedman tests revealed there was no significant differences
between models. Despite the Friedman test for excerpt A show-
ing significance (χ2(6, N=32) = 14.649, p = 0.023), the post hoc
Wilcoxon signed-ranks tests revealed no significant comparisons
when considering the LSTM-RNN models alone, the WaveNet-
based models alone and the 6 models versus the real amplifier.

5.6. Experiment 3 - Accuracy

The final experiment sought to evaluate the models in terms of
perceptual accuracy compared to the (labelled) real amplifier.

5.6.1. Methodology

This experiment first used a MUSHRA-style test which asked sub-
jects to rate the similarity of 7 test samples (the 6 models and a
hidden reference) to a labelled reference of the real amplifier on a
scale of 0 to 100. Subjects were not asked to rate one of the sam-
ples at 100. The excerpts used in this test were B, D, F and H, each
on a different page, repeated once, resulting in a total of 8 pages.

An ABX test was also conducted which gave subjects a la-
belled reference of the real amplifier and two test samples: a hid-
den reference and one of the 6 models. Subjects were tasked with
identifying which of the two samples was the hidden reference for
excerpts A, B, C, F, G and H, randomised and repeated once, re-
sulting in 72 trials.

5.6.2. Results

Figure 7 presents the results of the MUSHRA-style test. The hid-
den reference reached a mean score of just 79% (this motivated
running the ABX test later). A Friedman test revealed that there
was a statistically significant difference between some of the mod-
els (χ2(6, N=168) = 49.019, p < 0.001). Post hoc Wilcoxon

Figure 7: Means and 95% confidence intervals for the first listen-
ing test from experiment 3: similarity to the reference. The results
are averaged across all excerpts (B, D, F and H).

signed-ranks tests showed that the rock-specific LSTM-RNN model
was significantly more accurate than the general LSTM-RNN (p =
0.0109, adjusted). No significant differences were observed within
the WaveNet-based models. The real amplifier was rated as signif-
icantly more accurate than all three WaveNet-based models as well
as the general LSTM-RNN (p ≤ 0.001 in each case, adjusted).

To investigate differences between excerpts, Friedman tests
were run for each excerpt of the MUSHRA-style test which found
that the lowest-gain excerpt F had a significant interaction (χ2(6, N
=42) = 65.812, p < 0.001), while the high-gain and high-pitched
excerpt H did not (χ2(6, N=42) = 3.848, p = 0.697). For excerpt F,
post hoc Wilcoxon signed-ranks tests were run, which found that
both genre-specific LSTM-RNN models were significantly more
accurate than the general LSTM-RNN (p < 0.001 in both cases,
adjusted). Significant differences were also found between the real
amplifier versus the general LSTM-RNN and each genre-specific
WaveNet-based model (p < 0.001 in each case, adjusted).

Figure 8 shows the ABX results, where the 95% and 99% crit-
ical levels are indicated (using the cumulative binomial distribu-
tion). At the 95% confidence level, it can be seen that all mod-
els could be distinguished from the reference. Using 99% confi-
dence, however, the rock-specific LSTM-RNN does not exceed the
critical level which suggests it was very similar to the reference.
According to the cumulative binomial distribution at 95% con-
fidence, there was no statistically significant difference between
the rock-specific and metal-specific LSTM-RNN results. The gen-
eral LSTM-RNN was identified significantly more often than both
genre-specific LSTM-RNN models at α = 0.05.

For the lowest-gain excerpts, B and F, the rock-specific RNN
was the only model not to have been rated as significantly different
to the reference at the 95% confidence level. For the high-gain
and high-pitched excerpt H, however, none of the models could be
distinguished from the reference.

6. DISCUSSION

In terms of preference, the mean scores for all 6 models and the
real amplifier were within the -10 to 10 band (labelled “Indiffer-
ent"). There were no significant differences between the models
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Figure 8: The percentage of correct identifications of the reference
when compared to each model in the ABX test. In this plot, lower
values mean better performance. The dashed and solid horizontal
lines represent the 95% and 99% critical levels, respectively.

within either of the DNN topologies, nor were the 6 models rated
as significantly different to the real amplifier. This suggests that,
despite potential audible differences, the real amplifier was not
preferred over any of the DNN models when accompanied with
bass guitar and drums, for high-gain excerpts C, D, E and G from
Table 2. Therefore, these models seem to be viable as replace-
ments of a real guitar amplifier in a mix.

In one of the realism tests, the metal-specific WaveNet-based
model was significantly less realistic than the real amplifier. There
were no other significant differences in realism between the mod-
els and the real amplifier when considering all excerpts cumula-
tively. This suggests the models were generally realistic-sounding.
The mean realism scores for the real amplifier were low in both
tests (58% and 64%) - it is possible that this was due to subjects
finding the judgement of realism difficult. The training sets did not
drastically affect the realism of the models, which is most likely
due to the fact that the models are already perceived as very real-
istic.

In terms of perceptual accuracy, the hidden reference (real am-
plifier) had a surprisingly low mean score of 79%, despite subjects
being asked to rate the degree of similarity to the labelled refer-
ence. It is possible that this was due to not forcing subjects to rate
at least one sample to 100% and/or to the reference being so close
to the other samples and thus difficult to identify. The real ampli-
fier was rated significantly higher only in comparison to the three
WaveNet-based models and the general LSTM-RNN model in the
MUSHRA-style test. This suggests that the two genre-specific
LSTM-RNN models were perceived with similar accuracy to the
real amplifier, which is supported by the ABX results. The rock-
specific LSTM-RNN was not significantly distinguished from the
reference in the ABX test (at α = 0.01), where it was correctly
identified only 57% of the time, suggesting it was very similar to
the real amplifier. There was no significant difference between the
results of the two genre-specific LSTM-RNN models, which in-
dicates that the metal-specific LSTM-RNN was also perceptually
close to the real amplifier.

It was found that excerpts closer to the ‘edge of breakup’ re-
vealed more differences between the models. For the high-gain

and high-pitched excerpt H, all models were unable to be identified
from the real amplifier in the ABX test, and the MUSHRA-style
accuracy test showed no significant difference between any of the
models. This is supported by the realism results, where none of the
models had significantly lower mean scores than the real amplifier
for this excerpt, suggesting that they were all sufficiently realistic.
For the lowest-gain excerpt F, however, the rock-specific LSTM-
RNN was the only model indistinguishable from the reference, and
it was rated as significantly more realistic than the real amplifier.
The MUSHRA-style accuracy test for this excerpt revealed that
both genre-specific LSTM-RNN models were more accurate than
the general LSTM-RNN, and that the real amplifier was more ac-
curate than three other models. The metal-specific WaveNet-based
model was seen to be significantly less realistic than the general
WaveNet-based model in both realism tests.

7. CONCLUSIONS AND FURTHER WORK

This paper explores the use of two popular DNN topologies for the
modelling of the Peavey 6505 amplifier. Perceptual experiments
were run to evaluate models trained using a general dataset versus
genre-specific datasets, rated in terms of preference, realism and
accuracy.

The real amplifier was not preferred to any of the DNN models
when presented in a mix. The models also successfully emulated
the target amplifier in terms of realism, and one of the models was
even rated as more realistic than the real amplifier itself. Also
considering that the subjects were trained listeners, these results
suggest that the models can already replace the real amplifier in
most music production workflows.

The genre-specific training resulted in an improvement of the
performance of the LSTM-RNN topology both in terms of accu-
racy, and, to a lesser extent, realism. No significant difference
was observed between the three training datasets for the WaveNet-
based models. It is possible that this was due to WaveNet-based
models being more sensitive to the choice of hyperparameters,
which in this experiment were fixed for all training sets.

Results also showed that some excerpts were better than oth-
ers in highlighting differences between models. More specifically,
high-gain and high-pitched excerpts were perceived with the same
realism and accuracy as the real amplifier for all models, while
a lower-gain excerpt on the ‘edge of breakup’ was identified as
different from the real amplifier for 5 out of 6 models. Further-
more, significant differences in accuracy between the training of
the models were highlighted for this excerpt.

Future work will involve investigating whether the results gen-
eralise to different guitar amplifiers and different settings, as well
as investigating the sensitivity of the individual models to hyper-
parameter optimisation and pruning. This may determine whether
the observed effects of genre-specific training translate to opti-
mised models, especially for a WaveNet-based CNN.
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ABSTRACT

In this project, a digital ladder filter has been investigated and ex-
panded. This structure is a simplified digital analog model of the
well known analog Moog ladder filter. The goal of this paper is
to derive the differentiation expressions of this filter with respect
to its control parameters in order to integrate it in machine learn-
ing systems. The derivation of the backpropagation method is de-
scribed in this work, it can be generalized to a Moog filter or a
similar filter having any number of stages. Subsequently, the ex-
ample of an adaptive Moog filter is provided. Finally, a machine
learning application example is shown where the filter is integrated
in a deep learning framework.

1. INTRODUCTION

The Moog ladder filter is a well known analog filter present in nu-
merous synthesizers. It has been introduced in 1965 by Robert
Moog [1]. Since then, it has been considered as a central piece of
some subtractive synthesizers that gives a very recognizable char-
acter to the sound and offers intuitive control parameters. Nowa-
days, many of the iconic analog synthesizers are digitally modeled
to be included in digital hardware or software synthesizers. Sev-
eral digital models of the Moog filter are already studied using
different approaches [2, 3].

In recent years, machine learning (ML) has been actively ap-
plied to the field of audio signal processing. And it has been stated
that classic ML and deep learning (DL) structures are not always
well adapted to solve audio related problems. Integrating audio
systems directly in a DL architecture has been proven to be suc-
cessful and to achieve good results with smaller architectures [4].
Differentiable function blocks are required to allow backpropaga-
tion and thus the integration into DL systems. This paper shows
the differentiation process of the chosen Moog filter structure with
respect to (w.r.t.) its control parameters, as it can be applied to
other Infinite Impulse Response (IIR) filters and digital signal pro-
cessing algorithms [5, 6]. As a proof of concept for the back-
propagation capabilities, an adaptive version of the filter has been
programmed.

This paper is part of a research project, where a subtractive
synthesizer that includes a Moog filter would be differentiated to
apply timbre matching using ML. This has already been studied
using non gradient-based methods [7, 8] and genetic algorithm [9].

Copyright: © 2023 Etienne Gerat et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

And more recently using Variational Auto-Encoders and Normal-
izing Flows[10]. Hence, the current work initially investigates the
capability of learning the control parameters of a simple Moog fil-
ter with the help of ML algorithms.

2. DIGITAL MOOG FILTER

In this paper, a digital Moog filter structure presented by Stilson
and Smith [11, 3] is used which aims to simulate the analog Moog
ladder filter proposed by Robert Moog in 1965 [1]. In the next
sections the Moog filter refers to the Stilson and Smith structure.

2.1. Parameters

The filter has two control parameters, the cutoff frequency fc and
the resonance factorK. The cutoff frequency is present at different
places in the filter structure. Stilson and Smith [3] have developed
a useful compromise first-order filter that has mostly independent
control of the resonance value with the cutoff frequency. The filter
coefficients h0, h1 and h2 are parameterized to set the filter behav-
ior close to the expected cutoff frequency. They are defined as

h0 =
ωc

1.3
h1 =

0.3ωc

1.3
h2 = 1− ωc, (1)

where ωc is the angular cutoff frequency related to fc and the
sampling frequency fs by

ωc =
2πfc
Lfs

fc =
ωcLfs
2π

. (2)

Here, L denotes the oversampling factor and is set to 2. The
oversampling helps to achieve stability for high values ofωc andK.

The resonance parameter K is located in the feedback loop,
as visible in Fig. 1. It controls the prominence of the resonance
overshoot. It ranges from 0 to 1. Values above 1 lead to self-
oscillation and instability.

2.2. Structure

The filter is composed of four cascaded first-order low-pass filters
with a feedback loop over the whole cascade. A non-linearity ex-
pressed as an hyperbolic tangent is present in the loop to provide a
ceiling of the feedback signal. A unit delay is present in the feed-
back loop to ensure the feasibility of the filter as shown in Fig. 1.
Figure 2 illustrates the detail of a stage of the Moog ladder filter.
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Figure 1: Block diagram of a Mth order Moog filter structure.
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Figure 2: Block diagram of the mth filter stage.

The following difference equations describe the signals visible
in Fig. 1:

xin(n) = x(n)−Ky4(n− 1), (3)

y0(n) = tanh (xin(n)) , (4)

ym(n) = h0ym−1(n) + h1ym−1(n− 1) + h2ym(n− 1), (5)

where x(n) denotes the input signal and ym(n)|m=1···4 the out-
puts of the filter stages from 1 to 4.

3. BACKPROPAGATION

The backpropagation of the error calculated by a loss function
through the system allows the adaption of the control parameters
to match a target sound. For this purpose, the partial derivatives of
the filter output w.r.t. its control parameters must be calculated.

3.1. Partial Derivatives

In this section, the expressions of the partial derivatives w.r.t. the
control parameters ωc andK are derived . It is decided for simplic-
ity to calculate the partial derivative against the angular frequency
ωc defined in Eq. (2).

At first, the derivatives of the filter coefficients h0, h1 and h2

w.r.t. ωc need to be calculated as follows:

∂h0

∂ωc
=

1

1.3
,

∂h1

∂ωc
=

0.3

1.3
,

∂h2

∂ωc
= −1. (6)

Based on Eq. (5), the partial derivative of an output of a filter
stage w.r.t. ωc

∂ym(n)

∂ωc
=
∂h0

∂ωc
ym−1(n) +

∂h1

∂ωc
ym−1(n− 1)+

∂h2

∂ωc
ym(n− 1) + h0

∂ym−1(n)

∂ωc
+

h1
∂ym−1(n− 1)

∂ωc
+ h2

∂ym(n− 1)

∂ωc
,

(7)

where m denotes the index of the filter stages from 1 to 4 and the
expression ∂ym(n)

∂ωc

∣∣
m=0

is given by

∂y0(n)

∂ωc
=
[
1− tanh(xin(n))

2] ∂xin(n)
∂ωc

, (8)

where
∂xin(n)

∂ωc
= −K∂y4(n− 1)

∂ωc
. (9)

For the initialization, as n = 1, the partial derivatives are ini-
tialized as follows:

∂ym(n)

∂ωc

∣∣∣∣
n=1

=
∂h0

∂ωc
ym−1(1) + h0

∂ym−1(n)

∂ωc

∣∣∣∣
n=1

=
1

3

m−1∑

k=0

hk
0ym−1−k(1). (10)

In the next step, the partial derivatives w.r.t. K are calculated
and given by

∂ym(n)

∂K
=h0

∂ym−1(n)

∂K
+ h1

∂ym−1(n− 1)

∂K
+

h2
∂ym(n− 1)

∂K
,

(11)

where m denotes the index of the filter stages from 1 to 4 and the
expression ∂ym(n)

∂K

∣∣∣
m=0

is given by

∂y0(n)

∂K
=

∂

∂K
[tanh (xin(n))]

=
[
1− y0(n)2

] [
−y4(n)−K∂y4(n− 1)

∂K

]
, (12)

where

∂xin(n)

∂K
=

∂

∂K
[x(n)−Ky4(n− 1)]

= −K∂y4(n− 1)

∂K
− y4(n− 1). (13)

As n = 1, the partial derivatives of the individual filter stages
m ranging from 1 to 4 are initialized as follow:

∂ym(n)

∂K

∣∣∣∣
n=1

= h0
∂ym−1(n)

∂K

∣∣∣∣
n=1

, (14)

and the expression ∂ym(n)
∂K

∣∣∣
m=0,n=1

is given by

∂y0(n)

∂K

∣∣∣∣
n=1

= −yM (1)
[
1− y0(1)2

]
(15)

for a filter of order M .
It is noteworthy to mention that the expressions of partital

derivatives are required to manually construct the backward propa-
gation of the gradients in an environment where automatic deriva-
tives of the forward functions are not calculated, for e.g. Mat-
ConvNet [12]. ML environments like Keras[13] and PyTorch [14]
provide automatic differentiation of modules constructed by the
functions available in their respective packages. However, those
environments also offer the possibility to create or alter the back-
ward propagation function, if the automatic backpropagation do
not show a stable convergent behavior.
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Figure 3: Simple schematic of a Moog filter adaptation process.

3.2. Adaptive Moog Filter

In this section, the goal is to verify the functionality of the back-
propagation method with the help of an adaptive Moog filter and
determine if any gradient tweaking or conditioning is necessary
for a simple parameter learning problem . The control parameters
of the Moog filter are adapted via backpropagation and a simple
parameter update algorithm based on the derivations shown in the
previous section is performed.

To adapt a Moog filter, a set of ground truth control param-
eters [ωc,K]ref are defined initially as shown in Fig. 3. Using a
random mixture of various basic signals as the input signal x(n)
and the ground truth parameters, the output of Moog filter y(n)
is generated and used as the ground truth signal. It is noteworthy
to mention that the control signal is oversampled by a factor of
L = 2 and the corresponding parameters are adjusted. The Moog
filter parameters are then initialized with [ωc,K]init and the esti-
mated output signal ŷ(n) is compared to the ground truth. The
corresponding loss function is given by

E =
1

2

N∑

n=1

(|ŷ(n)| − |y(n)|)2, (16)

where E denotes the error and | · | denotes the absolute value. The
derivative of the error w.r.t. the estimated signal is given by

∂E

∂ŷ(n)
= (|ŷ(n)| − |y(n)|) · sign(ŷ(n)), (17)

where the function sign(ŷ(n)) denotes the sign of the estimated
signal sample.

The required gradients ∂E
∂ωc

and ∂E
∂K

w.r.t. the cutoff frequency
fc and feedback coefficient K are calculated with the help of the
chain rule of derivatives and can be given by

∂E

∂ωc
=

N∑

n=1

∂E

∂ŷ(n)

∂ŷ(n)

∂ωc
, (18)

∂E

∂K
=

N∑

n=1

∂E

∂ŷ(n)

∂ŷ(n)

∂K
. (19)

It is noteworthy to mention that the gradient ∂E
∂ωc

is heavily weighted
during parameter update such that the initial samples are given
more importance. The altered expression can be given by

∂E

∂ωc
=

N∑

n=1

∂E

∂ŷ(n)

∂ŷ(n)

∂ωc

1

nk
, (20)

where n denotes the sample index and k denotes a positive inte-
ger. This change avoids a possible gradient explosion and ensures

a stable parameter update and smooth convergence. The expres-
sions in Eq. (20) and Eq. (19) can be derived further with the help
of Eq. (17), Eq. (7), and Eq. (11). Finally, gradient clipping is also
performed on both the expressions from Eq. (20) and Eq. (19) in
order avoid any large gradient jumps and ensure a stable conver-
gence. This can be expressed as

∂E

∂ωc
= min

(
αωc ,

∣∣∣∣
∂E

∂ωc

∣∣∣∣
)
· sign

(
∂E

∂ωc

)
, (21)

∂E

∂K
= min

(
αK ,

∣∣∣∣
∂E

∂K

∣∣∣∣
)
· sign

(
∂E

∂K

)
, (22)

where αωc and αK are two positive small fractional scalars.
The parameters are finally updated using the gradient descent

method given by

ωc := ωc − ηωc ·
∂E

∂ωc
, (23)

K := K − ηK · ∂E
∂K

, (24)

where ηωc and ηK are the corresponding learning rates.
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Figure 4: Adaption example for: fc,init = 400 Hz, Kinit = 0.8,
fc,ref = 5 kHz, Kref = 0.2

Figures 4 (a) and 4 (b) show two examples of the evolution
of parameters during the adaption process per epoch. In the first
example, the target cutoff frequency is set quite above the initial
cutoff frequency while the target resonance coefficient is set much
below the initial value. In the second example, the target cutoff
frequency is set quite below the initial cutoff frequency while the
target resonance coefficient is set much above the initial value. In
both examples, one can see that the resonance parameter do not
converge to a solution until the cutoff frequency gets close enough
to its target. This is primarily because of a larger overall error gra-
dient when the cutoff frequencies are far apart. The corresponding
initial, reference, and predicted signals are depicted in Fig. 5 (a)
and Fig 5 (b).
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Figure 5: Adaption example for: fc,init = 15 kHz, Kinit = 0.3,
fc,ref = 800Hz, Kref = 0.8

4. INTEGRATION IN MACHINE LEARNING

Figure 6 shows a block diagram to illustrate an example of inte-
gration of a differentiable subtractive synthesizer with a DL model.
During training, the DL model learns to map a reference audio sig-
nal y to a set of estimated parameters p̂. When applied to the syn-
thesizer, this set of parameter produces an estimated audio output
ŷ that matches a reference audio input. This process, called tone
matching or timbre matching, uses a loss function to evaluate the
similarity between reference and estimated outputs. To achieve an
update of the DL model weights based on this loss, the error needs
to be backpropagated through the synthesizer with regard to its pa-
rameters. This should help the timbre matching process to perform
better than a system that uses only parameter based loss [15].

y
Subsynth

p̂ ŷ

LossBackpropagation

DL Model

Figure 6: Simple block diagram of a DL model for subtractive
synthesizer parameter estimation.

The audio signals are not directly fed into the DL model but
are subject to pre-processing. A spectro-temporal representation
is key to separate the timbre information and the slower temporal
changes of the sounds.

Tone Matching or Timbre Matching, has been performed using
classical optimization methods but recent approaches tend to use
DL methods. While a DL model requires a lot of time for training
because of the inclusion of the synthesizer in its end-to-end train-
ing process, its performance during testing or evaluation can be
quite accurate and fast, particularly if the trained model is small.
A DL model can lead to a qualitatively better performance than

stochastic optimization based methods [16]. In this work though,
instead of the entire synthesizer, only the Moog filter is experi-
mented with and a simple sample based loss function is used to
drive an end-to-end learning process.

5. CNN BASED PARAMETER ESTIMATION

In this section, an example application is described where a convo-
lutional neural network (CNN) is used to estimate the control pa-
rameters of a Moog filter and Fig. 7 shows the corresponding block
diagram. Initially, a dataset is created with a set of predefined in-
put signals x and ground truth control parameters [ωc,K]ref for
the Moog filter. The set of output signals y from the filter are col-
lected and their spectral representations Y are used as the input to
a CNN. The estimated parameters [ω̂c, K̂] from the CNN and the
corresponding set of input signals x are used with the Moog filter
to generate the estimated output signal ŷ, The loss computed be-
tween y and ŷ is used to train the CNN. It is important to mention
that a loss between [ωc,K]ref and [ω̂c, K̂] can drive the training
process, but the goal of this work is to illustrate a successful train-
ing via backpropagation through the Moog filter. Additionally, if a
CNN has to estimate more control parameters for a complex syn-
thesizer in any later application, the problem might become ill-
posed due to a possibility of many parametric solutions. A direct
loss between audio signals or their spectral representations should
be better for the semantics of sound perception. Both of the loss
functions can be used together as well.

x y
Moog Spec

Y
CNN

^

Moog
ŷ

[ωc,K]ref

[ωc,K]
^

Metric

Loss / 

Metric

Figure 7: Block diagram of a CNN integration for Moog filter
parameter estimation.

5.1. Dataset

The dataset used here is composed of 280 audio files at a sample
rate of 44.1Hz. These files are generated using MATLAB. An os-
cillator produces randomly weighted combinations of five different
waveforms (sine, triangle, sawtooth, rectangle and white noise) at
440Hz that are used as input for the Moog filter. These weights are
set to add up to 1. The control parameters of the filter are selected
uniformly in the range [100, 15000]Hz for fc and [0.1, 0.9] forK.
They are paired randomly to generate the reference or ground truth
audio signals.

As pre-processing, magnitude spectrograms of the output sig-
nals from the filter are computed. A window size of 1024 sam-
ples, an overlap of 512 samples, and a 256 points DFT are used.
The resulting matrix is then resized to match the input of the CNN
(128 × 64). Finally, 256 samples of the input and output audio
signals are selected during training to compute the loss. More
samples result in longer training times without adding significant
improvements.
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5.2. CNN Architecture

The architecture of the CNN is illustrated in Fig. 8. The input to
the CNN is a resized Spectrogram of the Moog filter output signal.
The network has a simple feedforward architecture composed of
four blocks. In each of the first three blocks, a convolution layer
(Conv) is used followed by a rectified linear unit (ReLU) and a
pooling layer (Pool). The Conv layers use filters of size 3× 3× d,
where d denotes the input feature map depth, and a stride of 2.
96 such filters are used in each Conv layer. The Pool layers per-
form maximum pooling and use a kernel size of 2×2 with a stride
of 2. The ReLU layer uses a leakage factor of 0. The stride in Conv
and Pool layers ensures the reduction of spatial dimensions of the
feature maps. The final block is composed of a fully connected
layer (FC) followed by a ReLU layer. The FC layer vectorizes
the input feature map and delivers an output vector of the required
size. A sigmoid layer can be used instead of a ReLU layer for
faster convergence but boundary values of the estimated parame-
ters suffer due to the saturation regions of the function.

Conv + ReLU + MaxPool

Output Vector (1 x 2)

Stride = 2

Input spectrogram (128 x 64)

Conv + ReLU + MaxPool Stride = 2

Feature (32 x 16 x 96)

Conv + ReLU + MaxPool Stride = 2

Feature (8 x 4 x 96)

FC + ReLU

Feature (2 x 1 x 96)

Figure 8: Block diagram of the CNN architecture.

5.3. Model Performance

Initially, CNN models were constructed to be trained with raw au-
dio snippets of multiple sample lengths. For longer audio snippets
(> 1024 samples), the models converged initially but stagnated
quickly. The models were then trained with the magnitude re-
sponses of the raw audio snippets. While the networks were able
to reduce the loss and show convergent behavior, particularly for
longer audio, the final results were not quite good. Finally, the rep-
resentation described in Section 5.2 is selected as the CNN input.
In order to train the model, the loss function given by Eq. (16) in
section 3.2 is used. The gradients w.r.t. the parameters are also
constrained by gradient clipping for a stable convergence. Similar
to the adaptive Moog filter, the gradient w.r.t. the cut-off frequency
is exponentially suppressed in order to assure a more stable con-
vergence. The given model is then trained for about 1000 epochs
where the learning rate is reduced linearly from 10−4 to 10−8.
A batch size of 8 is selected which results in 35 iterations per epoch
and the adam optimizer [17] is used as the update method. The
model is built in the last version of MatConvNet [12] deep learn-

ing toolbox for MATLAB. The training is performed on a machine
with a Nvidia QUADRO RTX8000 graphical processing unit.

To measure the model performance, sum of squared error (SSE)
function between the estimated outputs and the expected ground
truths is used. Figure 9 (a) shows the logarithm of the SSE be-
tween the estimated [ω̂c, K̂] and expected [ωc,K]ref parameters
while Fig. 9 (b) shows the logarithm of the SSE between the esti-
mated ŷ(n) and expected y(n) signals, measured over the epochs.
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Figure 9: Training error Curves over epochs.

Both of the errors decrease relatively faster within the first
200 epochs and then converges slowly. The training can be per-
formed until 600 epochs beyond which no improvement is achieved.
As mentioned previously, the signal error for backpropagation is
computed with 256 audio samples. Calculation of the loss with
more samples might improve the results but will drastically in-
crease the training time.

Figure 10 shows three audio examples with different types of
signals and different sets of parameters. The first 1024 samples
of the signals are shown. Figure 10 (a) shows an example ground
truth signal generated by a Moog filter for a cutoff frequency of
11549Hz and resonance coefficient of value 0.309. Based on the
corresponding estimated cutoff frequency of 11564Hz and reso-
nance coefficient of value 0.315, the predicted signal is constructed,
denoted by Pred in the plot. The difference between the reference
and estimated signal, denoted by Diff, shows a near perfect recon-
struction. Figure 10(b) shows another audio example where the
predicted cutoff frequency of 3948Hz is close to the ground truth
cutoff frequency of 3867Hz but the predicted resonance coeffi-
cient of value 0.624 is not as close to the ground truth value of
0.712. The difference or error signal is more prominent than the
previous examples. The third audio example shown in Fig. 10 (c)
has additive noise but the network prediction is still quite good as
it closely matches the ground truth values and the difference signal
has a low amplitude.

In general, it can be concluded that the network performs ad-
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Figure 10: Direct comparison of signal examples.

mirably for most examples across all parameter values in exper-
iment. However, some uncertain results are also observed par-
ticularly around the lower values of the cutoff frequency. Train-
ing with a higher number of samples or including more examples
might resolve such uncertainties and can be experimented as part
of the future work. Additionally, the network training should also
be performed with other forms of loss functions in time or fre-
quency domain to find the best model in terms of error reduction
and convergence. Further experiments should be conducted with
multiple input representations for the CNN.

6. CONCLUSION

This work is a step toward the modeling of differentiable sub-
tractive synthesizers, which would allow to perform tone match-
ing based on psychoacoustic loss functions. Hence, the presented
work should be extended towards the parameter estimation for an
entire synthesizer and inclusion of loss functions considering au-
dio semantics. As further work, other blocks of the synthesizer like
oscillators, envelope generators and audio effects should be differ-
entiated with respect to their parameters. Experiments should be

conducted towards computation of the appropriate input represen-
tation for a given CNN model. Since synthesizers can have a large
number of time or frequency dependent parameters, multiple time-
frequency representations as the model input should be studied.
Multiple loss functions in time and frequency domain should also
be studied in order to find the most appropriate combination for
training a model. Finally the CNN model and its modules should
be studied in order to improve the estimation performance. Finally,
the synthesizer could be implemented in a PyTorch environment
and the performance could be observed and improved.
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ABSTRACT

Machine learning approaches to modelling analog audio effects
have seen intensive investigation in recent years, particularly in
the context of non-linear time-invariant effects such as guitar am-
plifiers. For modulation effects such as phasers, however, new
challenges emerge due to the presence of the low-frequency os-
cillator which controls the slowly time-varying nature of the ef-
fect. Existing approaches have either required foreknowledge of
this control signal, or have been non-causal in implementation.
This work presents a differentiable digital signal processing ap-
proach to modelling phaser effects in which the underlying control
signal and time-varying spectral response of the effect are jointly
learned. The proposed model processes audio in short frames to
implement a time-varying filter in the frequency domain, with a
transfer function based on typical analog phaser circuit topology.
We show that the model can be trained to emulate an analog ref-
erence device, while retaining interpretable and adjustable param-
eters. The frame duration is an important hyper-parameter of the
proposed model, so an investigation was carried out into its effect
on model accuracy. The optimal frame length depends on both
the rate and transient decay-time of the target effect, but the frame
length can be altered at inference time without a significant change
in accuracy.

1. INTRODUCTION

A broad class of audio effects found in almost all genres of popu-
lar music is that of time-varying modulation effects, and includes
phasing, flanging, chorus, and tremolo. Model-based digital im-
plementations of these effects are straightforward [1], but many
musicians prefer the timbre and character of the original analog or
electro-mechanical devices used to create these effects, and these
may be considerably more difficult to model. Circuit-based simu-
lations [2, 3] can produce physically accurate results but are highly
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optimized to a specific device, and require complete knowledge of
the circuit and its component values.

In general, modelling of audio effects using machine learning
has become an active area of research in recent years, with a par-
ticular focus on modelling non-linear time-invariant effects such as
guitar amplifiers and distortion pedals. Approaches in modelling
these systems include fully black-box methods using recurrent or
convolutional neural networks (RNNs / CNNs) [4, 5], as well as
grey-box models which use some prior knowledge of the refer-
ence system, such as differentiable state-space models [6, 7] and
differentiable DSP-based models [8, 9]. Modelling of effects with
time-varying input-dependent behaviour such as dynamic range
compression has also been explored through the use of CNNs with
long receptive fields [10] and temporal feature-wise linear modula-
tion [11]; as well as a differentiable DSP model proposed in [12].
Modelling of time-varying modulation effects presents a unique
challenge due to the modulation of system behaviour by a low
frequency oscillator (LFO). The deep-learning approach proposed
in [13] can emulate a wide range of effects, however the use of
bi-directional long-term short-memory networks (LSTMs) makes
the model non-causal and therefore not suited for real-time use.
Wright et al. [14] proposed a real-time model for phasing and
flanging effects using RNNs, but required manual measurement
and estimation of the LFO prior to training as this was an input to
the model. Earlier work by Kiiski et al. [15] proposed a grey-box
model of phasing, but in which no machine learning was used.

This work presents a differentiable DSP model of a phaser ef-
fect that can be trained through gradient descent to jointly learn the
underlying LFO signal and the time-varying spectral response of
an analog reference pedal. The model utilises frequency domain
approximations of IIR filters to accelerate training times, as has
been employed in [9, 12]. Through experiment, we investigate the
conflicting demands of time and frequency resolution when using
this method in the context of time-varying effects.

The paper is structured as follows: Section 2 provides back-
ground on analog and digital phasing effects; Section 3 outlines
the proposed model; Section 4 describes the target systems and
data; Section 5 describes the experimental procedure and results;
and Section 6 concludes the paper with an outlook on areas of fu-
ture work. Source code and audio examples are provided at the
accompanying web-page [16].
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2. ANALOG AND DIGITAL PHASE SHIFTERS

The phaser is a time-varying filter effect in which the phase of an
input signal is subject to a periodic modulation and combined to-
gether with the ‘dry’ (uneffected) signal to create audible notches
in the frequency spectrum [17]. The movement of these notches
with time gives the characteristic perceived sweeping effect. The
phasing effect is often confused with flanging, and indeed both ef-
fects are caused by modulating notches in the spectra. The key
difference is that a flanger generates an infinite series of harmoni-
cally spaced notches, whereas the phaser response has finite non-
uniformly spaced notches [18]. Furthermore, implementations of
phasers and flangers differ both historically and in present day
commercial products. Originally, the flanging effect was created
by playing two tape machines in near unison with a small variable
time delay between the two reels [19]. Nowadays, flangers are
typically implemented using time-varying digital comb filters, or
‘bucket-brigade’ delay lines in analog pedals. In contrast, phasers
create phase shifts through cascaded all-pass filters, in which break
frequencies are modulated by a low-frequency oscillator (LFO).

Digital phaser effects are usually implemented as linear time-
varying signal-based models, in which the all-pass filters are discrete-
time approximations of idealised all-pass filters [1, 18, 20]. The
motivation of this work is to explore whether such a model can
be embedded in a machine learning framework to emulate the re-
sponse of an analog phaser pedal. The continuous and discrete
time signal processing concepts of phasing, which underpin the
proposed model, are outlined in the remainder of this section.

2.1. Continuous-time phasing

We will examine phasers of the topology shown in Figure 1 com-
posed of a cascade of K identical first-order all-pass filters. (In
many practical implementations of the phaser, K = 4 [18], but
other choices of K have been employed [15].) The continuous-
time transfer function of each such first-order section is [18]:

A(s) =
s− ωb

s+ ωb
(1)

where s = σ+ jω is the complex frequency and ωb ≥ 0 is known
as the break-frequency of the all-pass filter. Because A is all-pass,
for real frequencies s = jω it may be written as A = ejΘ, where:

Θ(ω) = π − 2 arctan (ω/ωb) . (2)

From (2) it can be observed that ωb is the frequency at which
Θ(ωb) = π/2. Furthermore, the all-pass filter inverts DC, and
the phase response tends to zero as ω →∞.

Figure 1: A typical phaser structure in continuous time.

The cascade arrangement in Figure 1 includes a through path
with gain g1, and a feedback path with gain g2, with 0 ≤ g2 < 1.

Figure 2: Root locus plot, for g1 = 1, and for for g2 between
0 (open loop, indicated by circles) and 1 (indicated by crosses).
Pole locations are indicated by blue lines, and zero locations by
yellow lines. The real frequency−ωb (where here, ωb = 2π ·1000
rad/s) is indicated by a dashed line.

The following transfer function results:

H(s) = g1 +
AK

1− g2AK
. (3)

The poles s = ξk, and zeros s = ηk, k = 0 . . . ,K − 1, are:

ξk = ωb
1+λk

1−λk
where λk =

ej2πk/K

K
√
g2

(4a)

ηk = ωb
1+βk
1−βk

where βk = K

√
g1

1−g1g2
ejπ(2k+1)/K .(4b)

Figure 2 shows a root locus plot of the pole and zero trajectories
for 0 ≤ g2 ≤ 1, and when g1 = 1. Under open loop (g2 = 0)
conditions, two notches are located on the non-negative imaginary
axis. As g1 → 0 the zeros move away from the imaginary axis and
as such, parameter g1 controls the perceived depth of the phaser
effect. Under fully closed loop conditions, two poles are located
on the non-negative imaginary axis (one at DC).Variations in the
transfer function magnitude |H| with both g1 and g2 are shown in
Figure 3.

Figure 3: Magnitude response for H , under open-loop conditions
at left, for different values of g1, as indicated, and under closed-
loop conditions at right, for g1 = 1, and different values of g2, as
indicated. As before, ωb = 2π · 1000 rad/s.
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2.2. Discrete-time phasing

The continuous-time transfer function (1) can be approximated in
discrete-time via the bilinear transform to give the discrete-time
all-pass section, Ad(z), defined as:

Ad(z) =
p− z−1

1− pz−1
where p =

1− tan(ωbT/2)

1 + tan(ωbT/2)
.

(5)
Here, T = 1/Fs is the sampling period, for sample rate Fs in
Hz. The corresponding discrete-time phaser is shown in Figure 4.
The discrete-time transfer function Hd(z) of K cascaded all-pass
sections, including the residual connection and feedback loop is:

Hd(z) = g1 +
AK

d

1− g2z−ϕAK
d

. (6)

Note that a digital delay z−ϕ, ϕ ∈ Z+ has been included in the
feedback loop. Without this, a delay-free loop would be present in
the resulting difference equation. Efficient modelling of delay-free
loops found in phaser pedals has proven challenging: the state-
space model of a phaser pedal presented in [3] required a Newton-
Raphson solver at run-time; and Kiiski et al. reported that the
fictitious delay line in their DSP model (ϕ = 1) resulted in per-
ceptual differences in the feedback effect when compared with the
analog reference device [15]. The effect of the delay line on the
magnitude response of the system can be seen in Figure 5. It is
clear that the fictitious delay line in the feedback loop drastically
changes the magnitude response for high-frequencies, and should
ideally be avoided in virtual analog models of phasers.

Figure 4: A typical DSP phaser structure.

2.3. Time-varying behaviour

In analog phase shifters, the break frequency of the all-pass sec-
tions, ωb, is periodically modulated by a sub-audio rate LFO, typ-
ically with frequency in the range 0.05Hz to 5Hz. The mapping
between LFO voltage and break frequency is often nonlinear and
asymmetrical: for example, in the MXR Phase 90 the LFO varies
the voltage across JFETs which in turn alters the break frequency
of the all-pass [3]. Certain devices, such as the Uni-Vibe and its
replicas, are optical: the LFO varies the voltage across a light
source (an incandescent bulb in original units [21]) surrounded by
light dependent resistors (LDRs). The resulting fluctuation in cur-
rent through the LDRs controls the all-pass break frequencies. Ac-
curate prediction of the LFO characteristics (including fundamen-
tal frequency and waveshape) are therefore critical to the quality
of discrete-time emulations of such effects, including phasers.

Figure 5: Comparison of magnitude responses of continuous-time
(CT) and discrete-time (DT) phaser models, with constant param-
eters ωb = 2π·1000 rad/s, g1 = 1.0, g2 = 0.9, and T = 1/44100
s. Distinct cases of the discrete-time model without (ϕ = 0) and
with (ϕ = 1) a fictitious delay are illustrated.

3. MODELLING METHOD

This section outlines the proposed model of a differentiable phase
shifting algorithm which, given input-output audio recordings of
a reference device, can be trained to emulate the time-varying be-
haviour. Consider an arbitrary phase-shifting device that has been
sampled in discrete time as:

y[n] = f(x[n], θ[n]) (7)

where x is the input signal, y is the output signal, θ are the time-
varying parameters of the system, n is the sample index and f is a
linear function of x. We seek to develop a model of the form:

ŷ[n] = g(x[n], θ̂[n]) (8)

whose output ŷ[n] is perceptually indistinguishable from y[n]. The
function g is assumed differentiable so that the model can be trained
using gradient descent to find model parameters θ̂ that minimise an
objective loss function L(y, ŷ). The proposed model architecture
is shown in Figure 6.

3.1. Frame-based processing

Utilising frame-based spectral processing [22, 23], the proposed
model assumes that the target phaser can be treated as a linear
time-invariant (LTI) system over the duration of a short frame of
length W seconds. Suppose that an input audio signal x[l] of
length L samples is segmented into Nf = ⌈L/H⌉ frames of
length N = ⌊WFs⌋ with hop-size H samples. (The resulting
frame rate isFf = Fs/H in Hz.) Themth frame,m = 0, . . . , Nf−
1, is defined as theN×1 column vector xm = [x[mH], . . . , x[mH+
N − 1]]T . The short-time Fourier transform vector Xm, m =
0 . . . , Nf − 1 is derived from xm through windowing and Fourier
transformation as follows:

Xm = UQxm . (9)

Here, Q = [W Z]T is an N ′ × N windowing matrix, where
where N ′ is the DFT length. It includes the diagonal N × N
matrix W, containing samples of the Hann window on the diago-
nal, and an N × (N ′ −N) all-zero matrix Z implementing zero-
padding. U is an N ′ × N ′ DFT matrix. At each frame, spectral
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FFT Overlap-
addIFFTWindow

ESR

Figure 6: Structure of the proposed model. Black arrows indicate
signal flow, with magenta indicating the flow of gradients to the
learnable parameters. The blue and yellow boxes indicate opera-
tions in the frequency domain and time domain respectively. The
subscript m denotes parameters varying at the frame rate, with
all other parameters held constant for the duration of a training
epoch. Parameters in magenta are updated once per epoch by the
optimizer.

processing is applied via element-wise complex multiplication in
the frequency domain, followed by an inverse Fourier transform,
truncation and windowing to yield the N × 1 output vectors ym,
m = 0, . . . , Nf − 1:

ym =
1

N ′Q
TU∗HmXm . (10)

Here, Hm is an N ′ × N ′ diagonal matrix containing values of a
transfer function (incorporating Hermitian symmetry) at frame m
on its diagonal. U∗ is the conjugate transpose of the DFT matrix
U. Finally, the output time series ŷ[l] is obtained from the frames
ym through an overlap-add procedure, with hop size H . It can
be shown that for Hm = I, exact reconstruction of the input sig-
nal can be obtained if N/H is an integer greater than two—this
property is known as constant-overlap-add and is enforced in the
proposed model. Considering the transfer function in (10) to rep-
resent a digital filter with M ∈ Z non-zero taps, then the DFT
length must beN ′ ≥ N +M −1 to avoid temporal aliasing in the
output frames. For IIR filtering (where M → ∞), some degree
of temporal aliasing is inevitable but can be practically suppressed
by choosing M as the 60dB decay time (in samples) of the filter.

In this work the decay time of the target system was not known,
but we found a DFT length of N ′ = 2⌈log2(N)⌉ to be sufficient to
train the models.

3.2. LFO generator

The proposed model has an LFO module which governs the time-
varying behaviour of the spectral processing. The LFO produces
samples at the frame rate, Ff , and is defined as the real part of a
damped complex exponential:

sm(za, zb) = Re(zbzma ) = |zb||za|m cos(m∠za + ∠zb) (11)

where za, zb ∈ C are the complex frequency and complex am-
plitude respectively. Hayes et al. showed that Wirtinger’s calcu-
lus can be used to compute the partial derivatives of real-valued,
complex-variable functions such as (11) to enable sinusoidal fre-
quency estimation by gradient descent [24]. In this work we extend
this method to include a learnable starting phase and amplitude
(defined by zb). The Wirtinger derivatives of (11) are:

∂sm
∂za

≜ 1

2

(
∂sm

∂Re(za)
− j ∂sm

∂Im(za)

)
=
mzbz

m−1
a

2
(12a)

∂sm
∂zb

≜ 1

2

(
∂sm

∂Re(zb)
− j ∂sm

∂Im(zb)

)
=
zma
2
. (12b)

In the model implementation, the LFO parameters were initialised
to:

za = 0.7 exp(jζ/Ff ), zb = 1.0 (13)

where ζ is a random number sampled from a standard normal dis-
tribution. The damped amplitude envelope was only applied dur-
ing training; during inference za was normalised to the unit circle
to give a lossless LFO.

3.3. Multi-layer perceptron waveshaper

The output of the LFO generator is passed through a multi-layer
perceptron (MLP) to allow the model to learn non-sinusoidal con-
trol signals like those described in Section 2.3. The conceptual
motivation for this module was to emulate the linear and non-linear
mapping of the LFO signal (in volts or amperes) to the break-
frequencies of the all-pass filters (in rad s−1) in an analog phaser
device. Therefore we treat the output of the MLP as the model’s
prediction of the normalised time-varying break-frequency signal,
such that the all-pass parameter is given by:

pm =
1− tan(dm)

1 + tan(dm)
where dm = MLP(sm, γ) , (14)

with γ being the MLP parameters. The MLP consisted of three
hidden layers; with 8 neurons per layer; hyperbolic tangent acti-
vation functions in the hidden layers; and linear activation in the
output layer. The input and output features were scalar, based on
the assumption that all K all-pass filters are identical in the refer-
ence device.

3.4. Model transfer function

The frame-dependent transfer function of the model has the form:

hm ≜ diag(Hm) = h(1) ·
(
g1 +

h(2) · am

1− |g2|z−I(ϕ)ϕ · h(2) · am

)

(15)
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where am is the frame-dependent all-pass kernel:

am =

(
pm − z−1

1− pmz−1

)K

(16)

and z is the N ′- element vector z = [e
2πj(0)

N′ , . . . , e
2πj(N′−1)

N′ ]T .
(Here and elsewhere in this section, operations on vectors are as-
sumed to be applied element-wise.) The parameters g1, g2, ϕ ∈ R
retain their physical meanings from Section 2 but are now ini-
tialised as learnable parameters of the model. I(·) is the Heavi-
side step function and was included to prevent the model learning
a non-casual transfer function. The number of all-pass filters is a
hyper-parameter and was fixed for all experiments to K = 4. The
model includes two frequency domain representations of bi-quad
filters, given by:

h(i) =
b
(i)
0 + b

(i)
1 z−1 + b

(i)
2 z−2

1 + a
(i)
1 z−1 + a

(i)
2 z−2

(17)

where b(i)0 , b
(i)
1 , b

(i)
2 , a

(i)
1 , a

(i)
2 ∈ R are the learnable filter param-

eters for the ith biquad, i = 1, 2. These kernels were included
to account for any further LTI filtering that an analog phaser might
impart in addition to the core phasing effect described in Section 2.
For example, low-pass filtering, DC blocking or gain adjustment.

3.5. Loss function

The proposed model uses the error-to-signal ratio (ESR) as the
objective loss function during training:

L(y, ŷ) =
∑L−1

l=0 (y[l]− ŷ[l])2
∑L−1

l=0 y[l]2
(18)

where L is the length of the training data in samples. This loss
function has been widely used in black-box and grey-box mod-
elling of other audio effects [5, 12, 14], but the strict time-alignment
required by (18) introduced some interesting challenges when it
came to training the proposed model. Because the frequency and
phase of the LFO are unknown parameters, the training data can-
not be arbitrarily split into short segments (as is common when
using long audio sequences as training data [5, 11]). For example,
even if the initial random frequency guess was precisely correct,
the model would ‘see’ a different starting phase for each segment
(unless the segment length happened to be an integer multiple of
the LFO period). In initial experiments, this phase discrepancy was
accounted for using the current estimate of LFO frequency, but this
caused noisy optimizer updates and convergence issues when the
segment length was shorter than one LFO period in the target data.

This presents a dilemma in training this model: we need a suf-
ficient duration of training data to capture the slowly time-varying
features in the target system, but are constrained to training with
single-batch gradient descent, meaning the time taken for one op-
timizer step increases linearly with the length of training data. The
proposed solution to this problem was to use a short, spectrally-flat
training signal. Details of this signal are outlined in Section 4.

3.6. Training details

All models were trained on audio with a sample rate of 44.1 kHz
using an Adam optimizer [25] with an initial learning rate of 10−3.
Models were trained for a maximum of 5000 epochs on a NVIDIA

Titan-X GPU. The training times varied depending on the length of
training data and window size. For example, for an audio sequence
of 10 s the training times were ∼3 hours and ∼16 hours for win-
dow lengths of 160ms and 10ms respectively. It is important to
note that early designs of the proposed model were implemented
in the time-domain and trained via back-propagation through time,
but training times were deemed too slow to pursue this approach
further (∼24 hours for 1000 epochs on 1s of training audio). The
prohibitive training times of IIR filters has been reported in previ-
ous work [9] [12].

3.7. Model inference

In this work, at model inference we use the same algorithm as in
training (i.e. using frame-based spectral processing). This has the
limitation of introducing a minimum latency ofW seconds into the
system, which may be unsuitable for real-time use. A time-domain
implementation using IIR filters could conceivably be derived via
inverse z-transform of the system transfer function (15), but this is
left as a task for future work. The handling of the possibly non-
integer delay-line length ϕ would require some consideration, but
could be implemented with an all-pass filter in the feedback loop
shown in Figure 4.

4. TARGET SYSTEMS AND DATASETS

A custom dataset was collected consisting of 60s of a synthetic
chirp-train signal followed by 60s of direct-input (DI) guitar record-
ings. The chirp-train signal was used as the input signal for model
training; whereas the guitar recordings were reserved for testing.

4.1. Synthetic training signal

The chirp-train signal was synthesised as an impulse train with
period 30ms passed through a cascade of 64 all-pass filters (5)
with p = 0.9. This type of signal has been used previously for
estimating the LFO frequency and shape of LTV audio effects [14,
15]. Due to its spectral flatness, it was hypothesised that even a
few seconds of this signal would be sufficient to train the model.

4.2. Digital phaser

As a simplified test problem, the proposed model was initially
trained on data generated through a digital phaser with transfer
function (6) (K = 4) implemented through a time-domain re-
cursion in MATLAB. This can be viewed as a specific instance
of the model itself but without frame-based spectral processing
and under known parameters, shown in Table 2. The LFO was
set to a triangular wave, sweeping through break-frequencies from
4000 rad s−1 to a maximum of 16 000 rad s−1. The maximum
60 dB decay time of this system (occurring at the minimum of the
LFO cycle) was measured to be t60 = 38ms.

4.3. EHX Small Stone

The Electro-Harmonix (EHX) Small Stone is a commonly encoun-
tered analog phaser pedal. The pedal has a single knob to control
the rate of the effect, and a binary “colour” switch. High-level
analysis of a circuit schematic [26] showed that it consisted of an
LFO module, a series of four first order all-pass filter sections and
a feedback loop (engaged when the “colour” switch is on). This
circuit therefore shares the same topology as the proposed model.
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The Small Stone data was collected by processing both the training
and testing audio through the pedal in one continuous recording.
The audio was sent to the pedal via the output of a PreSonus Au-
diobox i2 interface, and the output of the pedal re-connected to
the input of the audio interface. A calibration recording was ob-
tained with the pedal in bypass-mode and used as the input to the
models to negate the effect of the recording equipment on model
training. Six unique parameter configurations were captured: three
different positions of the ‘rate’ knob with colour switch ON (cir-
cuit with feedback) and colour switch OFF (no feedback). The
LFO rates were estimated through manual inspection of the spec-
trogram, providing a pseudo-ground-truth f0 which could later be
compared to the learned LFO signals — see Table 1.

Table 1: Manually estimated LFO rates of the Small Stone under
different parameter configurations. * denotes approximate values.

Label Colour Rate knob position T0* [s] f0* [Hz]
SS-A 3 o’clock 0.44 2.28
SS-B OFF 12 o’clock 1.60 0.625
SS-C 9 o’clock 11.6 0.086
SS-D 3 o’clock 0.70 1.4
SS-E ON 12 o’clock 2.56 0.38
SS-F 9 o’clock 18 0.056

5. EXPERIMENTS AND RESULTS

The focus of the experiments presented here is on the effect of the
window length W (in seconds) on model accuracy in the context
of both model training and inference. In all experiments, the accu-
racy metric was the resultant ESR (18) on the test dataset. It was
noted that the training convergence was sensitive to the initialisa-
tion of the MLP parameters, γ. To address this issue, each training
procedure was re-initialised and repeated three times. The itera-
tion with the lowest ESR was retained. A frame overlap of 75%
was used across all experiments, with the frame length in samples
N truncated to a multiple of four to ensure constant-overlap-add
[18].

5.1. Experiment 1: training frame size sweep

As an initial experiment, instances of the model were trained with
frame lengths ranging from 10ms to 160ms on the following data:

(a) Digital phaser with LFO rate T0 = 2 s (DP-2).

(b) Small Stone with parameter configuration A (SS-A).

(c) Small Stone with parameter configuration D (SS-D).

The training data was truncated to 2.67 s in duration to accelerate
training, and was deemed sufficient given that it contained at least
one LFO cycle for all case studies.

The ESR obtained in experiment 1 can be seen in Figure 7. In
the case of the digital phaser, frame lengths of 40ms to 160ms
all resulted in a error-to-signal of less than 1% on the testing data
– implying an accurate match between the model output and tar-
get waveform with minimal artefacts introduced by windowing.
The frame lengths of 10ms and 20ms produced worse results,
suggesting an insufficient number of bins in the transfer function
shape the spectrum and/or severe time aliasing in the output. The
learned parameters during this experiment can be found in Table 2

and show a good estimation of the parameters in the target model.
Figure 8 shows the synthesised LFO signals, compared to the tar-
get triangular wave.

In the case of the Small Stone, the resulting model accuracy
depended on the presence of feedback in the circuit. The mini-
mum test loss was approximately 1.5% without feedback and 10%
with feedback. This result is expected due to the increase in cir-
cuit complexity and longer decay time associated with the feed-
back case. In both cases, window lengths of 40ms and 80ms
provided the best performance—suggesting a good trade-off be-
tween time and frequency resolution. Despite the discrepancies in
numerical results, the perceptual differences are difficult to distin-
guish, informally, from the target system—however, some differ-
ences in the low-frequencies are noted for short window lengths.
The reader is referred to the accompanying web-page for audio ex-
amples. It is interesting to observe the learned LFO signals of the
Small Stone, as shown in Figure 9. In both cases, the MLP module
has consistently predicted a similar wave-shape across the frame-
rates. When engaged, the colour switch appears to increase both
the depth and the period of break-frequency modulation.
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Figure 7: ESR for different training window lengths W on the test
audio of three case studies: digital phaser with T0 = 2s (DP-2),
Small Stone with parameter configurations A and D (SS-A, SS-D).

5.2. Experiment 2: training frame size vs LFO rate

Experiment 2 investigated the effect of frame-length on model ac-
curacy in more detail, considering as a case study the digital phaser
with LFO periods T0 = 0.5 s, 2 s and 8 s The length of training
data was held constant at 10 s, and the prior knowledge of target
LFO periods informed the choice of frame-lengths:

Wb = T02
b/2/100 where b = 0, . . . , 10 (19)

Figure 10 (top) shows the results of the experiment, with min-
imum test loss against training frame size for different rates of
phaser effect. Firstly, we see that the model accuracy increases for
longer LFO periods. This is intuitive, as in the limit T0 → ∞ the
target system becomes linear and time-invariant (LTI) so we ex-
pect the artefacts of frame-based processing to diminish. Also in-
tuitively, the results suggest the optimum window length depends
on the target LFO period. In the bottom figure, the window length
has been normalised to target LFO period. In this case, the opti-
mum W/T0 ratio shows consistency across the phaser rates, with
W/T0 ≈ 5% giving, on average, the lowest loss.
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Figure 8: Outputs of the MLP module (left) and the absolute error (right) compared to the triangular LFO in the target digital phaser, with
T0 = 2s (plotted left as ground truth).
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Figure 9: Outputs of the MLP module in the Small Stone modelling task for different training window lengths with feedback off (SS-A, left)
and feedback on (SS-D, right). In both cases, the training audio was recorded with the pedal’s rate knob at 3 o’clock. NB the ground-truth
signal is unknown so not plotted.
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Figure 10: ESR against training window length W (top) and the
ratio of training window length to target LFO period W/T0 (bot-
tom) for the digital phaser.

5.3. Experiment 3: inference frame size

The aim of the final experiment was two-fold: to train instances of
the model on all six parameter configurations of the Small Stone,
and to investigate the effect of window length on model accu-
racy during inference. For each configuration, the training window
length was informed by the results of Experiment 2 and set within
5-10% of the estimated LFO period (see Table 1). The training
data was truncated to contain approximately three cycles of the
LFO. After training, the models were tested using various window
lengths at inference, with the results shown in Figure 11

In both feedback configurations, the models trained on higher

LFO rates (SS-A, SS-D) were most sensitive to changes in window
size at inference time. This implies a fine balance between the
window size being long enough to simulate the transient behaviour
of the device, but short enough to not smear the LFO behaviour.
In contrast, the accuracy of models trained on longer LFO periods
(SS-C, SS-F) was mostly unchanged across the range of window
sizes tested. This is a promising result, as it implies one can use
a long window size for accelerated training; but a short window
size for lower-latency playback at inference. However, the results
suggest that there will always be a lower bound on the frame size
that is determined by the decay time of the system modelled.
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Figure 11: ESR using various window sizes at inference time
across the Small Stone parameter configurations. The green
squares indicate the training window lengths.
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Table 2: Example learned parameters of digital phaser model with T0 = 2 s (DP-2). The parameters are from the best performing model in
Experiment 1, obtained using a window size of 80ms during training. Note that the biquad feedforward coefficients have been normalised.

Parameter Description Target value Initial Value Learned Value (to 3.s.f)
f0 LFO rate [Hz] 0.5 0.0627 0.500
g1 Wet mix 1.0 1.0 0.999
g2 Feedback gain 0.7 0.01 0.700
ϕ Feedback delay-line length (samples) 1 0.5 0.995
[b01 , b11 , b21 ] Biquad 1 feedforward coeffs. [1, 0, 0] [1, 0, 0] [1.00, -0.0641, 0.0336]
[a11 , a21 ] Biquad 1 feedback coeffs. [0, 0] [0, 0] [-0.0629, 0.0336]
[b02 , b12 , b22 ] Biquad 2 feedforward coeffs. [1, 0, 0] [1, 0, 0] [1.00, -0.0214, 0.0140]
[a12 , a22 ] Biquad 2 feedback coeffs. [0, 0] [0, 0] [-0.0238, 0.0136]

6. CONCLUSIONS AND FURTHER WORK

This work has presented a differentiable DSP model of a phaser
that uses frame-based spectral processing to implement a time-
varying filter in the frequency domain. The model was based on a
generalised continuous-time model of a phaser effect with several
free parameters learnable via gradient descent. It was shown that
the model can recover the parameters of a reference digital phaser
and learn the correct frequency, starting phase and waveform of
the underlying low-frequency oscillator (LFO), without seeing the
ground-truth LFO during training. Furthermore, the model was
trained to emulate an analog reference device. Informal listening
found the model perceptually convincing in this task for a range of
parameter configurations. Formal listening tests are important, but
left for future work. It was found that the objective model accuracy
depended on the training window length and required a manual es-
timation of the target LFO frequency for the best results. Future
work will aim to remove the need for this initial estimation, per-
haps through a multi-resolution training process. A key limitation
of the proposed model is the inherent latency introduced by the
frame-based approach, which could be problematic for real-time
model inference. Future work will aim to remove this by imple-
menting an equivalent audio-rate time-domain recursion. Finally,
further work may involve extending the general approach proposed
in this paper to grey-box modelling of other time-varying filters
and delay-based audio effects such as auto-wah, flangers and cho-
rus.
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ABSTRACT

The aim of latent variable disentanglement is to infer the multiple
informative latent representations that lie behind a data generation
process and is a key factor in controllable data generation. In this
paper, we propose a deep neural network-based self-supervised
learning method to infer the disentangled rhythmic and harmonic
representations behind music audio generation. We train a varia-
tional autoencoder that generates an audio mel-spectrogram from
two latent features representing the rhythmic and harmonic con-
tent. In the training phase, the variational autoencoder is trained to
reconstruct the input mel-spectrogram given its pitch-shifted ver-
sion. At each forward computation in the training phase, a vector
rotation operation is applied to one of the latent features, assum-
ing that the dimensions of the feature vectors are related to pitch
intervals. Therefore, in the trained variational autoencoder, the ro-
tated latent feature represents the pitch-related information of the
mel-spectrogram, and the unrotated latent feature represents the
pitch-invariant information, i.e., the rhythmic content. The pro-
posed method was evaluated using a predictor-based disentangle-
ment metric on the learned features. Furthermore, we demonstrate
its application to the automatic generation of music remixes.

1. INTRODUCTION

Deep neural network (DNN)-based data generation techniques are
increasingly used in creative fields. In the audio domain, exciting
new methods have been proposed for speech generation, music
composition, and sound design. The main advantage of DNNs is
their high expressiveness in approximating the real-world data dis-
tributions, which can provide consistent generation results that are
convincing to human creators. However, because of their highly
complicated architecture, the interpretability and controllability of
the generative process have become the two main problems with
DNN-based data generation. A DNN contains a huge number of
stochastically optimized parameters, and hence it is impossible to
explain how each parameter or each internal output influences the
final output. In addition, a DNN-based generative method often
introduces a stochastic process, which improves the diversity of
the generation results, but also makes it more difficult for the users
to control the output and obtain results that reflect their intentions.

Disentanglement learning is a key approach to solving the
problems of interpretability and controllability. Disentanglement
learning aims to model the generative process conditioned by mul-
tiple disentangled latent variables, i.e., a set of independent vari-

Copyright: © 2023 Yiming Wu. This is an open-access article distributed under the

terms of the Creative Commons Attribution 4.0 International License, which permits

unrestricted use, distribution, adaptation, and reproduction in any medium, provided

the original author and source are credited.

Music A

Music A Harmony + Music B Rhythm

Music B Harmony + Music A Rhythm

Music B

Figure 1: An example of music remix generation by the proposed
harmony-rhythm disentanglement method. The middle two spec-
trograms were generated by combining the harmony and rhythm
contents of different music.

ables that are sensitive only to certain factors of the observed data.
For example, studies in the speech domain focus on the represen-
tations of speaker identity, gender, speed of speech, and emotions
[1, 2]. Generative models with properly disentangled latent vari-
ables make it easier to explicitly reflect the intentions of human
users in the generation results.

In this paper, we focus on disentanglement learning for gen-
erative models of musical audio. More specifically, our goal is
to learn the disentangled latent features of the rhythmic and har-
monic content in musical audio. For human listeners, the rhythmic
content of a piece of music is derived from the onset timings of
the musical audio, and the harmonic content is derived from the
different pitches of the musical audio. Therefore, these two types
of content are considered to be independent of each other. In the

DAFx.1

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

227



Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

time-frequency representations (such as spectrograms) of musical
audio, the rhythmic and harmonic content can be observed in the
temporal progressions along the time and frequency axes, respec-
tively, and this can be used to implement a harmonic-percussive
source separation algorithm [3]. We assume that harmonic and
rhythmic content can also be separated in latent space.

We propose a simple training method to obtain the disentan-
gled latent features by introducing several constraints during the
training process. It involves training a generative model for mu-
sic audio spectrogram using a variational autoencoder (VAE), in
which the encoder network maps the input spectrogram to the la-
tent features while the decoder network maps the latent features
back to the audio spectrogram. The key idea behind our approach
is to let the VAE not only reconstruct the input spectrogram, but
also reverse the transformation applied to the input spectrogram.
In the proposed method, the transformation is audio pitch-shifting.
We assume that pitch-shifting on the musical audio only changes
its harmonic content and not its rhythmic content. By introduc-
ing a vector rotation on the harmonic latent feature to reverse the
pitch shift operation, the rotated and unrotated latent features can
be trained without supervision to represent the pitch-related and
pitch-invariant information in musical audio, respectively.

The main contribution of this work is to propose an effective
disentanglement learning method that is suitable for DNN-based
music audio generation models. In the evaluation section, we show
the quality of disentanglement quantitatively using a predictor-
based metric. We also explore the application of the proposed
method to the automatic generation of music remixes, by replac-
ing the rhythmic (or harmonic) feature of one musical audio clip
with that of another musical audio clip. The quantitative evalua-
tions and concrete audio examples demonstrate that the proposed
method can generate realistic music remixes that possesses the
characteristics of both sources of music.

2. RELATED WORK

This section reviews related work on DNN-based generation and
disentanglement learning for musical audio.

2.1. DNN-based Musical Audio Generation

Several different approaches have been proposed for DNN-based
music audio generation. One popular approach is based on differ-
ential digital signal processing (DDSP) [4], in which the generative
model is concatenated with audio DSP modules such as filters and
oscillators. DNNs are then trained to estimate the parameters of
these DSP modules. Because DDSP-based generative models uti-
lize strong inductive biases, they are generally more interpretable,
and require fewer audio examples to achieve reasonable general-
ized performance. Therefore, DDSP has been applied in several
existing synthesizer algorithms, such as wavetable synthesizer [5],
waveshaping synthesizer [6], FM synthesizer [7], and the WORLD
vocoder [8].

Another approach is the autoencoding approach, which trains
a DNN-based generative model and its latent feature space using
an autoencoder network. Once the autoencoder has been trained,
musical audio can be generated by manipulating the latent feature
and reconstructing the audio using the decoder network. More
specifically, one can interpolate over the latent feature space like
RAVE [9], or train the language model of the latent feature to gen-
erate musical audio from scratch, as in Jukebox [10], Musika [11],

and MusicLM [12].

2.2. Disentanglement Learning for Audio

The main goal of disentanglement learning for audio is to imple-
ment audio transformation systems that change certain aspects of
the musical content, such as timbre or musical styles. For exam-
ple, Noam et al. proposed a music translation method that trans-
forms the domain (musical instruments and styles) of musical au-
dio [13]. The method is based on a multi-domain autoencoder
based on WaveNet [14], where the encoder WaveNet transforms
the audio waveform into a domain-independent latent representa-
tion, and the domain-specific WaveNet decoders reconstruct the
audio waveform from the latent representation. To make the en-
coder extract the domain-independent representation from audio
waveforms, the encoder is trained to fool a domain classifier net-
work that tries to correctly recognize the domain type from the
latent representation. This approach is not a fully unsupervised
method because a domain label should be given for each musical
audio clip used to train the neural networks.

Studies on disentanglement learning for audio have proposed
several learning schemes to automatically separate the pitch-related
and pitch-invariant information in the musical audio in the latent
space of an audio generative model. Luo et al. proposed a learn-
ing method to encode the pitch and timbre of musical instrument
sounds using Gaussian mixture VAE [15] , where the latent rep-
resentations were learnt in a supervised and semi-supervised man-
ner using pitch and instrument annotations. GANStrument pro-
posed by Narita et al. introduces an adversarial training scheme
to extract pitch-invariant features from musical instrument sound
[16]. Using the trained feature encoder, GANStrument can gener-
ate pitched instrument sounds given a one-shot sound as input. Luo
et al. also proposed an unsupervised learning method to encode the
pitch and timbre of musical instrument sounds, in which the pitch
is represented as a discrete label and the timbre is represented as a
continuous feature vector [17] . Similar to our proposed method,
they assume that a moderate pitch shift operation does not change
the timbre of the original musical instrument sound. Based on this
assumption, they treat the original sound and its pitch-shifted ver-
sion as a pair, and swap the encoded pitch variables before recon-
structing the musical sound using the decoder. Because the pitch
is represented as a single discrete variable, this method is suitable
for monophonic musical sound. Our proposed method formulates
a VAE in a similar way; however, we formulate the pitch-related
feature as continuous value vectors, so that these vectors can repre-
sent the polyphonic pitch information found in any kind of musical
recording.

3. PROPOSED METHOD

This section describes the proposed self-supervised disentangle-
ment learning method. An overview of the proposed method is
shown in Fig. 2. We formulate a probabilistic generative model
representing the generative process of an audio mel-spectrogram
from two latent features representing harmony and rhythm in the
form of a VAE (Section 3.1). In the training phase, we use an au-
dio pitch-shifting algorithm to enable the model to learn the two
latent features that represent the pitch-related and pitch-invariant
information of the input audio (Section 3.2). In addition, we train
the decoder as a generative adversarial network (GAN) to improve
the generation quality (Section 3.3).
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Figure 2: Proposed VAE architecture and its forward computation procedure.

3.1. VAE Formulation

Let X = {xn}Nn=1 be a log-scaled mel-spectrogram of a musical
audio, represented as a sequence of D-bins spectrum xn ∈ RD .
Let Zh = {zhn}Nn=1 and Zr = {zrn}Nn=1 be sequences of la-
tent features, where zhn, z

r
n ∈ RL are L-dimensional continuous-

valued vectors (L = 128) that abstractly represent the harmonic
and rhythmic content at the nth audio frame, respectively. We for-
mulate a generative model with X as the observed variable and
Zh, Zr as the latent features as follows:

p(X) = pθ(X|Zh,Zr)p(Zh)p(Zr) (1)

where pθ(X|Zh,Zr) is a conditional generative model with pa-
rameters θ. We define pθ as a decoder neural network parametrized
by θ. The decoder network models the generative process of mel-
spectrogram from the two latent features Zh and Zr . In our work,
we evaluate pθ(X|Zh,Zr) using the spectral distance between X
and the output of the decoder network ωθ(Z

h,Zr):

pθ(X|Zh,Zr) ∼ Sθ(X,Z
h,Zr)

def
= ||X− ωθ(Z

h,Zr)||1 (2)

where || · ||1 is the L1 norm.
Since the inference model of the latent features p(Zh,Zr|X)

is intractable, we use a neural encoder network qα that approx-
imates the distributions of the latent features given an observed
mel-spectrogram as follows:

qα(Z
h|X) =

∏

n=1

N (zhn|µα(X)hn, σα(X)hn) (3)

qα(Z
r|X) =

∏

n=1

N (zrn|µα(X)rn, σα(X)rn) (4)

where µα(X)h, σα(X)h,µα(X)r , and σα(X)r are the four parts
of the encoder network output.

The priors p(Zh) and p(Zr) are set to a standard Gaussian
distribution as follows:

p(Zr) =

N∏

n=1

N (zhn|0L, IL), (5)

p(Zh) =

N∏

n=1

N (zrn|0L, IL), (6)

As shown in Fig.3, the encoder neural network is composed of
stacked residual convolution layers and downsampling layers. Two
independent bottleneck modules are appended to the bottom layer

of the encoder to compute the parameters of the two latent distri-
butions. Each downsampling layer is implemented with a strided
convolution layer that reduces the dimension of the frequency axis
of the mel-spectrogram by a factor of four while keeping the di-
mension of the time axis unchanged. Therefore, the encoder re-
duces the frequency axis of the input spectrogram by a factor of
64, and outputs the latent features with two dimensions on the fre-
quency axis. Similarly, the decoder neural network is composed
of stacked residual convolution layers and upsampling layers that
are implemented with strided transposed convolution layers, each
of which expands the frequency-axis by a factor of four.

3.2. Self-Supervised Disentanglement Learning

In a normal VAE setting [18], the generative model is trained within
the framework of variational inference, which jointly optimizes
the encoder and decoder network to maximize the evidence lower
bound (ELBO) of the observed data likelihood p(x) as:

LV AEnormal = Eqα(Zr,Zh|X)[log pθ(X|Zr,Zh)]

− βDKL(qα(Z
h|X)||p(Zh))− βDKL(qα(Z

′r|X)||p(Zr))
(7)

where DKL(q||p) is the KL divergence from distribution q to p,
and β is a weighting factor that controls the trade-off between the
reconstruction accuracy and level of disentanglement within the la-
tent features [19]. The latent variable regularization term in ELBO
encourages disentanglement between each dimension of the latent
variable[19]. However, without explicit conditioning, there is no
guarantee that the latent variables learn to explicitly represent the
harmonic (or rhythmic) aspects of the mel-spectrogram.

To distinguish the harmonic and rhythmic content of musical
audio, we make the assumption that rhythmic content is invariant
to audio pitch shifting, whereas harmonic content is not. Assuming
that the musical audio share the same tuning (e.g., tuned to 440Hz),
we add a definition of the dimensions of the latent vector zhn: the i-
th dimension zhni

represents the pitch information of a certain pitch
height, and the pitch intervals between the pitches corresponding
to the i-th and j-th dimension is j−i times of a small pitch interval
unit (we use semitone in the following statements). In this way,
we can relate audio pitch-shifting to a vector rotation operation on
zhn, i.e., when Zh is the harmony feature of X, the n-step vector
rotation of Zh is the harmony feature of the n-semitone pitch shift
version of X.

Based on our definition of Zh, we designed a training pro-
cedure to facilitate the harmony-rhythm disentanglement. Con-
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Figure 3: Proposed VAE architecture and its forward computation procedure.

cretely, each forward computation in a training iteration proceeds
follows:

1. Shift the pitch of the input audio segment by a random
number of semitones n ∈ [−8, 8]. Let X′ be the mel-
spectrogram of the pitch-shifted audio,

2. Calculate the latent feature distribution qα(Z′h,Z′r|X′) us-
ing the encoder network,

3. Sample the latent features Z′h,Z′r from qα(Z
′h,Z′r|X′)

using the reparameterization trick [18],

4. Apply (−n)-step vector rotation to the channel dimension
of Z′h. Let Zh be the rotated latent feature.

5. Reconstruct the mel-spectrogram from pθ(X|Z′h,Zr) us-
ing the decoder network.

Combining Equation 7 with Equation 2, the training objective
of the VAE is:

LV AE = Eqα(Z′h,Zr|X′)[Sθ(X,Z
′h,Zr)]

− βDKL(qα(Z
′h|X′)||p(Zh))− βDKL(qα(Z

′r|X)||p(Zr))
(8)

We set β = 0.1 in our experiment, which places more weight on
the reconstruction accuracy. The expectation term is approximated
by the Monte Carlo method using the reparameterization trick. In-
tuitively, the VAE decoder is trained to reconstruct the original
mel-spectrogram X given the latent variables encoded from the
pitch-shifted mel-spectrogram X′. Because Z′r is not altered dur-
ing the forward computation, it should represent the pitch-invariant
elements in X′ and X. By contrast, because the vector rotation on
Z′h reverts the pitch shift on X, the rotated variable Zh is able to

represent the pitch-specific elements of the original X. Therefore,
unlike Zr , Zh should represent the pitch-related elements in X
during the optimization.

3.3. GAN Learning

To improve the quality of the generated mel-spectrogram, the VAE
networks are also trained as a GAN [20]. We additionally define a
discriminator network Dϕ that learns to distinguish the generated
mel-spectrogram from the original mel-spectrogram. The GAN
training objective is defined as follows:

Ldis = (1−Dϕ(X))2 +Dϕ(X̂)2 (9)

Lgen = −Dϕ(X̂)2 (10)

where X is the original spectrogram and X̂ is the spectrogram re-
constructed by the VAE. To stabilize the adversarial training pro-
cess, a feature matching loss LFM [21] is further added to the
training objective. Altogether, the objective function for the VAE
network optimization is

Ltotal = LV AE + Lgen + LFM

Following the ordinary GAN training procedure, the discrimina-
tor network is trained to minimize Ldis, and the VAE network is
trained to minimize Ltotal. As illustrated in Fig. 3, the discrimi-
nator network is composed of five convolutional layers with leaky
ReLU activation.

Combination of VAE and GAN objectives is also used to train
the RAVE [9] and Musika! [11] audio synthesizer. Unlike RAVE,
our method does not optimize the VAE and GAN objectives sepa-
rately. We also do not fix the parameters of the encoder network.
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In our experiments, the objective Ltotal jointly optimizes the en-
coder and decoder network.

4. EVALUATION

This section reports the comparative experiment conducted to eval-
uate the effectiveness of the proposed disentanglement learning
method. The experiments were implemented using PyTorch [22],
and the source code is available on GitHub. 1

4.1. Datasets

We use the fma-large subset of the Free Music Archive (FMA)
dataset [23] to train the VAE. The dataset contains 30-second mu-
sical audio snippets from 106,574 Creative Commons-licensed mu-
sic tracks. To measure the quality of the rhythm–harmony dis-
entanglement of the proposed method, we use the RWC-Popular
dataset [24] as the test set. The RWC-Popular dataset contains 100
pieces of popular song audio with chord progression annotations.
Following the common automatic chord estimation setting, the an-
notated chord labels are reduced to the major and minor triads.

The mel-spectrogram was computed from the audio signal us-
ing a sample rate of 22,050Hz. The FFT size, window length,
and hop size of the short-time Fourier transform were set to 2048,
2048, and 512 samples, respectively, and the number of mel fre-
quency bins was set to 128 (thus D = 128). Hann window was
used for FFT computation.

A general-purpose audio pitch-shifting algorithm was used to
obtain the pitch-shifted versions of the musical audio. In our ex-
periments, we used the pitch-shifting function implemented in the
Pedalboard audio processing library, 2 which wraps the Rubber
Band audio stretching library. 3 The Rubber Band audio stretching
algorithm is based on the phase-vocoder method that uses phase re-
sets on the percussive transients, an adaptive stretch ratio between
phase reset points, and a "lamination" method to improve verti-
cal phase coherence. In contrast to the naive phase-vocoder time
stretching algorithm implemented in librosa [25] and torchaudio,
Rubber Band’s algorithm can preserve percussive sounds without
noticeable distortion.

4.2. Evaluation Metrics

We use a predictor-based evaluation metric similar to that used in
[17] to measure the disentanglement between the inferred rhythm
and harmony features. Specifically, a sequence classification model
based on a two-layer bidirectional gated recurrent unit (GRU) net-
work was trained to predict the chord labels and onset states from
the audio features Zh, Zr , or the original audio mel-spectrogram
X. The accuracy of chord label prediction was measured by the
frame-wise label overlap rate, and the accuracy of onset prediction
was measured by the binary F-1 score over the onset positions.

The accuracy of chord prediction and onset prediction mea-
sures how well the latent features reflect the pitch-related and pitch-
invariant information of the audio, respectively. If Zr and Zh are
well disentangled, the classifiers on Zr should yield high accu-
racy for onset prediction and low accuracy for chord label predic-

1https://github.com/WuYiming6526/HARD-DAFx2023
2https://spotify.github.io/pedalboard/

reference/pedalboard.html
3https://breakfastquay.com/rubberband/

tion. Similarly, the classifiers on Zh should yield high accuracy
for chord label prediction and low accuracy for onset prediction.

The RWC-Popular dataset is divided into a training set (90%)
and an evaluation set(10%). The data pairs of musical audio and
chord label annotations in the RWC-Popular dataset were used to
train and evaluate the chord label classifier. Similarly, the musical
audio and onset label data pairs were used to train and evaluate the
onset label classifier, where the onset label was inferred from the
raw music audio using the onset detection algorithm implemented
in the librosa library.

We further explore the application of the proposed method to
the automatic generation of music remixes. To generate music
remixes, we used the trained VAE to generate audio spectrograms
that simultaneously contain the musical elements of two different
music tracks. Given two pieces of beat-synchronized music A and
B, a remix was created by the following process:

1. Infer the latent representations Zh
A,Z

r
A,Z

h
B , and Zr

B of the
mel-spectrograms XA and XB using the encoder network,

2. Generate the mel-spectrogram from Zh
A,Z

r
B using the de-

coder network.

We used the Fréchet Inception Distance (FID) [26] to quan-
titatively measure the quality of the generated spectrograms. The
FID measure is given by:

F (Nb,Ne) = ||µb − µe||2 + tr(Σb +Σe − 2
√
ΣbΣe) (11)

whereNb(µb, Σb) is the multivariate normal distribution estimated
from the Inception V3 [27] features calculated from a set of spec-
trograms of the real musical audio, and Ne(µe, Σe) is the distri-
bution calculated from the generated spectrograms. The generated
spectrograms are considered to be more musically realistic if the
computed FID is low. The feature extractor is a pre-trained music
genre classifier that wass trained using the genre-annotated musi-
cal audio in the FMA dataset.

We used the following music remixing methods as the base-
lines:

• HPSS. We apply the harmonic-percussive source separa-
tion (HPSS) algorithm [28] in the librosa library to music
A and music B, and mix the harmonic part of A and percus-
sive part of B to create the remix version. The HPSS algo-
rithm infers the spectral masks for harmonic and percussive
parts using median-filtering along the time and frequency
axis.

• ASAP. We use the Spectral Morphing audio effect imple-
mented in the ASAP plug-in suite developed by IRCAM. 4

The Spectral Morphing plugin combines the spectral char-
acteristics of two audio signals using the source-filter tech-
nique where the audio signal of music B is used as a fil-
ter of the audio signal of music A. More specifically, the
frequency-domain amplitude of the two audio signals are
multiplied, while preserving the phase of the source audio.
The spectral envelope of music B is further applied to the
filtered signal. We set music A as the main input, music B
as the sidechain input, and set the Global Mix parameter to
100% to generate the remixed version.

We randomly chose 20 songs from the RWC-Popular dataset
to create 10 pairs of audio clips. Each audio clip was time-stretched

4https://forum.ircam.fr/projects/detail/asap/
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Table 1: Harmony-rhythm disentanglement Metrics

Feature chord
accuracy

onset
F1

harmony feature 69.61% 60.09%
rhythm feature 24.65% 66.04%

mel-spectrogram 51.95% 65.19%

Table 2: FIDs of the generated spectrogram

Model FID
HPSS 12.84
ASAP 13.18

Disentangled VAE (proposed) 12.46

to 120 BPM and was 8s long. Therefore, the FID for each com-
pared method was computed on 10 audio clips generated by the
corresponding method. The remixes created by the proposed and
the baseline methods can be found on the online project page. 5

Hifi-GAN [29] was used to convert the mel-spectrograms gener-
ated by the proposed method into an audio signal.

4.3. Results

Table 1 compares the accuracy of chord classification and onset
detection for different audio features. The overall chord classifica-
tion accuracy for the harmony feature was much higher than for the
rhythm feature. The chord labels were almost unpredictable from
the rhythm features because these features were trained to be pitch-
invariant. By contrast, the beat detection score was higher for the
rhythm features than for the harmony features by a much smaller
margin. Although the rhythm features were better at represent-
ing onset information, the harmony features were not completely
onset-invariant. This is somewhat inevitable, since onsets can be
inferred in part from pitch transitions. Interestingly, both harmony
and rhythm features scored higher than the mel-spectrogram rep-
resentation in the chord classification and onset detection tasks, re-
spectively. Since the latent features enhance the pitch-related and
pitch-invariant elements in the musical audio, it is reasonable that
the latent features were found to be more suitable for the pitch-
related or rhythm-related music information retrieval tasks. This
result indicates that the proposed method can also be used as a
self-supervised pre-training method to provide better feature rep-
resentations for other music information retrieval tasks.

As a qualitative evaluation, we visualized the latent harmony
and rhythm representations. Fig. 4 compares the visualized latent
features of a song from the RWC-Popular dataset with the ground-
truth MIDI pianorolls. It can be seen that the harmony feature
had similar pitch progressions to the ground-truth pianoroll. The
rhythm features were relatively sparse, and there was no obvious
correlation with the pitches or onsets of the ground-truth pianoroll.

As shown in Table 2, the remix generated by the proposed
method achieved a better FID score than the baseline methods,
suggesting that the proposed method generated spectrograms that
are closer to real audio spectrograms than the baseline methods.
This is a promising result as it indicates that the proposed method
has the potential to generate high-quality remixes. The HPSS
method simply replaced the percussive part of music A with mu-
sic B, so the harmonic part does not change. The ASAP method

5https://wuyiming6526.github.io/HARD-demo/

Harmony features

Ground-truth MIDI notes

Rhythm Features

Figure 4: Visualizations of the rhythm and harmony features of a
song from the RWC-Popular dataset. The bottom figure visualizes
the MIDI notes from the ground-truth MIDI file.

added some rhythmic elements of music B to the audio of music
A through the dynamic filtering effect, but the rhythmic sounds of
music A were still present. In contrast to these baseline methods,
the proposed method reflected the rhythmic elements of music B
more clearly. Unlike the results of the HPSS method, all of the
generated audio, including the harmonic part of music A, reflect
the rhythm of music B. Unlike the results generated by the ASAP
method, the rhythm of music A was removed and only the rhythm
of music B was present.

5. CONCLUSION

We proposed a simple self-supervised learning method for infer-
ring the disentangled rhythm and harmony features of musical au-
dio. Through quantitative metrics and qualitative observations, we
showed that the rhythm and harmony features obtained using the
proposed method achieved a high degree of disentanglement. We
also demonstrated its potential use for the automatic generation of
music remixes.

The generative models that can be used in the proposed method
are not limited to spectrogram-based models. In principle, the
disentanglement learning strategy can be applied to any kind of
autoencoder-based audio generation model, including time domain-
based generative models such as RAVE and SoundStream [30].
However, the relationship between the time-domain audio signal
and the audio pitch shift is less clear than it is in the time-frequency
audio representations. Therefore, disentanglement learning using
time domain audio signals may be practically more challenging.
In our initial experiments, disentanglement learning on the time-
domain generation models did not perform as well as it did with
the mel-frequency domain model. The solution to this problem is
left for future research.
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We also believe that the application of the proposed genera-
tive model is not limited to music audio generation. The proposed
method could potentially be a pre-training method for downstream
music information retrieval tasks. For example, the disentangled
acoustic representation of harmony and rhythm may be suitable for
musical notes, chords, or beat transcription tasks. Combining the
encoder of the proposed VAE with the music transcription model
would be worth exploring to push the boundaries of the automatic
music transcription research.
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ABSTRACT

Virtual analog (VA) audio effects are increasingly based on neural
networks and deep learning frameworks. Due to the underlying
black-box methodology, a successful model will learn to approx-
imate the data it is presented, including potential errors such as
latency and audio dropouts as well as non-linear characteristics
and frequency-dependent phase shifts produced by the hardware.
The latter is of particular interest as the learned phase-response
might cause unwanted audible artifacts when the effect is used for
creative processing techniques such as dry-wet mixing or parallel
compression. To overcome these artifacts we propose differen-
tiable signal processing tools and deep optimization structures for
automatically tuning all-pass filters to predict the phase response
of different VA simulations, and align processed signals that are
out of phase. The approaches are assessed using objective met-
rics while listening tests evaluate their ability to enhance the qual-
ity of parallel path processing techniques. Ultimately, an over-
parameterized, BiasNet-based, all-pass model is proposed for the
optimization problem under consideration, resulting in models that
can estimate all-pass filter coefficients to align a dry signal with its
affected, wet, equivalent.

1. INTRODUCTION

Digital simulations of analog audio equipment like tape machines,
pre-amplifiers and distortion pedals remain in demand due to the
hardware’s rich history and unique sonic characteristics. With the
increase in computational power, the deep learning approach to
machine learning has proven useful for simulating virtual analog
(VA) black-box models and has in several publications been ap-
plied as the main technique for approximating the output response
of analog audio systems [1–5]. In [2] and [3] a WaveNet-based
model is as an example adapted to predict the current non-linear
output sample value, given a certain number of past input samples

*Collaboration done while interning/employed at Native Instruments
Copyright: © 2023 Anders R. Bargum et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

and the current input. In both works, the number of past input sam-
ples, also called the receptive field, is dynamically selected based
on the measured impulse response length of the circuits under con-
sideration. In [4] a recurrent neural network (RNN), such as the
gated recurrent unit (GRU), is proposed for simulating the non-
linear behaviour of distortion circuits due to their stateful nature.
Contrary to this, the authors of [5] present the state trajectory net-
work (STN), comprised of a standard multilayer perceptron (MLP)
with a skip-layer connection surpassing the densely connected lay-
ers of the network. The STN differs from related work as the in-
put data is concatenated with measured values from the states of
the circuit in order to model its behaviour. Since all aforemen-
tioned models are built upon the black-box paradigm, the results
are significantly exposed to errors in the data collection process
and any flaws in the hardware. Thus both the sonic characteris-
tics and the phase response of the system are learned, introducing
arbitrary and non-linear phase shifts to the incoming signal. This
becomes a problem where parallel-path processing is desired, for
instance when dry-wet mixing with the given simulations. All-pass
filters (APF) that have unitary magnitude response and frequency-
dependent phase responses would traditionally be the approach to
take account of the phase shifts, however, manual coefficient ad-
justments would be both time-consuming and for specific prob-
lems, impossible. An automatic solution to the problem, therefore,
is highly desired. With inspiration from the differentiable digital
signal processing (DDSP) methodology [6], we propose a model
that tunes the coefficients of a cascaded APF system. The phase
response of different black-box effects is thus automatically ap-
proximated, and the adjusted APFs are used to align a dry input
signal with the processed, phase-shifted output.

The remainder of this paper is structured as follows: the all-
pass optimization problem and related work are introduced in sec-
tion 2. The construction of the differentiable APFs and their for-
mulas are reviewed in section 3. Our approach and different deep
optimization architectures are discussed in section 4. Finally, net-
work evaluations, results, allusions and conclusions are presented
in sections 5 and 6.
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2. BACKGROUND

DDSP stems from the motivation of generating audio by using a
deep learning workflow to predict and extract synthesis parameters
for vocoders and subtractive synthesis [6]. However, directly inte-
grating classic signal processing elements into deep learning meth-
ods has shown promising results for the control and adjustment of
other DSP blocks, including convolution, filters and one-period
wave-tables [7]. Specifically, the authors of [8] have demonstrated
the use of DDSP in the context of IIR filters, training different
filter topologies in a recursive manner to match target frequency
responses. Several other projects have investigated deep learning
for IIR filter design, but similar to [8], the work has solely been fo-
cused on learning coefficients for magnitude rather than the phase
responses. In [9], a neural network is applied to carry out para-
metric equalizer matching using differentiable biquads, whereas
they in [10] approximate shelving filter coefficients directly in the
difference equation. All of these works carry out an optimization
problem in the frequency domain by minimizing the mean squared
error (MSE) between the ground truth and the derived magnitude
responses.

The approach to frequency response matching is different in
[11]. Here a BiasNet is applied to determine the IIR equalizer
parameters. The BiasNet is a simple feedforward neural network
that takes advantage of the learnable bias terms, denoted b0, in
the input layer. This architecture is called a "deep optimization"
algorithm, owing the name to the use of the neural network as a
non-convex optimization algorithm used to tune or derive exter-
nal parameters. An advantage of the BiasNet is its independence
of input features, which according to [11] is more likely to pro-
vide a solution to many optimization problems. Furthermore, the
network does not rely on the input size and content, hence only a
target frequency response is required to be given to the loss func-
tion. Similar to the IIR system in [11], adjusting cascaded APFs
might be a highly non-linear process. In this paper we, therefore,
utilise the over-parameterised nature of the BiasNet to overcome
the, potentially, non-convex phase response matching problem and
extend the work of [8] to be applicable in the domain of APFs and
phase response approximation.

2.1. Problem Formulation

We represent the monophonic signals we want to phase compen-
sate as input vectors xT ∈ R, where T is the signal length. The
task is to process these signals with an APF function f , such that
the signal is phase shifted to match a target signal introducing the
least amount of destructive interference. The function f takes as
arguments the input and the number of filter coefficients c match-
ing the filter order N of the given sub-system. This yields the out-
put yT = f(cn, xT ). For a system of cascaded APFs, we define
the function composition of size D, where each function receives
the output of the previous one as:

yT = f(cn, xT )1 ◦ f(cn)2 ◦ ... ◦ f(cn)D−1 ◦ f(cn)D, (1)

where the order N = nD, if each sub-system is a 2nd order filter.
The system can be more general than that depending on the value
of n. Depending on the deep learning techniques used, each func-
tion f can be arbitrarily complex and represented either directly as
filter coefficients, as done in [8], or as parameterised sub-networks
such as the BiasNet applied for the deep filter optimization proce-
dure in this paper.

3. DIFFERENTIABLE ALL-PASS FILTERS

Before outlining the model architecture of the proposed APF filter
tuning process, we present the differentiable APF structures used
to adjust the coefficients in the deep learning pipeline. Following
the transposed direct form-II (TDF-II) structure, a 2nd order IIR
APF is given by the traditional biquad transfer function [12]:

A2(z) =
c+ dz−1 + z−2

1 + dz−1 + cz−2
(2)

In practice, this transfer function can be implemented using
the following recurrent, and stateful, difference equation:

y[n] = cx[n] + v1[n]

v1[n] = dx[n] + v2[n]− dy[n]
v2[n] = x[n]− cy[n],

(3)

where coefficients c and d are controlling the steepness and the
break frequency of the APF’s phase response respectively. The
coefficients are products of the pole radius R and the cutoff fre-
quency fc. They have the ranges: −1 < c < 1 and −2 < d < 2.
We introduce a stability constraint to the tuning process and esti-
mate the filter parameters rather than the coefficients themselves.
The filter coefficients can for each forward call thereafter be cal-
culated by [13]:

c = R2 d = −2R cos(2πfc/fs), (4)

with fs being the sampling rate of the signal. As the filter co-
efficients, and thus the steepness of the phase response, are de-
pendent on the pole radius, the phase response might have a sig-
nificantly narrow resolution at low frequencies. When trying to
match frequencies below 100 Hz, the parameters for a system with
a high sampling rate (192 kHz) exist in very small ranges with
0.9 < R < 0.999 and the resulting coefficient d being between
−1.97 < d < −1.999, depending on the cutoff frequency. It
is hypothesised that the prediction of values in such small ranges
might introduce numerical overflow and coefficient quantization
errors while being difficult to generalise. We, therefore, propose
a differentiable warped all-pass structure to increase the frequency
resolution in low-frequency ranges, emphasising the importance of
low-frequency content in the learning process. A warped APF is
designed and realized on a warped frequency scale. It is achieved
by replacing the unit delays of a traditional APF with auxiliary 1st
order APFs, whose phase response is used to skew the frequency
axis [14]. A warped version of the APF in equation (3) is given by
the difference equation:

y[n] =
x[n](c+ a2 + ad) + v1[n]

1 + a2c+ ad

v1[n] = x[n](2a+ d+ ac) + y[n]
(
− 2ac− d− a

)

−a3(x[n]− cy[n])− v2[n](a2 + 1)

v2[n] = x[n]− cy[n]−
(
a2(x[n]− cy[n]) + av2[n]

)
,

(5)

with a being the warping factor i.e. the coefficient of the inserted
auxiliary 1st-order APFs. For stability reasons the warping factor
for all inserted APFs is identical and thus gathered into a global,
but learnable, variable a.

DAFx.2

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

236



Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

(a) Sequential BiasNet Structure

(b) Fully Connected BiasNet Structure

Figure 1: High level overview of the deep-optimization models

4. PROPOSED METHOD

By utilizing over-parameterisation we propose two BiasNet-based
models and a phase alignment procedure to extend the differen-
tiable IIR filter design techniques towards the APFs. We call these
models sequential and connected, as illustrated in figure 1. Both
models contain cascaded differentiable warped APFs matching a
desired filter order N . The neural network is excited by a learn-
able bias input layer, whereas its output corresponds to the filter
parameters of the closed-form equations used to calculate the final
APF coefficients. Three values, R, fc and a are thus fed from the
output of the model to every single filter. The primary deep neural
network is an MLP with periodic sinusoidal activations for the hid-
den layers and tanh activations for the output layer. The sine acti-
vation function has been included as it avoids local minima during
network optimization, is robust towards vanishing gradients and
thus suitable for non-convex problems such as the cascaded APF
pipeline [15]. We additionally de-normalise the network outputs
taking account of the range in which fc exist. We use a constrained
de-normalization technique similar to the one proposed in [11] to
de-normalise the tanh output layers scaling it between 20 Hz and
20 kHz:

fc =
fcmax − fcmin

2
p+

fcmax + fcmin

2
, (6)

where p denotes the value to de-normalise. The DNN is updated
such that its output layer produces filter coefficients that create the

needed phase alignment.
We create two different BiasNet models to investigate the im-

portance of over-parameterisation and its impact on the non-convex
problem as well as the general learning process. More specifically,
the cascade in the sequential structure is achieved by chaining sev-
eral BiasNets together, each representing a respective filter, to cre-
ate the desired order. Individual DNNs are thus used to derive
the coefficients in parallel for each individual APF. The BiasNet is
initialized as a densely connected bottleneck with hidden layers of
1024, 512, 256, 128 units respectively. It contains approximately
692.5k learnable parameters, which accumulate to 2.7 million pa-
rameters for a cascaded filter of 7th order. Due to its large number
of learnable parameters, a benefit of this architecture is the pos-
sibility of a complex and detailed parameter estimation process,
however, it suffers from longer calculation times and a lack of
interaction between the DNNs of each individual block. For the
connected structure, all filter parameters are coming directly from
one large BiasNet. This introduces only 692k learnable parame-
ters in total, independent of the cascaded filter order. The size of
the output layer in the connected architecture thus equals 11 for a
warped APF of 7th order. The connected architecture allows for
interaction between the cascaded filters since the same network
derives all parameters, however, it might suffer from a smaller and
therefore less complex parameter space.

DAFx.3

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

237



Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

4.1. Loss Function

Following the majority of related work, the loss function of the
network that is optimized during training happens in the frequency
domain. Since the frequency response of an APF by nature is
unity gain, a change in magnitude will not be detected and the
direct spectrogram comparison used in [6] and [9] is thus not suf-
ficient for the problem at hand. Rather, we calculate the difference
between the sum of the target frequency response y and the pre-
dicted signal’s frequency response ŷ individually, as well as the
frequency response of the summed signals before the transform.
The loss function is given by:

εSTFT (yi, ŷi) =
1

n

n∑

i=1

((S(yi) + S(ŷi))− S(yi + ŷi))
2, (7)

where the function S denotes the spectrogram or the squared mag-
nitude of the STFT, simply given as:

S(yi) = |STFT (yi)|2 (8)

By doing this, the magnitudes of the target and the predic-
tion are forced to be similar, leaving phase as the only change-
able factor. Since the magnitude spectrogram S does not include
phase information, it highlights frequency areas where the summa-
tion of the input and the target introduce destructive interference.
Optimization can thus exclusively be achieved by attaining coeffi-
cients whose phase response shifts the input such that the magni-
tude of the signal summation matches the magnitude summation
of each individual STFT. To avoid the frequency-dependent trade-
off of the STFT and to improve the robustness of the loss function,
we extend equation (7) by the multi-resolution STFT (M-STFT)
loss [16]:

εM−STFT (yi, ŷi) =
1

M

M∑

m=1

εSTFT (y, ŷ), (9)

with M being different analysis resolutions. Thus the final loss-
function is given by an average over the normal STFT loss in eq
(7) at different resolutions. By utilizing multiple FFT-lengths and
summing the information across the different resolutions, we cap-
ture a more realistic representation of the training signals [16]. The
different resolutions are selected according to the STFT parame-
ters presented in [17]:

Table 1: Details of the parameters for the different STFT
resolutions

FFT-Size Hop Length Window Size
512 50 240

1024 120 600
2048 240 1200

4.2. Proof of concept

By a simple proof of concept we show that the over-
parameterisation proposed above is crucial for the deep APF opti-
mization problems at hand. To inspect the possibilities of differen-
tiable APFs we first create an example following the work in [8].
We thus start with a naive DDSP approach and derive the coef-
ficient values for the filters directly from the difference equation

in order to provide a baseline. To do this we attempt to align the
input and output of a simulated 1st-order RC filter, which due to
its natural low-pass behaviour creates a phase shift in the higher
frequency register. A 1st order RC filter is given by the difference
equation [18]:

V n
out =

ρ(V n
in + V n−1

in ) + (1− ρ)V n−1
out

1 + ρ
, (10)

where V n
in and V n−1

in are the current and past input samples, V n
out

and V n−1
out are the current and past output samples and ρ is given

by fs/(2RC), with R and C being the resistance and capacitance
of the circuit components. In our case R = 120Ω and C = 68nF
respectively. As the RC filter at maximum will shift incoming fre-
quencies 90◦, we train a 1st-order APF the naive way, using the
same hyperparameters and loss functions presented in section 5.
The results of the trainings are depicted in figure 2.

As seen above, both the M-STFT and the MSE loss converge,
with the latter being faster but more noisy. Both cases additionally
manage to compensate the phase shifts introduced by the RC filter,
with the M-STFT training being more precise. However, when ap-
plying the above naive approach to more complex problems such
as the VA black box effects presented in section 5, it was quickly
realized that the training loss for a system of cascaded APFs di-
verged and in many cases exploded. When tuning cascaded APFs
we are simply handling a highly non-linear problem where the
individual minimum of each APF affects the remaining cascade,
while the minimum of the loss function most often is based on
the frequency areas where alignment gives less destructive inter-
ference. The function that can estimate the full phase response
thus might be non-convex as it has multiple local minima, which
was found to be too complex for the naive and traditional DDSP
approach. We argue that over-parameterisation networks and deep
optimization frameworks solve this problem.

5. EVALUATION

We examine the proposed models through objective metrics and
use the proposals with the best results for final listening tests. The
training data consists of a logarithmic sine sweep from 20 Hz to
20 kHz over 10 seconds at a sample rate of 192 kHz. The sweep
is fed through three different VA black box simulations shown to
introduce significant and complex deviations from linear phase be-
haviour: 1) Electronic Audio Experiments Surveyor Pre-amp, 2)
15IPS Tape Saturation, and 3) LEM 808R DLX Mixer. We train
and evaluate all models in an in-to-out fashion, meaning that our
models learn the coefficients needed to shift the non-affected in-
put in order to match the VA processed and phase-shifted output.
Once training is done, the coefficient values can be exported and
inserted into a traditional APF pipeline for the desired real-time ad-
justments. All models are initialized as a 7th-order APF structure
with a cascade of three 2nd-order filters and one 1st-order APF.
The output signals of the three systems are sampled and divided
into sequences of 2048 samples, which for 20 Hz approximates to
a 1/4 of a sinusoidal period at a sample rate of 192 kHz. We heuris-
tically found this sequence length to be a good compromise be-
tween phase information and training time. The sub-sequences are
additionally organized into batches. We train the models using the
earlier mentioned M-STFT loss as well as the traditional MSE loss
function, which is used to further validate the phase-compensated
simulations/reconstructions. All training sessions are carried out
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Figure 2: Loss curve, phase compensation and phase response of RC Filter trained with M-STFT Loss (upper row) and the MSE Loss
(lower row). The middle plot shows the alignment at 0, 2, 7 and 9 seconds into the training signal.

using 1 NVIDIA Tesla T4 GPU for 400 epochs or until training
loss plateaus (approx. 5 hours). We train the models with a learn-
ing rate of 1e-5, a batch size of 512 and the ADAM optimizer. The
final M-STFT and MSE values for the trained models are seen in
table 2 below:

Table 2: Model and training specifications

Model Loss Type Params Effect Final Loss

Sequential MSE 2.7M
Surveyor 1.375e-1
15 IPS 4.235e-3
LEM 4.708e-2

Sequential M-STFT 2.7M
Surveyor 1.857e-2
15 IPS 8.078e-3
LEM 9.998e-3

Connected MSE 692.5K
Surveyor 1.437e-1
15 IPS 4.271e-3
LEM 4.707e-2

Connected M-STFT 692.5K
Surveyor 2.991e-1
15 IPS 4.871e-1
LEM 9.887e-3

5.1. Performance Assessment

The performance of the trained models is quantitatively evaluated
on unseen test audio. The test audio is chosen such that it exposes
the model to signals of various frequencies and timbres. It con-
sists of a concatenation of different loops counting: an acoustic
breakbeat drum loop, an electric bass-guitar loop, a guitar loop
and a synthesized acid bassline (duration of approx 2 minutes). As
signal displacement is given in the time domain, the objective met-
rics chosen for this study compare the similarity between the au-
tomatically shifted input (prediction) and the VA processed output

(ground truth) in the sample/phase space. We evaluate the perfor-
mance by measuring the similarity using the traditional MSE as
well as the mean absolute error (MAE) defined as:

ϵMAE(ŷ, y) =
1

n− 1

n−1∑

i=0

|ŷi − yi| (11)

Additionally, we include the error-to-signal ratio (ESR), which
can be regarded as an extension of the MSE with the inclusion
of target energy normalization to penalise the errors more equally
when the input signal is lower in absolute amplitude. The ESR is
given by:

ϵESR(ŷ, y) =

∑N−1
i=0 |ŷi − yi|2∑N−1

i=0 |yi|2
(12)

The final values for each objective metric are summarized in table
3, with the values for the non-shifted signals included as a static
reference. We see that the sequential architecture performs best
for all objective metrics on both the surveyor and the 15IPS ef-
fects (given in bold). The sequential model is slightly surpassed
by the connected architecture in the case of the LEM effect, how-
ever, only with a combined distance of 0.003 for the MSE trained
version and 0.001 for the M-STFT trained version. It can thus be
concluded that the sequential and over-parameterised BiasNet ap-
proach quantitatively provides a closer match to the ground truth
phase response of the trained systems. Figure 3 presents a few
phase-matching results on different frequency content of the test
audio. Examples of all trained VA simulations are shown. It is here
clearly seen that the phase-response estimation done by the models
compensates for the input to match the saturated and phase-shifted
output.
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Figure 3: Examples of the normalized phase alignment results for each individual black-box effect training (blue = input, orange = output,
green = prediction

Table 3: Overview of the performance results for the individual
models across effects and loss functions

Model Loss Effect MAE MSE ESR

Reference None
Surveyor 0.161 0.066 3.942
15 IPS 0.164 0.069 4.105
LEM 0.020 0.001 0.068

Sequential MSE
Surveyor 0.033 0.003 0.177
15 IPS 0.007 0.0005 0.007
LEM 0.017 0.0007 0.045

Sequential MSTFT
Surveyor 0.037 0.004 0.235
15 IPS 0.015 0.001 0.058
LEM 0.017 0.0007 0.045

Connected MSE
Surveyor 0.079 0.017 1.022
15 IPS 0.010 0.0002 0.017
LEM 0.016 0.0007 0.042

Connected MSTFT
Surveyor 0.074 0.015 0.888
15 IPS 0.089 0.021 1.236
LEM 0.017 0.0007 0.044

5.2. Listening Test

Due to the inadequacy of the objective metrics in evaluating the
perceived quality of the phase alignment in real life use-cases, such
as parallel path processing scenarios, a subjective listening test is
carried out. By the use of an ’audio perceptual evaluation’ (APE)
listening test, we examine the difference between the clean sum-
mation and the compensated dry-wet mixing of musical content,
using the proposed sequential architecture. The APE style test ex-
tends the well-known MUSHRA test by rating different versions
of the same reference on a single scale using sliders [19]. Com-
pared to the MUSHRA test, the APE is useful for evaluating the
perceived quality of dry-wet mixing as there exists no known refer-
ence. Since the audibility of dry-wet mixing highly differs relative
to the use case, the participants are presented with three different
musical scenarios for each compensated audio effect: a low rela-

tive mix with 75% dry signal and 25% wet signal, a middle relative
mix with 50% dry signal and 50% wet signal, and a high relative
mix with 25% dry signal and 75% wet signal. Each relative mix is
normalized, however, no loudness compensation has been applied
as volume differences in different frequency areas are natural ar-
tifacts of phase misalignment and thus represents the baseline of
the listening test. We present the participants with two different
audio mixes matching a real-world music mixing and mastering
scenario, where the black-box effect would be applied to give the
final mix a saturating "warmth". The participants are informed that
they are listening to different versions of effect models and there-
after instructed to ’blindly’ compare the clean and compensated
versions based on their perceived level of audio quality. Sound
examples can be heard on the accompanying webpage 1. We addi-
tionally provide source code for the trained models 2.

15 convenience sampled participants without any reported
hearing impairments and 3 or more years of musical experience
took part in an online listening test. Individual boxplots for the
evaluation of the clean and compensated audio mixes are shown
in figure 4. The answers for each audio mix are summed and av-
eraged for each participant, giving a final comparable score for
the individual black-box effects across the different mix configu-
rations.

As seen in 4, the difference between the clean and compen-
sated versions for the ’middle’ scenario with 50% dry-wet mix-
ing is highly audible. This is evident both for the Surveyor and
the 15IPS effects. The ’low’ mix scenario additionally performs
better for the compensated version for both the surveyor and the
15IPS. In the case of the LEM effect, all dry/wet mix cases were
rated to sound equally good. As seen in figure 3 this is most likely
caused by the lack of phase shifts happening in the audible fre-
quency ranges. Lastly, the scores for all the ’high’ cases barely
differed, which possibly is due to the fact that the dynamics of the
saturated output masks the actual interference.

It is thus clear that the trained models manage to align the input

1https://abargum.github.io/
2https://github.com/abargum/diff-apf
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Figure 4: Ratings across each individual mix-case

to its respective target signal in the presented examples. This is
quantitatively evident in the objective metrics in table 3 where the
’sequential’ MSE model perform better on all metrics, compared to
its static counterpart. The time-domain representation in figure 3,
furthermore, supports the alignment of the musical signals where
it clearly can be seen that the temporal envelope of the prediction
matches the target. Lastly, a perceptual listening test show that
especially the audio quality of the surveyor and the 15IPS models
are improved in the dry-wet mixes provided.

6. CONCLUSIONS

To address the challenges of the learned phase responses in VA
black box effects, this paper has presented, discussed and eval-
uated deep-learning techniques for automatic signal alignment.
By utilizing the ’deep optimization’ methodology, we propose a
BiasNet-inspired architecture that approximates filter parameters
used for coefficient calculations in a system of cascaded differen-
tiable warped APFs. We thus extend the naive approach to approx-
imating DDSP IIR filters with over-parameterized neural networks
and use them to exhibit successful models for aligning the dry and
wet paths of virtual analog effects. Ultimately, three black-box ef-
fects are chosen for the final training procedure. By evaluating the
models on different objective metrics, we demonstrate that what
we call a ’sequential’ architecture efficiently tunes all-pass filter
coefficients for approximating a system’s phase response. It is thus
demonstrated that over-parameterisation is suitable when estimat-
ing filter coefficients in more complex and non-convex scenarios.
The results are supported by subjective listening tests, where 15
expert listeners rated the dry-wet mixing of VA effects to be sig-
nificantly improved by the deep all-pass models, proving that the
approach additionally is useful in real life use-cases.
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ABSTRACT

Artificial reverberation algorithms often suffer from spectral col-
oration, usually in the form of metallic ringing, which impairs the
perceived quality of sound. This paper proposes a method to re-
duce the coloration in the feedback delay network (FDN), a popu-
lar artificial reverberation algorithm. An optimization framework
is employed entailing a differentiable FDN to learn a set of param-
eters decreasing coloration. The optimization objective is to min-
imize the spectral loss to obtain a flat magnitude response, with
an additional temporal loss term to control the sparseness of the
impulse response. The objective evaluation of the method shows a
favorable narrower distribution of modal excitation while retaining
the impulse response density. The subjective evaluation demon-
strates that the proposed method lowers perceptual coloration of
late reverberation, and also shows that the suggested optimization
improves sound quality for small FDN sizes. The method pro-
posed in this work constitutes an improvement in the design of
accurate and high-quality artificial reverberation, simultaneously
offering computational savings.

1. INTRODUCTION

Since the pioneering work of Schroeder and Logan [1], delay-
based digital recursive structures have been used in reverberation
synthesis [2]. Nowadays, one of the most widely used approaches
in artificial reverberation is the feedback delay network (FDN),
a system that generalizes the parallel comb-filter structure by in-
terconnecting delays via a feedback matrix [3, 4, 5]. In FDNs, a
commonly used approach is to first design a lossless prototype [6]
to then achieve the desired frequency-dependent decay with atten-
uation filters [7, 8]. However, a common bane of systems utilizing
comb filters is sound coloration [1]. Strong coloration is undesir-
able in artificial reverberation since it impairs the perceived sound
quality.

Recent research suggests using modal decomposition to study
the properties of the FDN in more detail [9]. The modal decom-
position showed that the coloration in an FDN is related to the
wide distribution of modal excitation values. In particular, modes
with strong excitations are perceived as metallic ringing [10]. The
modal excitation depends on all FDN parameters, and directly im-
proving the coloration remains challenging. Recently, Schlecht
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proposed a method to achieve a uniform magnitude response and
found the necessary conditions for an allpass FDN [11]. However,
this approach suffers from temporal buildup of echoes [10], thus
leaving the need for a more versatile method to design colorless
FDNs.

Although many well-known reverb topologies, such as the
Moorer-Schroeder [12], can be translated into FDN designs, the
design of FDNs still presents several unresolved challenges. These
arise from the inherent trade-off between computational complex-
ity, mode density, and echo density. The cost of implementing the
matrix-vector-multiplication for a single time step in an FDN in-
creases with the number of delay lines and varies depending on the
type of feedback matrix. However, the number of delay lines can-
not be arbitrarily low, as there are certain dependencies between
the delay lengths that become more severe as the number of delays
decreases. In addition, a smaller number of delays decreases both
the modal and the echo density, which leads to metallic sounding
artifacts [13, 14].

Automatic tuning of FDN parameters has been previously ex-
plored in the literature, with genetic algorithms being widely used
[15, 16, 17]. More recently, a multi-stage approach was employed
to optimize FDN parameters to match a target room impulse re-
sponse (IR)[18]. The input, output, direct gains, and delay lengths
were optimized using a genetic algorithm. However, differences
between the model and the target IR were revealed in the listening
tests. To circumvent the challenge of optimizing infinite-impulse-
response filters with differentiable machine-learning techniques,
frequency sampling was used to implement a differentiable ap-
proximation of delay networks. An end-to-end deep-learning
model was presented for the estimation of parameters, although
only the absorption filters and input and output filters were esti-
mated [19].

In this study, we present a novel approach to design FDNs
for colorless artificial reverberation. To this end, we use a differ-
entiable FDN (DiffFDN) in an optimization framework to learn a
set of FDN parameters leading to less coloration. Specifically, we
show that a narrower modal excitation distribution can be achieved
without requiring the allpass property, offering more flexibility
since the reverberation time (RT) values can be arbitrarily set after
designing the prototype FDN. The perceptual evaluation against
several common FDN designs shows that the proposed method
successfully decreased perceived coloration.

The paper is organized as follows. Section 2 offers back-
ground information about FDNs and their modal decomposition.
Section 3 introduces the proposed method of designing colorless
FDNs. The results of the objective evaluation are presented in Sec-
tion 4, and Section 5 shows the results of the listening test. Sec-
tion 6 offers concluding remarks.
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Figure 1: Block diagram of a SISO FDN. Thin and thick lines in-
dicate single- and multichannel connections, respectively.

2. BACKGROUND

This section gives some background information about FDNs and
presents related concepts that are relevant to the proposed method,
such as modal decomposition and homogeneous decay in FDNs.

2.1. Feedback Delay Network

An FDN is a recursive system consisting of delay lines, a set of
gains, and a scalar feedback matrix through which the delay out-
puts are coupled to the delay inputs. An example of a simple
single-input single-output (SISO) FDN architecture is presented
in Fig. 1. The transfer function of the FDN is

Hpzq “ cJ“
Dmpzq´1 ´ A

‰´1
b ` d , (1)

where A is the N ˆ N feedback matrix, N being the number of
delay lines. The N ˆ 1 column vectors b and c and the scalar
coefficient d respectively represent the input, output, and direct
gains. The operator p¨qJ denotes the transpose. The vector m “
rm1, . . . ,mN s defines the lengths of delays in samples. The cor-
responding delay matrix Dmpzq is created by taking a diagonal
matrix with entries given by rz´m1 , . . . , z´mN s.

The system poles λi are the roots of the generalized character-
istic polynomial ppzq of the system, which is fully characterized
by m and A:

ppzq “ detpDmpzq´1 ´ Aq . (2)

The sum of the delays gives the order of the system, i.e., M “řN
i“1mi [20].

2.2. Modal Decomposition

The IR of the FDN can be represented as the sum of complex one-
pole modes, or resonators, in the time domain [9]:

hpnq “
Mÿ

i“1

hipnq . (3)

Each mode hipnq is defined by the pole λi and the residue ρi:

hipnq “ |ρi||λi|neȷpn=λi`=ρiq , (4)

where | ¨ | is the magnitude, = indicates the argument of a complex
number in radians, ȷ “ ?´1, and n indicates the discrete time
index. The sum of the delay-line lengths M coincides with the
number of poles.

The transfer function of the FDN (1) can be represented in
terms of its poles and residues from its partial fraction decomposi-
tion as

Hpzq “ d`
Mÿ

i“1

ρi
1 ´ λiz´1

, (5)

which is often referred to as the modal decomposition of the FDN
[9]. The excitation and initial phase of the ith mode are determined
by the magnitude |ρi| and phase =ρi, respectively, of its corre-
sponding residue, whereas the magnitude and the phase of the ith

pole, |λi| and =λi, respectively, determine its decay rate and fre-
quency.

2.3. Homogeneous FDN

For the design of an artificial reverberator, starting with a lossless
prototype is beneficial. The FDN is said to be lossless if the roots
of ppzq have magnitude equal to one, i.e., |λi| “ 1 for all i [21].
Frequency-dependent RT, here also denoted as T60, is then easily
achieved by extending the delay lines with a frequency-dependent
attenuation filter [4].

In this study, we focus only on the specific case of frequency-
independent homogeneous decay. This refers to the case where all
modes experience the same rate of decay, i.e., |λi| “ γ for all i.
Homogeneous decay is achieved with a feedback matrix A being
the product of a unilossless matrix U and a diagonal matrix Γ,
whose entries are delay-proportional absorption coefficients, Γ “
diagpγmq. The feedback matrix can be expressed as

A “ UΓ . (6)

A matrix U is unilossless if, regardless of the choice of delays
m, its eigenvalues are unimodular and its eigenvectors are lin-
early independent. A matrix U satisfying the unitary condition,
UUH “ I , is also unilossless [22, 23]. As U is unilossless, the
modal decay is controlled entirely by gain-per-sample parameter
γ, where 0 ď γ ď 1. The gain-per-sample in dB is

γdB “ ´60

fsT60
, (7)

where fs is the sampling rate in Hz and T60 is the reverberation
time defined as the time required for the sound level to decay by
60 dB from the initial steady-state value.

2.4. Coloration in FDN

In artificial reverberation, the properties of the resonating modes
have direct implications on coloration. A flat magnitude response,
implicitly achieved by the allpass property, is often desirable.

Schroeder and Logan [1] made the initial attempt to produce
colorless artificial reverberation by establishing specific require-
ments for the reverberators in addition to a flat frequency response.
Overlapping normal modes across all frequencies, equal RTs for
each mode, sufficient echo density, lack of periodicity in the time
domain, and no periodic or comb-like frequency responses were
deemed necessary to achieve colorlessness [1]. Despite fulfilling
the aforementioned conditions, however, the Schoreder series all-
pass did not attain complete colorlessness.

A recent study was conducted to further understand the role
of modal excitation in late reverberation coloration [10]. Listening
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DiffFDN

IDFT
zero pad

Figure 2: Architecture of the proposed optimization workflow. Dotted lines indicate the stochastic gradient descent method of optimizing
the parameters. Thin and thick lines indicate single- and multichannel connections, respectively.

test results suggest that a narrow distribution of the modal exci-
tation values |ρi| tends to result in a flatter magnitude response.
For large values of |ρi|, coloration starts to become noticeable. In
agreement with [13], the study found that the perception of color-
lessness correlates with the number of modes, and that more than
6000 modes are needed for an IR to be perceived as rather color-
less.

The literature also shows that, for large values ofM, the modes
of the FDNs are uniformly distributed [9], preventing additional
coloration that usually results from clusters of modes. Nonethe-
less, a flat magnitude response and a uniform modal frequency
distribution are insufficient to achieve colorlessness.

When the feedback matrix A is diagonal, the FDN takes the
form of a parallel comb-filter structure. If the FDN is homoge-
neous, the transfer function in (1) is equivalent to a combination
of comb filters, where each filter has the transfer function

Hipzq “ 1

1 ` γmiz´mi
. (8)

The contribution of each filter to the total energy of the response
can be calculated as

∥Hipzq∥2 “
ż 2π

0

|Hipeıωq|2dω (9)

“ 1

1 ´ γ2mi
. (10)

Fundamentally, shorter delaysmi contribute more energy and pro-
duce strong, audible metallic-sounding comb peaks, whereas longer
delays mi contribute less energy and tend to be masked by the
more dominant comb filters. In order to achieve colorless FDNs,
we aim to avoid strongly recirculating short delays and encourage
strongly exciting long delays.

2.5. Problem Statement

In this paper, we aim to optimize the feedback delay matrix A,
and input and output gains b and c such that the resulting IR is
colorless. In this study, we keep the number and lengths of the
delays fixed.

From previous studies, we know that coloration is little im-
pacted by the choice of the frequency-dependent attenuation [10].
Thus, the optimization is performed on a long-ringing frequency-
independent prototype FDN.

The proposed method utilizes two losses to improve coloration
and temporal density. A stochastic gradient descent scheme is
used to avoid convergence at spurious local minima. A parameter
remapping guarantees a lossless FDN prototype at each optimiza-
tion step.

3. FDN OPTIMIZATION

In the following, we present a method to reduce coloration in an
FDN response for arbitrary RTs. Stochastic gradient descent is
used to optimize the parameters of a differentiable FDN.

3.1. Differentiable FDN

This work applies the frequency-sampling method to approximate
an FDN as a finite-impulse-response (FIR) filter. This is done by
evaluating the delay matrix DmpzM q at the discrete frequency
points in the vector

zM “ reȷπ 0
M , eȷπ

1
M , . . . , eȷπ

M´1
M s, (11)

where M indicates the total number of frequency bins equally dis-
tributed on the unit circle. The discrete-frequency transfer function
of the FDN thus becomes

HpzM q “ cJ“
DmpzM q´1 ´ A

‰´1
b ` d . (12)

The diagram of the proposed architecture is shown in Fig. 2.
We integrated HpzM q into an optimization framework to estimate
the set of FDN parameters based on a spectral and a temporal loss
by gradient descent. The learnable parameters are the feedback
matrix A and the input and output gain vectors b and c, respec-
tively. The delay lengths m are set at initialization, and kept con-
stant during training. The direct gain d is set to zero. The FDN is
set to have a homogeneous decay by forcing A to satisfy (6) for a
given γ.

At each training step the estimated channel-wise transfer func-
tion ĤpzM q is computed at M frequency bins. The input to the
network is zM , where the value ofM is sampled from the uniform
distribution around values that ensure oversampling. This allows
training the model at different sample rates, which proved to help
avoiding narrow local minima and to improve convergence. To
allow batch processing, the length of ĤpzM q has to be constant
for all values of M . This is achieved by zero-padding ĤpzM q to
length K. The network’s output is evaluated in both the spectral
and temporal domains. The IR of the system is computed from the
K-point inverse discrete Fourier transform, ĥ “ IDFTpĤpzM qq,
where Ĥ is the system transfer function computed from the sum
of the N channels. The process of zero-padding in the frequency
domain results in zero-phase rate conversion [24], and allows eval-
uating the IR at different timestamps.

3.2. Feedback Matrix Parametrization

The unilossless matrix U is computed from the weights W of
a parameterized linear layer. Matrix U is limited to the class of
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Figure 3: Magnitude response of an FDN with random orthogonal
feedback matrix and unitary input/output gains at different values
of gain-per-sample value γ. For high values of γ, the resonances
are better separated due to a smaller half-width.

orthogonal matrices, satisfying the unitary condition for uniloss-
lessness. To ensure orthogonality, at each optimization step W is
mapped to a skew-symmetric matrix, and the matrix exponential is
computed,

U “ eWTr´W J
Tr , (13)

where WTr is the upper triangular part of W and the operator ep¨q
denotes the matrix exponential. The mapping in (13) implicitly
ensures orthogonality of U and can be used in regular gradient
descent optimizers without creating spurious minima [25].

3.3. Gain-per-sample

When A is lossless, i.e., γ “ 1, the modulus of all system eigen-
values is equal to one: |λi| “ 1. However, under this condi-
tion, evaluating HpzM q on the unitary circle becomes unfeasi-
ble, as the discrete generalized characteristic polynomial ppzM q “
detpDmpzM q´1 ´ Aq becomes singular and non-invertible. To
avoid instabilities, we use a homogeneous FDN where A is pa-
rameterized according to (6), and γ is set at initialization to a value
lower than one and kept constant during optimization.

The value of γ used during optimization is chosen by exam-
ining the connection between the mean damping factor δ, used in
room acoustics, and the mean spacing of resonance frequencies
∆f . To guarantee that the modes are well separated, the mean
spacing of resonance frequencies should be larger than the aver-
age resonance half-width [26]

∆f " δ

π
. (14)

In room acoustics, the limiting frequency below which the modes
are well-separated is called Schroeder frequency, indicated here as
fSchroeder [27]. This frequency marks the threshold above which an
average of at least three modes falls within one resonance half-
width. Using the fact that in FDNs the modal frequencies are
nearly euqally distributed [9], we can derive the limiting average
resonance half-width

∆f |f“fSchroeder
“ 3

fs

M . (15)

We can use the above conditions to determine the minimum value
for T60 to be used during training

T60 " Mlnp10q
πfs

. (16)

Increasing the value of T60 leads to modes with lower half-widths
and greater separation between them. For a target T60, the value
of γ can be derived from (7). However, as γ approaches 1, the res-
onance peaks in the magnitude response become narrow, making
obtaining a flat magnitude response by combining the resonances
impossible. Fig. 3 shows the effect of increasing γ on the res-
onance width in a short section of the magnitude response. The
sharp peaks visible when γ “ 1 are significantly smoothed when
γ “ 0.9990.

Experiments showed good convergence of the loss used in the
optimization when T60 ď 10 s. During inference γ is a free pa-
rameter, allowing to generate reverberation with any desired T60

value.

3.4. Parameters Initialization

We initialize the values of W , b, and c by drawing from the nor-
mal distributionN p0, N´1q.

The design of the delays is a rather non-trivial task that re-
quires further constraints. To maximize the echo density, the delay
lengths should be co-prime [28]. However, concentration of delays
around a certain value may lead to perceivable strong fluctuation
of energy over time. Moreover, low-order dependencies, which
are integer linear combinations of delays that coincide with other
integer linear combinations of delays with small coefficients, can
also contribute negatively to the smoothness of the response [22].
To avoid degenerative patterns and ensure a smooth-sounding re-
verb, we choose delays that are logarithmically distributed co-
prime numbers leading toM ě 6000.

3.5. Loss Function

The network is trained on two losses, Lspectral and Ltemporal, respec-
tively, in the frequency and time domains. The spectral loss aims
to minimize the frequency-domain mean-squared error between
the absolute value of the predicted magnitude response for each
channel and the target flat magnitude response. The temporal loss
penalizes sparseness in the time domain. The total loss function is

L “ LspectralpĤpzM qq ` αLtemporalpĥq

“ 1

K

Nÿ

i“1

Kÿ

k“1

´∣∣∣ĤipzM rksq
∣∣∣´ 1

¯p ` α

∥∥∥ĥ
∥∥∥
2∥∥∥ĥ
∥∥∥
1

,
(17)

where ĤipzM q is the output of the network’s ith channel computed
from the output of the ith delay line and scaled by ci. The operators
∥¨∥1 and ∥¨∥2 denote the ℓ1 and ℓ2 norm, respectively. The value
of the scaling factor α depends on the FDN size and is chosen
during initialization to ensure that the temporal and spectral losses
have similar magnitudes.

Audibility of a resonant frequency depends on its loudness and
on the presence of neighbouring masker tones [29]. To account
for tone masking effects, we adjust the exponent p in LspectralpĤq
based on the sign of the magnitude difference. Specifically:

p “
$
&
%
2 for

∣∣∣ĤipzM q
∣∣∣´ 1 ď 0 ,

4 for
∣∣∣ĤipzM q

∣∣∣´ 1 ą 0 .
(18)

This adjustment ensures that higher loss values are assigned when
the predicted magnitude response exceeds one. For negative dif-
ferences, LspectralpĤq corresponds to the mean squared error.
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Figure 4: Progression of temporal loss for different values of the
interpolation parameter β. Density of the feedback matrix in-
creases from left to right.

The temporal loss Ltemporalpĥq is computed as the ratio of the
ℓ2 norm to the ℓ1 norm of the estimated IR ĥ. We found that the
absence of this term may lead to sparsity in the learnable parame-
ters and cause the matrix U to converge towards either a diagonal
matrix or its permutation. In this configuration, the magnitude re-
sponse is periodic, with the spacing between peaks and troughs
determined by the delay lengths, and the height of the peaks and
the depth of the troughs depending on the gains. In time domain,
this yields a sparse sequence of impulses whose sound is far from
the intended Gaussian noise-like reverb.

To visualize the impact of the matrix on Ltemporalpĥq, Fig. 4
summarizes the distribution of the loss values computed from an
FDN with five different feedback matrices. The feedback matrix is
interpolated between the values at initialization U and the identity
matrix I:

Aβ “ ep1´βq logpIq`β logpUq , (19)

where β is the interpolation parameter 0 ď β ď 1. Operator
logp¨q represents the matrix logarithm. For β “ 1, the feedback
matrix corresponds to the initial configuration A1 “ U , whereas
for β “ 0 matrix A0 coincides with the identity matrix I . On
each box, the central mark indicates the median, and the bottom
and top edges of the box indicate the 25th and 75th percentiles, re-
spectively. The whiskers stretch to include the most extreme data
points that are not classified as outliers, and any outliers are plotted
separately. The parameters of the FDN are initialized as described
in Sec. 3.1, and the temporal loss is evaluated at 256 different val-
ues of M . The numbers in Fig. 4 show that the temporal loss
Ltemporalpĥq grows for sparser feedback matrices, thus actively pre-
venting convergence towards sparse matrices.

The evolution of losses at each epoch is shown in Fig. 5. Al-
though Lspectral decreases at all displayed epochs, a near-steady
value is attained by Ltemporal after a few iterations. This controls
the FDN and prevents convergence towards a set of comb filters.

4. OBJECTIVE EVALUATION

The following section presents the FDN configuration and the ob-
jective evaluation of the proposed method. The objective assess-
ment is based on the modal excitation distribution.

4.1. Analyzed FDN Configurations

We evaluate a total of six FDN configurations, two sets of delay
lengths for each of the three FDN sizes of N “ 4, 6, 8. The val-

Figure 5: Progression of spectral and temporal components of the
loss function during optimization.

Table 1: Values of the delay-line lengths for each size N of the
analyzed FDNs. In the delay set #1, all the delay lengths are log-
arithmically distributed prime numbers. For the delay set #2, half
of the delay lengths are prime numbers with similar low values,
and half are logarithmically distributed.

N Delay Set #1

4 [1499, 1889, 2381, 2999]
6 [997, 1153, 1327, 1559, 1801, 2099]
8 [809, 877, 937, 1049, 1151, 1249, 1373, 1499]

Delay Set #2

4 [797, 839, 2381, 2999]
6 [887, 911, 941, 1699, 1951, 2053]
8 [241, 263, 281, 293, 1193, 1319, 1453, 1597]

ues of the delay-line lengths are presented in Table 1. In the first
delay set, the delay lengths were prime numbers distributed log-
arithmically. In the second delay set, only the second half of the
delay lengths were logarithmically distributed, and the first half
consisted of prime numbers with similar values. In all configura-
tions, the total number of modes is 6000 ăM ă 9000.

During the training process, we used a sampling rate of fs “
48 kHz, and an inverse discrete Fourier transform of length K “
480000. The dataset consists of integer values M randomly se-
lected from a uniform distribution ranging betweenMmin “ 0.8K
and Mmax “ K. To train our model, we randomly selected 80%
of the data from the dataset, and the remaining 20% was used for
validation. The dataset size is 256 values of M . We set the batch
size to 4, and employed the Adam optimizer [30] with a learning
rate of η “ 10´3. Training was stopped after 15 epochs, as exper-
iments showed no further improvement with extended training.

The choice of the gain-per-sample value γ is crucial when op-
timizing the feedback matrix. To satisfy (16) during training, we
set γ “ 0.9999, which implies T60 “ 1.439 s.

Configuration details and audio examples are available on-
line 1. The PyTorch implementation of the proposed method can
be found in the dedicated repository 2. A set of optimized FDN
parameter values is readily available in the FDN Toolbox [5].
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Figure 6: Distribution of the modal excitation of an FDN with size
N “ 4 at the beginning (Original) and at the end of optimiza-
tion (Optimized), which has led to a decrease of the loudest modal
excitation by about 3 dB.

4.2. Modal Excitation Distribution

We compare the FDN parameters after optimization with the cor-
responding FDN configurations at initialization. All the compared
FDNs are homogeneous and have equal delays and gain-per-sample.
We compute the modal decomposition (5) to analyze the modal ex-
citation distribution of |ρi|.

The histograms in Fig. 6 show the distribution of the modal
excitation at the beginning and at the end of the optimization pro-
cesses for an FDN of size N “ 4. The modal excitation values
have been centered around 0 dB. At initialization, the distribution
appears bimodal with the highest concentration of values around
6 dB and -2.5 dB. After optimization, the peak of the distribution is
centered around 1 dB. The rightmost part of the distribution, which
represents the modes with the highest excitation values, is impor-
tant for coloration. In Fig. 6, the optimization attenuates the loud-
est modes by around 3 dB. The change toward narrower excitation
distribution indicates an improvement in the coloration, which we
further evaluate with a subjective test.

5. PERCEPTUAL EVALUATION

In the following, we describe a listening test conducted to evalu-
ate the perceived coloration in the IRs of the differentiable FDN
optimized with the proposed method.

5.1. Listening Test Procedure

The test followed the Multiple Stimuli with Hidden Reference and
Anchor (MUSHRA) recommendation [31], and it was carried out
using the web audio API-based experiment software webMUSHRA
developed by International Audio Laboratories Erlangen [32].

On each page, the listening test compared four sets of FDN
parameters against a reference. The test items included six config-
urations, i.e., three FDN sizes N “ 4, 6, 8 with two sets of delays.
The sounds were compared for two different RTs. In total, there
were 12 listening test pages with five stimuli each.

At the beginning of the test, a training page was presented to
familiarize the subjects with the sound samples and to adjust the
overall loudness. The loudness was kept unchanged during the rest

1http://research.spa.aalto.fi/publications/
papers/dafx23-colorless-fdn/

2https://github.com/gdalsanto/
diff-fdn-colorless/

of the test. The reference was a white Gaussian-noise sequence due
to its ideal reverberation tail [12], and since it has a flat magnitude
response by definition. During the test, the subjects were asked
to rate the similarity between each of the presented items and the
reference sound on a scale from 0 to 100. On each page, six sounds
were assessed, including an anchor and the hidden reference. The
hidden reference was an instance of white Gaussian noise different
from the reference, to encourage the subject to compare samples
based on their coloration rather than any possible subtle temporal
features.

The test evaluated the coloration of the DiffFDN IRs for the
configurations presented in Sec. 4.1. Each configuration was tested
on a separate page where the number and lengths of the delays
were constant, and only the feedback matrix, input and output
gains were altered. In particular, the FDN implementation of the
Schroeder-Moorer reverberator (SM) with N delay lines was used
as the anchor, whereas for the remaining conditions, the random
orthogonal feedback matrix (RO), the proposed optimized FDN
(DiffFDN) and the Householder (HH) feedback matrix were used.
The RO condition were the initial values of optimization of the
DiffFDN. Unitary input and output gains were used for the HH
condition. The direct gain d was set to zero in all cases. Each in-
dividual IR was normalized to ensure a constant root-mean-square
value across conditions.

The experiment was conducted in a sound-insulated booth at
the Aalto Acoustics Lab, with participants wearing Sennheiser
HD650 headphones. The final items were presented to 12 listen-
ers. One participant was excluded from the analysis as they failed
to correctly identify the anchor more than four times in their re-
sponses. The average age of the participants whose results were
analyzed was 28.6 years with standard deviation of 4.1, and none
of them reported any hearing impairments. All the participants
were either students or employees of the Aalto University Acous-
tics Lab, and had previous experience with the MUSHRA test.

The IRs presented in the first part of the test (expDE) had an
exponential decaying envelope corresponding to T60 “ 2.5 s and
γ “ 0.99994. The subjects were asked to compare the coloration
of the FDN responses against that of decaying white Gaussian
noise. To ease the grading process, the slider was labeled with
0 - certainly colored, 25 - rather colored, 50 - fairly colored / col-
orless, 75 - rather colorless, and 100 - certainly colorless.

The second part of the test (LL) focused on the coloration of
the late reverberation part. It compared the non-decaying IRs with
T60 “ 8 and γ “ 1. In order to exclude the echo build up of the
early reflection from the comparison, the test items started after the
mixing time, i.e., at 6 s. Each audio example was 10 s long. The
slider labels were the same as in the first part of the test.

5.2. Listening Test Results

The results of the listening test are shown in the box charts in Fig. 7
and Fig. 8 for the expDE and LL cases, respectively. The mean-
ing of marks and whiskers on the chart is the same as in Fig. 4
(cf. Sec. 3.5). The shaded regions around the medians help com-
paring the sample medians across different box charts. Shaded re-
gions that do not overlap indicate that the compared box charts
have different medians at the 5% significance level based on a
normal-distribution assumption.

Conducting the Shapiro-Wilk test [33] showed that even when
excluding the reference and anchor conditions, the data did not
follow a normal distribution. In addition, the Wilcoxon signed-
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Figure 7: Results of the listening test on exponential decaying IRs
(expDE), showing that the proposed DiffFDN has the highest me-
dian score of colorlessness in all cases.

Figure 8: Results of the listening test on the late reverberation, em-
ploying lossless FDNs (LL), showing that the proposed DiffFDN
has the highest median score of colorlessness in all cases.

rank test [34] was used to compare the distribution of the scores
given to each pair of conditions within each page. To account for
multiple comparisons (10 hypotheses per page), we applied the
Bonferroni method to adjust the alpha level.

The p-values for all combinations of paired conditions suggest
that all pairs of results are significantly different, with exception of
the lossless case with N “ 8 for RO and HH FDNs (p “ 0.68).
These results are indicated by the overlapping shaded regions of
the corresponding box charts in Fig. 8. This may be due to the lack
of early reflections in the lossless case, which makes differentiat-
ing between conditions difficult. Additionally, the configuration
with a higher number of delays (N “ 8) produces a denser output,
which might result in a more challenging test.

The results presented in Figs. 7 and 8 show that the hidden ref-
erence and anchor signals were easily detected by most subjects,
with few outliers. The median ratings for the proposed method
were consistently higher than those for the remaining conditions,
indicating that the optimization method was successful in improv-
ing colorlessness from the initial values.

In the first part of the test (expDE), increasing FDN sizes re-
sulted in higher ratings for DiffFDN, with median values of 50.5,
74, and 77. The results for lossless FDNs (LL) reported a similar
trend, with overall higher ratings primarily due to the elimination
of the temporal build up. The proposed method was deemed rather
colorless, with median ratings of 84, 89, and 83.5, respectively,
for increasing FDN size. The RO matrix was rated more colorless
than the HH matrix for the configuration with N “ 6 delay lines,
while it was rated more colored in the remaining configurations.
This inconsistency may be attributed to the random sampling of
the orthogonal matrix, which is performed without any preselec-
tion based on perceptual factors.

To emphasize the ratings relative to the proposed method, the

Figure 9: Relative difference of the results of Fig. 7 from the results
of the proposed DiffFDN method (expDE case).

Figure 10: Relative difference of the results of Fig. 8 from the re-
sults of the proposed DiffFDN method (LL case).

box charts in Figs. 9 and 10 were calculated based on the difference
between the DiffFDN and the remaining conditions. The ratings
assigned to the reference are not displayed. The results show that
in the majority of test questions, proposed method was rated higher
than the remaining stimuli. Significant improvements are observed
in the lossless case for N “ 4. Specifically, the median value
of the RO configuration was 59 lower than its optimized version
(DiffFDN). Moreover, in both conditions, the median of the score
differences and their 75th quartiles are consistently negative. The
confidence intervals in Fig. 9 are noticeably narrower compared
to those in Fig. 10, suggesting that the test on lossless FDNs was
more challenging.

6. CONCLUSIONS

This work presents a method for designing colorless artificial re-
verberation using a differentiable feedback delay network
(DiffFDN). The technique optimizes elements of the DiffFDN
architecture—the feedback matrix as well as the input and output
gains—to achieve a flat magnitude response. In addition, the tem-
poral properties of the synthesized reverb are taken into account to
avoid overly sparse results.

In the objective evaluation, we showed that the proposed
method reduces the width of the modal excitation distribution, de-
creasing the number of loudest modes. This indicates that the
DiffFDN achieves more colorless sound and flatter magnitude re-
sponse of the produced reverb.

The results of the listening test show that, compared to other
popular FDN designs, DiffFDN showed a significant improvement
in reverberation quality. Reverberation obtained with DiffFDN
was consistently graded as the most colorless among several con-
ditions, placing it perceptually closer to white Gaussian noise than
the other evaluated methods. This further confirmed the results
of the objective assessment and proved that the proposed method
successfully synthesizes colorless sound.
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ABSTRACT

This article proposes a probabilistic model for synthesizing room
impulse responses (RIRs) for use in convolution artificial rever-
berators. The proposed method is based on the concept of echo
density. Echo density is a measure of the number of echoes per
second in an impulse response and is a demonstrated perceptual
metric of artificial reverberation quality. As echo density is related
to the statistical measure of kurtosis, this article demonstrates that
the statistics of an RIR can be modeled using a probabilistic mix-
ture model. A mixture model designed specifically for modeling
RIRs is proposed. The proposed method is useful for statistically
replicating RIRs of a measured environment, thereby synthesizing
new independent observations of an acoustic space. A perceptual
pilot study is carried out to evaluate the fidelity of the replication
process in monophonic and stereo artificial reverberators.

1. INTRODUCTION

The reverberation of acoustic space is characterized by how a
sound is reflected and absorbed as it travels from a source to a
listener. Typically, a listener will observe the direct sound from
a source, followed by a series of distinct echoes. These echoes
are early reflections signifying the apparent geometries — such as
nearby walls — of the acoustic space. The echoes in the space will
rapidly build up, layering upon one another until giving way to a
dense late reverberation. Over the same period, due to the absorp-
tive properties of air and the surrounding environment, the acoustic
energy will decay until the environment is actuated again [1].

The same observations can be made by a time domain analysis
of a room impulse response (RIR), which may be procured through
techniques such as balloon pop [2], sine sweep [3], or maximum-
length sequence [4] measurements. Further analysis of RIRs in the
frequency domain can highlight the behavior of modes and their
decay. In the time domain, measures such as decay time (T60) and
echo density can be obtained, the latter of which is the focus of
this article.

Absolute echo density (AED) measures the number of echoes
per second, that is to say, the rate of non-zero impulses, in an RIR.
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In 1961, Schroeder noted that a property of “acoustically good
rooms” was a high echo density and focused on designing artificial
reverberators with a high echo density [5,6]. Moorer, in 1979, ob-
served that the distribution of echoes in an RIR becomes Gaussian
in nature as the reflections become well-mixed. Echo density has
been evaluated as a perceptually relevant reverberation parameter
in [7, 8], and has been used as a measure to control the mixing
time in feedback delay networks in [9]. Synthesis of RIRs based
on a desired echo density for use in convolution reverberators has
been pursued using a Poisson process [7, 8, 10], sparse FIR fil-
ters [11,12], and velvet noise [13]. Echo density-focused methods
permit RIRs synthesis from early reflections onward. In compari-
son, Gaussian noise synthesis methods described in [14, 15], only
accurately model the late reverberation.

This article builds upon work by previous collaborators on the
concept of normalized echo density (NED) [7,8,10,16]. NED is a
measure that compares the distribution of an RIR in a sliding time
window to the Gaussian distribution and, as a result, estimates the
echo density of an RIR. NED is inversely proportional to the sta-
tistical measure of kurtosis. In our contribution, we propose mod-
eling the statistics of an RIR with a probabilistic mixture model. A
mixture model characterizes a relatively complex probability dis-
tribution by modeling the distribution as a weighted sum of more
basic distributions. Mixture models, particularly Gaussian mixture
models (GMMs), have found wide usage in audio machine learn-
ing for tasks such as speaker identification [17–19]. GMMs have
also been used to remove reverberation from sonar signals [20].
However, using mixture models to synthesize RIRs is — to the
authors’ knowledge — a novel approach. The proposed method
has the potential to be an efficient and adaptive algorithm for syn-
thesizing RIRs which provides better characterization of the RIR
compared to prior methods.

Section 2 will review the proposed measures of echo density
and the relationship between echo density and kurtosis. Section 3
will describe the method of moments used to derive the weights of
the proposed mixture model and Section 4 will describe the mix-
ture parameters used when modeling RIRs. Section 5 will detail
example applications of the proposed method. Section 6 will detail
a perceptual study with results presented in Section 7. Section 8
will conclude.

2. ECHO DENSITY MEASURES

Echo density, in units of echoes per second, was first proposed as
a measure of reverberation quality in [5] and is now referred to as
the absolute echo density (AED). This is to distinguish AED from
the measure of normalized echo density (NED) [10].
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2.1. Normalized and absolute echo density

NED, η(t), was first proposed by Abel and Huang in [16] and
is a statistical measure that estimates, within a time window, the
departure of an RIR’s distribution from the Gaussian distribution.

η(t) =
1

erfc(1/
√
2)

t+β−1∑

τ=t−β

w(τ)1 {|h (τ) | > σ} . (1)

Here, h(t) is a time windowed portion of the RIR centered around
t and 2β long in samples, w(t) is a window function, and σ is
the standard deviation of the h(t). 1 {·} is the indicator function,
producing one when the argument is true and zero when false. We
assume h(t) to have zero-mean such that the standard deviation is:

σ =




t+β∑

τ=t−β−1

w(τ)h2(τ)




1
2

. (2)

The NED, η, can be related to AED, ρ, in echoes per second,
through the following expression,

ρ =
1

τd

η

1− η , (3)

where τd is the echo duration in seconds. As η approaches 1, the
AED in the window will increase describing a well-mixed rever-
beration. Conversely, as η approaches 0 the AED will decrease
describing the sparse reflections found during early reflections.

2.2. Kurtotic measure of echo density

Abel and Huang, also proposed an alternative measure of echo
density with a close similarity to the NED [16]. Their metric is
related to the statistical metric of kurtosis α4,

ηk(t) =
σ

[
1
3

∑t+β−1
τ=t−β w(τ)h

4(τ)
] 1

4

∝ (α4)
− 1

4 . (4)

A measure of echo density based only on kurtosis was proposed
independently by Usher in [21].

Kurtosis is defined as the fourth standard moment and has been
incorrectly ascribed to the peakedness of a distribution or, alter-
natively, the fatness of a distribution’s tails. The measure, how-
ever, has no direct bearing on these components. Kurtosis is better
thought of as a movement of a distribution’s mass from its shoul-
ders to its center and tails [22, 23].

In this regard, kurtosis is an ideal measure of echo density. A
window with a sparse number of echoes will have a distribution
concentrated about its center and tails as the signal is dominated
by silence and the occasional reflection. The distribution of said
window will be highly kurtotic. Correspondingly, a well-mixed
window will not be kurtotic, as its distribution is Gaussian.

3. A MIXTURE MODELING APPROACH

A probabilistic reverberation model aims to generate a synthetic
RIR based on desired statistical properties. In [10], this was done
using a Poisson process. This process, however, becomes com-
putationally expensive for dense reverberations as echoes must be
generated on an echo-by-echo basis. We propose using a mixture
modeling approach to capture the statistics of an RIR.

The objective of a mixture model is — most often — to ap-
proximate the probability density of an empirical observation us-
ing a linear superposition of components with simpler density
functions. As such, the primary task of mixture modeling is to
derive the mixture parameters which best approximate a given ob-
servation. These parameters are the number of components, the
parameters of individual component density functions, and the
weights of each component within the mixture model.

The distribution of a RIR within a time window is relatively
simple and assumptions can be made regarding the necessary num-
ber of components and their individual parameters. These param-
eters are discussed in Section 4.1. We are then chiefly concerned
with deriving the weights of a finite set of components with known
probability densities. To accomplish this we will use the method of
moments, similarly described in [24, 25] instead of the more com-
mon maximum-likelihood-based expectation maximization (EM)
method [17]. The method of moments is based on matching the
raw moments of a mixture distribution to the raw moments of a
desired distribution. Raw, central, and standard moments are com-
mon statistical measures used to evaluate statistical properties such
the mean, variance, skewness, and kurtosis [26].

3.1. Raw, central, and standard moments

The nth raw moment of a random variable X with a continuous
probability density function f(x) can be computed using the ex-
pectation operator E[ · ]:

νn = E [Xn] =

∫

x∈R
xnf(x)dx. (5)

For a discrete random variable, E[ · ] is given by:

E [Xn] =

L−1∑

l=0

xnl f(xl). (6)

For an empirical observation, f(xl) = 1
L
∀xi. The first raw mo-

ment is the mean, represented by X̄ = ν1, and the central moment
is a raw moment evaluated about the mean:

µn = E
[
(X − X̄)n

]
. (7)

If the distribution has zero-mean, the central moment is equivalent
to the raw moment. The second central moment is the variance
µ2 = σ2, the square of the standard deviation. The standard mo-
ment is the central moment scaled by the standard deviation,

αn = E

[(x− x̄
σ

)n]
. (8)

Kurtosis is, as previously mentioned, the fourth standard moment
and can be expressed in terms of the second and fourth central
moments

α4 =
µ4

µ2
2

, (9)

In the context of modeling an RIR, parameterizing our model
based on desired moments is intuitive if we aim to synthesize a
response with a desired echo density and therefore kurtosis.
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3.2. Method of moments

The method of moments aims to match the moments of a desired
distribution, Ẑ, to the moments of a mixture distribution. The
probability density function, fZ(x), of a mixture distribution Z is
generated by the linear superposition of a finite set of M compo-
nents with probability density functions fm(x) weighted by πm,

fZ(x) =

M∑

m=1

πmfm(x). (10)

The weights, πm, represent the amount by which each component
is sampled. As such, the total sampling must sum to unity and each
weight bounded:

M∑

m=1

πm = 1, 0 ≤ πm ≤ 1. (11)

Applying (5) to (10), consider that the nth raw moment of the mix-
ture distribution is the dot product of the mixture weights and the
nth raw moment of the components:

E [Zn] =

M∑

m=1

πm

∫

x∈R
xnfm(x)dx = ⟨π | νn⟩ (12)

The method of moments is then formulated as a linear system relat-
ing the raw moments of a mixture’s M components to the desired
raw moments and accounting for the constraint in (11):

Mπ = ν, (13)

where

M =




1 1 · · · 1
ν1,1 ν1,2 · · · ν1,M
ν2,1 ν2,2 · · · ν2,M

...
νn,1 νn,2 · · · νn,M




π =
[
π1 π2 · · · πM

]T

ν =
[
1 ν̂1 · · · ν̂n

]T

The moment matrix, M , is a n + 1 x M matrix formed by
nth raw moments νn,m of the mth component. The weight vector,
π, is found by applying the inverse moment matrix to the desired
moment vector, ν, of Ẑ with moments ν̂n. For M components, a
unique system necessarily requires the computation of n =M−1
moments. After solving (13) for π, the desired distribution is syn-
thesized by random sampling of pseudo-random sequences with
the same distribution as each component.

In this article, we utilize a mixture model based on the Gaus-
sian distribution Xi ∼ N (νi, σi). Each component is parameter-
ized by its mean µi and standard deviation σi. We chose Gaussian
components because the desired response is generated by random
sampling of scaled and shifted white Gaussian noise sequences.
The Gaussian distribution has the following probability density
function,

f (x | ν, σ) = 1

σ
√
2π
e
− 1

2
(x−ν)2

σ2 . (14)

The normal distribution, along with other distributions such as the
binomial, gamma, and the Poisson families of distributions, has the
property that its variance is — at most — a quadratic function of its
mean value x̄ [24, 27]. For these distributions, the moment matrix
is readily generated based on only the parameters of the component

Mixture Model Coloration Process

x[n] ∗

h[n]

y[n]

Figure 1: Block diagram of mixture model-based RIR synthesis.
A mixture model generates the desired “colorless” distribution
which is filtered to generate the RIR h[n]. This impulse response is
convolved with the input signal x[n] to generate the reverberated
signal y[n].

distributions. Table 1 provides the first four raw moments of the
Gaussian distribution.

Take note that the method of moments in (13) does not guar-
antee 0 ≤ πm ≤ 1 and assumes the moments, and therefore the
parameters, of the components are known. Tuning the component
parameters to generate non-negative weights is an iterative opti-
mization process [24]. However, based on prior knowledge of RIR
signals, assumptions can be made regarding the necessary number
of components and their individual parameters. These assumptions
are described in the next section.

4. PROBABILISTIC MODELING BASED ON ECHO
DENSITY

Our proposed probabilistic RIR model is compromised of two sep-
arate modeling processes, described in a block diagram in Figure
1. The first model is the mixture model which will generate what
we denote the “echo response,” a noise-like “colorless” impulse
response based on the desired moment vector ν. Once the echo
response has been generated, the color of the reverberation is mod-
eled by a coloration process. Because the distribution of silence in
each echo response is stochastic, RIRs synthesized with the same
color will not be statistically correlated. The parameters of both
models evolve with time.

This article is primarily concerned with the synthesis of the
echo response, and we utilize an STFT-based frequency domain
convolution to impose the spectra of a measured RIR onto the echo
response. Similar RIR synthesis procedures have used equal rect-
angular bandwidth (ERB) band-wise exponential decay to color
Poisson process generated noise [8]. Time-varying lowpass col-
oration filters have been used to color velvet noise [28]. In this
section, we determine the parameters of the proposed RIR mixture
model based on assumptions regarding the distribution of RIRs.

Table 1: First four raw moments of Xi ∼ N (µi, σi)

ν1 µi

ν2 µ2
i + σ2

i

ν3 µ3
i + 3µiσ

2
i

ν4 µ4
i + 3σ4

i + 6µ2
iσ

2
i
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Figure 2: Approximation of a Gaussian distribution f (x | 0, A/3)
(dashed grey) with the proposed mixture components (blue). The
summation of the mixture components (black) matches the de-
sired distribution except near zero where the model fails to capture
the contribution from the degenerate distribution. A histogram of
noise generated by the mixture — with bin centers and values in-
dicated by the red scatter plot — demonstrates close adherence to
the desired normal distribution.

4.1. Mixture model parameters for RIR synthesis

In regards to the number of components, we assume that echo den-
sity — and consequently kurtosis — suitably characterizes the be-
havior of an RIR and it is unnecessary to consider moments higher
than the fourth moment. By the nature of (13), a unique system
necessitates a mixture with only five components.

In regards to the component parameters, consider that a large
portion of an RIR signal during early reflections and into the late
reverberation is the silence between echoes. To characterize this,
we suggest that one component of the mixture should be a Gaus-
sian with zero-mean and a variance that approaches an infinitely
small value,

f0(x) = lim
σ→0

f (x | ν = 0, σ) = δ(x). (15)

The density function of this component can be abstractly repre-
sented by a delta function, and all raw moments of this component
are equal to zero: νn = 0 ∀n. This distribution is also referred to
as a degenerate distribution [29].

We then assume — without loss of generalization — that the
window has zero-mean and is normalized such that the samples
lie within the amplitude range ±A. The remaining components
(M = 4) are then evenly spaced in the range:

νm = −A+
2A

M + 1
m, m = 1, 2, . . . ,M. (16)

We propose that these components exhibit the same standard devi-
ation. Overlapping the distribution is necessary to ensure a contin-
uous distribution, but too much overlapping promotes the genera-
tion of negative weights as we are — in a sense — oversampling
our distribution. Too little overlapping creates gaps in the ampli-
tude distribution and the distribution is undersampled.

To ensure an ideal overlap of our component density func-
tions, we proposed that the intersection between two neighboring
Gaussians should sum to the maximum value of each component’s
density function. Determining the intersection of Gaussian prob-
ability densities f (x | νm, σ) and f (x | νm+1, σ) by substituting
the expressions for νm and νm+1 from (16) into (14), the point of
intersection is,

x =
A

M + 1
(2m−M) . (17)

The result is substituted back into (14) and evaluated against half
the maximum value, 1

2
1

σ
√
2π

. The proposed standard deviation for
the components is:

σ =
A

M + 1

√
1

2 log(2)
(18)

Even with these parameters, it is possible to generate negative sam-
pling weights. To counteract this, we propose that any negative
weights are zero-ed and the resulting π vector is rescaled to ob-
serve the constraint in (11)

πi =

{
πi, 0 ≤ πi ≤ 1

0, πi < 0
(19)

If the desired amplitude A is normalized, then the parameters
of our components are predetermined and the inverse moment ma-
trix M−1, can be stored ahead of computation. Since the desired
distribution is assumed to have zero-mean, the desired moment
vector ν simplifies to,

ν =
[
1 0 µ2 0 µ4

]T (20)

In Figure 2, the proposed mixture is used to approximate a
Gaussian distribution with f (x | µ = 0, σ = A/3). The sum of
the component density functions, in black, approximates the Gaus-
sian distribution except near zero where the contribution of the de-
generate distribution is not well characterized. The histogram of
a simulation, indicated by a red scatter plot, instead verifies the
mixture behavior.

5. EXAMPLES

Given a desired NED in (4) and the definition in (9), it is difficult
to make assumptions about the necessary values of µ2 or µ4. In the
following examples, we demonstrate how to determine the desired
moment vector for a desired AED value based on the properties of
a generalized Poisson process. Alternatively, the desired moment
vector can be found empirically when statistically replicating an
RIR.

5.1. Static echo density based on the Poisson distribution

The generalized Poisson process proposed in [10] forms the pro-
cess:

h(t) =
∑

α(t) · δ(t− τ(t)). (21)

The arrival times are represented as a set of Poisson impulses
where τ(t) is drawn from an exponential distribution τ(t) ∼
exp {−t/ρ(t)} and ρ is the AED at time t. The amplitude, con-
versely, is drawn from a Gaussian distribution with a variance also
dependent on the AED, α(t) ∼ N

(
0,
√

1/ρ(t)
)
.
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Figure 3: Comparison of the left (black) and right (red) RIR sig-
nals and NED measured in Pollack Hall at McGill University.
Spectrograms of each are displayed on the bottom left and right,
respectively. The NED profiles are similar while the spectrograms
are nearly identical.

The second and fourth moments of the Poisson process de-
scribed by [10] can be derived based on the properties of a Poisson
impulse [26]. A proof deriving the fourth moment of the Poisson
process is provided in Section 11. The resulting second and fourth
central moments are:

µPP
2 =

1

ρ
·
((

ρ

fs

)2

+
ρ

fs

)
(22a)

µPP
4 =

(
1

ρ

)2

·
((

ρ

fs

)4

+ 3
ρ

fs

)
. (22b)

These results can be substituted into the desired moment vector in
(20). With these parameters, the proposed mixture described in
Section 4.1 can generate a window of impulses with a fixed echo
density. This method can be generalized to generate a synthetic
RIR with a time-varying NED or AED profile.

5.2. Statistical replication of RIRs based on their moments

Another application of the method is for statistically replicating
RIRs of measured rooms. The RIR replicas are akin to an indepen-
dent observation of the acoustic space. Consider Figure 3, which
compares the RIR measurement of Pollack Hall at McGill Uni-
versity with two microphones spaced roughly a human head width
apart. The NED profile and spectrogram are nearly identical, and
the two responses mainly differ in the arrival time of the reflec-
tions. Replicated RIRs can be used artistically in virtual acoustics
to simulate different observations of a measured space.

To replicate a measured RIR, we propose using the overlap-
add (OLA) algorithm [30] to analyze the raw moments of the mea-
sured RIR. Within each window, the echo response is generated
and then colored in the spectral domain. In comparison to the
Poisson process, the mixture model approach makes no assump-
tions about the distribution of the measured responses and instead
attempts to holistically replicate the measured distribution.

100 1000
Time (ms)

0.5

0.0

0.5

1.0

1.5

2.0

N
E

D

Figure 4: RIR and NED of a measure (grey) of the Pollack Hall at
McGill University replicated using the proposed method without
block switching (blue) and with block switching (green). The syn-
thesis window is 5 ms long while the analysis window was 10 ms
long.

Window size is an important parameter in the proposed
method, as the generated echoes are randomly distributed within
the window. This can result in temporal smearing when replicating
early reflections as energy is no longer concentrated about distinct
echoes. Smearing can be decreased by using a smaller window
size at the cost of frequency resolution in the coloration process. A
possible solution is to use a window size switching scheme akin to
how transients are analyzed in audio coding [31]. In this scheme,
a small window replicates early reflections and a longer window
replicates the late reverberation. The result of the replication pro-
cess with a single-window size and switched window size is shown
in Figure 4. The main window size for both methods was 5 ms,
and the small window size was 1.25 ms. The window size was
switched after 30ms. These values were heuristically chosen and
a formal metric based on NED merits further investigation.

The first reflections are largely deterministic based on the ge-
ometry of the acoustic space. When replicating RIRs it is better —
in practice — to mix the first reflections from the measured RIR
with early reflections onward from the replica. This is achieved by
crossfading the measured RIR with the replicated RIR following a
few early reflections. For the experiment described in Section 6,
the signals were mixed 30ms after the initial direct path impulse
with a mixing time of 5ms.

6. PERCEPTUAL EXPERIMENTS

Two informal perceptual pilot studies were conducted on stu-
dents from CIRMMT and CCRMA. The first study compared the
smoothness of noise generated with the Poisson process and the
proposed mixture model. The mixture was generated for vary-
ing NED values using the parameters discussed in Section 5.1.
The second study evaluated the efficacy of RIR replication us-
ing the Poisson process and the method discussed in Section 5.2.
Both studies were administered online using the BeaqleJS frame-
work [32]. All samples used in the study had their loudness nor-
malized based on the EBU R 128 recommendation [33]. Samples
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Figure 5: Violin plot of perceived smoothness versus designed
NED value. The Poisson process (blue) and mixture-generated
samples (red) evaluations have been, respectively, shifted to the
left and right from the designed values. The reference samples are
in grey, and the “sputtery” reference with η = 0.05 is offset to the
left.

used in the experiment can be accessed online 1.

6.1. Noise smoothness evaluation

Participants were asked to rate the smoothness of noise generated
using the Poisson process and the proposed mixture for NED val-
ues η = 0.1, 0.3, 0.75, and 0.9 with a bandwidth of 10 kHz. Partic-
ipants were asked to rate each noise sample on a scale from “sput-
tery” [0− 1

3
) to “rough” [ 1

3
− 2

3
) to “smooth” [ 2

3
−1], terminology

borrowed from an earlier study [10]. The participants were given
two reference signals to ground their evaluations: a smooth ref-
erence — Gaussian noise — and a sputtery reference — Poisson
process noise with η = 0.05.

6.2. RIR replication evaluation

Participants were asked to subjectively rate the quality of mono-
phonic and stereo reverberated signals in a multi-stimulus test
with hidden reference and anchor (MUSHRA) style test [34]. The
test included a training phase where participants were familiarized
with the process using a sample not included in the main evalua-
tion and an artificial impulse response.

For the main evaluation, two environments were measured
as references: Pollack Hall at McGill University and Memorial
Church at Stanford University. RIR measurements of both envi-
ronments were captured using two microphones representing the
left and right channels. In the monophonic evaluations, only the
left channel was utilized. Both channels were used in the stereo
evaluations.

Test signals were generated by convolving generated and mea-
sured RIRs with anechoic audio samples. The anechoic audio sam-
ples consisted of female voice speech, drum, and clarinet signals.
The voice and drum signal were chosen as they are largely impul-
sive in nature and the clarinet was chosen as it is pitched and less
impulsive comparatively. The test RIR replicas were created using

1https://ccrma.stanford.edu/∼champ/dafx23

Figure 6: Comparison of 3.5kHz lowpass anchor responses for
clarinet (Cl), female voice (Fv), drums (Dr), and RIRs (RIR).

the proposed method and the Poisson process. Anchor RIRs were
generated by filtering the measured RIRs at 3.5 and 7 kHz based
on recommendations in [34]. Participants were additionally asked
to evaluate the RIR signals by themselves.

7. RESULTS AND ANALYSIS

Both experiments had a total of 10 participants. However, one
participant was removed from the RIR replication study as they
consistently rated the anchor and reference signals as having an
equal perceptual quality.

7.1. Noise smoothness results

The results of the noise smoothness study are shown in Figure 5.
Our experiment demonstrates that samples generated with the pro-
posed mixture model have a similar perceived smoothness as sam-
ples generated through the Poisson process. The proposed mixture
has a higher mean perceived smoothness compared to the Poisson
process for three NED levels. These results suggest that the pro-
posed model performs similarly to prior methods for generating
samples with fixed NEDs.

7.2. RIR replication study results

The overall results for all samples are shown in a violin plot in
Figure 7a. The overall mean rating for the proposed method is
evaluated as being second in quality to the reference. However, it
is worth recognizing that participants had difficulty discriminating
the hidden anchors and there were a small number of participants
in the pilot study.

Evaluation was particularly difficult in the case of the clarinet
sample which was the only audio sample with sustained sounds. A
comparison of the 3.5kHz lowpass anchor for different samples is
shown in Figure 6. This would suggest that the evaluation of RIR
quality is better performed with audio signals that are transient or
with the RIR signal by itself.

Further analysis is obtained if samples are delineated by
monophonic or stereo test signals as in Figure 7b and Figure 7c, re-
spectively. In Figure 7b, the performance of the proposed mixture
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Figure 7: Violin plot of MUSHRA-style RIR replication study. (a) compares the overall results, (b) the monophonic sample results, and
(c) the stereophonic sample results. A35 corresponds to the 3.5kHz lowpass anchor, A70 to the 7.0kHz lowpass anchor, M to the proposed
mixture model, P to the Poisson process, and R to the reference.

model is similar to the Poisson process method for monophonic
samples. However, in Figure 7c, the performance of the proposed
mixture method is better than that of the Poisson process method
stereo samples. This suggests that when rendering virtual acoustic
scenes, the proposed method may provide better results.

8. CONCLUSION AND FUTURE WORK

In this article, we proposed a new method for synthesizing artificial
RIRs for use in convolution reverberators. The proposed method
uses a mixture model with component parameters designed specif-
ically for RIR synthesis. A pilot perceptual study demonstrates the
efficacy of the proposed method in comparison to a previously pro-
posed RIR modeling technique. Future work is needed to properly
evaluate the quality of the proposed method in a larger study. Fre-
quency domain convolution was used to color the generated echo
responses, and future work should evaluate the quality of different
coloration techniques.
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11. APPENDIX

We derive the fourth moment of the Poisson process proposed by
[10] and discussed in Section 5.1. The nth moment of the process
described in (21) evaluates,

E [αn(t)δn(t− τ(t))] . (23)

The Gaussian distributed amplitude and Poisson impulse are mu-
tually independent, therefore their expectations are separable

E [αn(t)]E [δn(t− τ(t))] . (24)

The nth moment of the α(t) can be readily found based on the
Gaussian distribution, and the first four moments are provided in
Table 1. The Poisson impulse can be constructed by taking the
time derivative of a Poisson process which is modeled as a dis-
crete Poisson distributed variable X ∼ P (k | λ = ρ/fs · t). The
Poisson distribution represents the probability there are k events
when λ is the mean number of events. From the linear property of
the expectation and time derivative operators, one can verify that
the mean of the Poisson impulse is ρ/fs.

Derivation of the second moment of the Poisson impulse is
given in [26]. Here, we present the derivation of the fourth
moment. The fourth moment of a Poisson process for non-
overlapping times t1 < t2 < t3 < t4 is related to the Poisson
impulse by the partial derivatives ∂

∂ti
of the correlation operator

R,

Rδδδδ(t1, t2, t3, t4) =
∂4Rxxxx(t1, t2, t3, t4)

∂t1∂t2∂t3∂t4
. (25)

The correlation of a randomly distributed variable is equivalent to
its expectation,

Rxxxx(t1, t2, t3, t4) = E [X(t1)X(t2)X(t3)X(t4)] , (26)

and t1, t2, t3, t4 are non-overlapping. The expectation above can
be re-expressed as,

E [X(t1)X(t2)X(t3)X(t4)] =

4∏

i=1

E [X(ti)−X(ti−1)] ,

(27)
with x(t0) = 0. This product can be expanded as the first moment
for all x(ti) is ρ/fst

Rxxxx(t1, t2, t3, t4) =
ρ4

f4
s

· t1(t2 − t1)(t3 − t2)(t4 − t3) (28)

Applying the partial time derivatives in (25), the resulting fourth
moment is

Rδδδδ =
ρ4

f4
s

+
ρ

fs
(δ(t1 − t2) + δ(t2 − t3) + δ(t3 − t4)) (29)

where the δ(t) terms account for the discontinuities between non-
overlapping time segments.
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ABSTRACT

Spatial additive synthesis can be efficiently implemented by apply-
ing the inverse Fourier transform to create the individual channels
of Ambisonics signals. In the presented work, this approach has
been implemented as an audio plugin, allowing the generation and
control of basic waveforms and their spatial attributes in a typ-
ical DAW-based music production context. Triggered envelopes
and low frequency oscillators can be mapped to the spectral shape,
source position and source width of the resulting sounds. A techni-
cal evaluation shows the computational advantages of the proposed
method for additive sounds with high numbers of partials and dif-
ferent Ambisonics orders. The results of a user study indicate the
potential of the developed plugin for manipulating the perceived
position, source width and timbre coloration.

1. INTRODUCTION

The dynamic distribution of sound on multichannel loudspeaker
systems, known as spatialization or diffusion, has a long history
in electronic and electroacoustic music. With a variety of algo-
rithms, such as Vector Base Amplitude Panning (VPAB), Higher
Order Ambisonics (HOA) or Wave Field Synthesis (WFS), any
recorded or synthesized sound can be placed and moved in 2D or
3D space, resulting in immersive audio experiences. Spatial sound
synthesis describes methods which treat spatial aspects as an inte-
gral part of the synthesis process, usually at an early stage in the
algorithm. Such procedures can create sound events with inher-
ently connected timbral and spatial properties. This concept has
been investigated for many established synthesis paradigms, such
as granular synthesis [1], physical modeling [2], FM Synthesis [3]
and additive synthesis [4], respectively spectral modeling [5].

The approach presented in this paper is based on an efficient
IFFT-based additive synthesis in the Ambisonics domain [6, 7].
This allows the synthesis of spectra with a large number of si-
nusoidal components, each with individual spatial attributes. To
enable the use of this sound synthesis method beyond experimen-
tal music, an implementation as a VST plugin is presented. Thus,
it can be included in a generic digital audio workstation (DAW)
workflow. Synthesis parameters like pitch, timbre and spatial dis-
tribution can be controlled with sequences, envelopes and other
modulators. This opens new possibilities, since the production of
popular music for spatial audio setups and binaural playback is
continuously gaining importance.
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The remainder of this paper is organized as follows. Section 2
introduces the theoretical basics of the underlying algorithm. Sec-
tion 3 deals with the implementation of the algorithms in the plugin
and gives a brief overview of the current possibilities to integrate
the plugin into digital music production environments. Section 4
presents a user study and evaluates the collected data.

2. ALGORITHM
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of Partial
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Figure 1: Flow chart of the spatial IFFT-based additive synthesis.

Figure 1 shows the main stages of the implemented IFFT-
based additive synthesis in the Ambisonics domain. In the first
step, a complex spectrum is generated for each partial. All par-
tial spectra are then encoded into individual Ambisonics signals,
which are summed to produce a single frequency-domain Am-
bisonics signal. Finally, each Ambisonics channel is transformed
to the time domain via IFFT, resulting in an Ambisonics-encoded
time domain signal. The individual steps are explained in the fol-
lowing sections.

2.1. Generation of Partial Spectra

In order to reduce the computing load for additive synthesis with a
high number of partials, inverse DFT [8] and the inverse FFT [9]
have been proposed for the signal model

x[n] =

N∑

i=1

ai[n] cos (ωi[n]Tn+ φi) , (1)

where N is the number of partials, ai is the partial amplitude, ωi

is the partial frequency in radians, T = 1
fs

is the sampling period
and φi the initial phase of the partial.

Partial spectra can be approximated by a small number of sig-
nificant bins, around K ≈ 7, in the magnitude spectrum, referred
to as the spectral motif [10]. K is accountable for the approxima-
tion error and should be selected on the basis of the window prop-
erties and the desired signal-to-noise ratio (SNR). This approxi-
mation results in a computational benefit of roughly H

K
, where H

is the hop size, and is most effective with a suitable window that
has as few decisive bins as possible. Such a window must have
both a narrow main lobe and high side lobe suppression, which are
conflicting requirements. Another optional approximation in [9]
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expects stationary frequency, phase and amplitude of a sinusoid in
one IFFT frame of size N . Hence, the associated window can be
constructed as a real and even sequence, meaning symmetric with
respect to the origin, thus the Fourier transform of the window is
real.

In a harmonic signal, each partial corresponds to a shifted
and scaled spectral motif. The inverse Fourier transform of the
weighted sum of these spectral motifs produces a windowed sig-
nal in the time domain which has to be divided by the inverse
window function to reverse the effect of the window. In order
to concatenate frames, the overlap-add process is used, which in-
volves weighting the time-domain signals of frames with a window
that adds up to 1 in the overlapping region (e.g., a triangular win-
dow) [9]. Since the frequencies of partials in a frame are assumed
to be stationary, the concatenation of adjacent frames with varying
frequency components may cause modulations from phase cancel-
lation in the overlapping regions. These distortions can be reduced
by matching the phases of subsequent frames [9].

Several methods aim at improving the basic IFFT approach.
Distortions can be minimized by using chirp signals instead of sta-
tionary frequencies in a frame [10, 11]. Laroche [12] presented an
algorithm that avoids the overlap-add process and directly concate-
nates successive frames. This approach is refined by calculating
optimal coefficients of the spectral motif and an optimal window
function [13]. In [14], the subband sinusoidal synthesis algorithm
is presented which evaluates a time-domain sinusoid at only a few
samples and applies a pair of DFT to interpolate it to N samples.
Aiming for higher SNR [12, 13] should be considered. If non-
stationary sinusoids are mandatory, the approaches in [10, 14] will
provide a foundation. The overlap-add method [9] is implemented
because of its low computational cost and because there is no need
for non-stationary sinusoids in the developed plugin.

2.1.1. Spectral Motif

The DTFT of a windowed sinusoid in the time domain yields the
shifted Fourier transform of the window, multiplied by the com-
plex amplitude [15, p. 797]:

X(ejω) =
A

2
ejφW

(
ej(ω−ω0T )

)

+
A

2
e−jφW

(
ej(ω+ω0T )

)
,

(2)

whereW
(
ej(ω±ω0T )

)
is the shifted Fourier transform of the win-

dow sequencew[n]. Further, the DFT corresponds to equally spaced
samples of the DTFT:

X[k] = X
(
ejω
) ∣∣∣∣

ω= 2πk
NT

. (3)

The spectral motif can be created from a Fourier transform of a
suitable oversampled time-domain window function, by extracting
the main lobe values. The main lobe can be defined as the values
between the first local minima to the left and right of the global
maximum for most window functions. These values are stored in
a lookup table and used later for synthesis. For this purpose, the
window types Hann, Kaiser (β = 8) and Blackman-Harris are
considered.

Besides the different types of windows and the window length
M , it is of particular importance to emphasize the differences be-
tween true even symmetry and DFT-even symmetry windows, re-
garding discrete window functions [16]. True even symmetry refers

to a sequence that has symmetric samples about an assumed mid-
point and DFT-even symmetry relates to a true even sequence with
the right endpoint removed. If the periodic continuation of a time-
domain window function is symmetric with respect to the origin,
the Fourier transform of this window will be real valued. In the
discrete domain, if M is of even length and a symmetric window,
there will be no peak value of exactly one. Instead two maximum
values exist to fulfill the symmetric qualifications. In order to place
the partials at the appropriate frequency location in the spectrum, it
is desirable to use a window with a single maximum value of one.
Also, it is a computational benefit to calculate only real values.
Thus, the basis for the spectral motif is assumed to be a DFT-even
symmetric sequence of an even length M .

Assuming N = 512 and fs = 48000 Hz, the frequency res-
olution results in fs

N
= 93.75 Hz. If we assume the human ear

resolves differences in frequencies of 1 Hz, a spectral motif with
much finer resolution is required. Larger values for M result in a
better frequency resolution in general but the main lobe width re-
mains the same regarding the number of samples. Zero-padding is
hence used to obtain an interpolated or rather oversampled version
of the main lobe of the spectrum. Applying casual zero-padding
(adding zeros after a signal) ruins the advantage of a real-valued
spectrum. A possible solution utilizes zero-phase zero-padding to
obtain a real valued spectrum, where first, the zero-frequency com-
ponent is shifted to the center of the spectrum and afterwards zeros
are inserted in the middle of the window without destroying the
DFT-even symmetry.

Then, after the zero-phase shift is reversed, the oversampled
main lobe or eventually additional side lobes of the spectrum of
the window can be normalized and stored. The number of stored
samples is dependent on the selected values for K and O.

2.1.2. Spectral Encoding

Since the objective is to generate real-valued signals andN is even,
it suffices to calculate only N

2
+ 1 samples of the spectrum, ex-

ploiting the symmetry properties of the DFT. The spectral motif
W [k] has to be placed correctly for the given frequency fP of a
partial. The floating bin location is equal to kf = TsNfP in an N -
point DFT. Because it is only possible to fill integer positions of k,
firstly, the closest bin location is calculated by ki = ⌊kf +0.5⌋ and
the remaining distance kr = ki − kf is stored separately.

Then, the decisive bins are calculated for 0 < k < N
2

by

XP[ki + k] =
AP

2
W [⌊O(kr + k) +OM⌋] cos(φP)

+ j
AP

2
W [⌊O(kr + k) +OM⌋] sin(φP)

(4)
where OM is the middle index of the spectral motif and φP is the
current phase of the partial. Particular attention should be given to
bin locations k ≤ 0 and k ≥ N

2
. Directly from the definition of

the DFT follows that for k = 0 and k = N
2

:

XP[k] = APW [⌊O(fk + k) +OM⌋] cos(φP). (5)

Due to the periodicity of the DFT, frequency domain aliasing has
to be considered. Based on the symmetry properties of the DFT
follows for k < 0 and k > N

2
:

XP[ki + k] =
AP

2
W [⌊O(kr + k) +OM⌋] cos(φP)

− j AP

2
W [⌊O(kr + k) +OM⌋] sin(φP)

(6)
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The obtained spectrum forms the basis for the spatial encoding.

2.2. Ambisonics Encoding

Ambisonics is a surround sound technology that was developed
in the 1970s [17, 18] and was further investigated, for example,
in [19]. It is a spatial audio representation that encodes incoming
sound sources in three dimensions, allowing for the capture and
reproduction of a full-sphere sound field.

The first-order Ambisonics B-format refers to encoding pres-
sure and velocity at the origin of a sound field to four channels.
However, first-order Ambisonics is limited in terms of spatial res-
olution. To resolve this issue, high-order Ambisonics (HOA) is
calculated using higher numbers of so called spherical harmonics.
These are functions on the surface of a sphere that can describe
the distribution of sound pressure. A comprehensive summary of
Ambisonics-related theory can be found in [20].

A real-valued set of spherical harmonics can be defined

∀(n,m) ∈ NN by

Y m
n (θ, ϕ) = N |m|

n P |m|
n (sin θ)

{
cos(mϕ), m ≥ 0

sin(mϕ), m < 0
(7)

where the elevation angle θ is 0 at the horizontal plane and positive
in the upwards direction, while the azimuth angle ϕ is 0 pointing in
face direction and increases counter-clockwise. N |m|

n represents a
normalization constant. The associated Legendre functions Pm

n

are defined by

Pm
n (x) = (−1)m

(
1− x2

)m
2
dm

dxm
Pn(x), (8)

with the Legendre polynomials Pn which can be expressed in the
Rodrigues representation

Pn(x) =
1

2nn!

dn

dxn
(
x2 − 1

)n
. (9)

There are various conventions for ordering and normalizing
Ambisonics channels. The ambiX format [21] is a widely used
standard and is implemented in the proposed algorithm. It specifies
the Ambisonics channel number (ACN) for channel ordering:

ACN(n,m) = n2 + n+m+ 1 (10)

and the Schmidt semi-normalized (SN3D) convention

Nm
n =

{
1, m = 0

(−1)n
√

2 (n−m)!
(n+m)!

, m ̸= 0
(11)

is proposed in terms of normalization.

2.2.1. Displacement Function

In the proposed synthesis approach, Ambisonics encoding takes
place in the spectral domain, after generating the complex spectra
and before applying the IFFT. Each partial of the additive synthe-
sis is assigned individual angles θ and ϕ. Equation 7 determines
the spatial gains for each Ambisonics channel, depending on these
angles. The previously calculated real and imaginary parts of the
spectra are then scaled by these spatial gains.

1 2 3 4 5

Density

W
id

th
/H

ei
gh

t

ϕ/θ
p

Figure 3: Example for the placement of the first six partials of the
sine type displacement function.

With increasing number of partials, individual control of their
positions is not possible. Hence, various displacement functions
can be used to distribute the partials with few meta-parameters.
The standard sinusoidal displacement function for a single dimen-
sion is defined as:

D[p] :=
H

2
sin

(
2πSp

P

)
(12)

where H is the width or height, S determines the horizontal or
vertical dispersion pattern, P is the total number of partials and p
is the partial index. The resulting values are added to the global
azimuth or elevation angle of the sound, as shown in Figure 3.

2.3. IFFT

2.3.1. Overlap-add

After Ambisonics encoding, an IFFT is aplied to each Ambison-
ics channel. The resulting time-domain signal needs to be divided
by the window function that was applied to reverse the window-
ing effect. However, this results in large amplitude values at the
boundaries of the frame, which can cause distortion when overlap-
ping with successive frames in the overlap-add process. To ensure
equal energy in the overlapping sections, a proper weighting func-
tion must be applied. The triangle window is often used for this
purpose and the calculation of the inverted synthesis window and
the amplitude weighting function can be combined. To sufficiently
reduce distortion at the edges, it is recommended to choose the hop
size H less than or equal to 25% of the frame size [22].

2.3.2. Phase Adjustment

Phase adjustment is a technique that can be used to attenuate am-
plitude modulations that result from phase cancellation due to de-
structive interference of adjacent frames. The specific implemen-
tation depends on which signal information is stored and whether
there is any frequency variation at all. In this case, only the last
phase information for each partial is stored, with the initial phase
of a partial located at N/2. The points at which adjacent overlap-
ping frames have the same energy are 1

2
(N +H) and 1

2
(N −H),

respectively. First, the initial phase at 1
2
(N + H) of the current
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Figure 2: Signal flow of the plugin.

partial is calculated as follows:

φt

[
N

2

]
=

(
φt−1

[
1

2
(N +H)

]
+ πftHTs

)
mod 2π, (13)

This value is then used for partial placement, and the new
phase is stored for the next callback, calculated by:

φt

[
1

2
(N +H)

]
=

(
φt

[
N

2

]
+ πftHTs

)
mod 2π. (14)

If the frequency remains constant throughout the lifetime of a
partial, the calculation reduces to a single floating-point remainder
function call. However, it is important to note that the adjustment
only works effectively when the frequencies of consecutive frames
are close together.

3. IMPLEMENTATION

3.1. Plugin

Figure 2 shows the signal flow of the plugin. Table 1 lists the ad-
justable parameters and their range of values. This first version
of the plugin features the basic waveforms triangle, sawtooth, and
square wave. All these waveforms are well suited for the produc-
tion of lead and bass sounds in popular electronic music, especially
when the high frequency content is changed over time by tempo-
ral envelopes. A pure sine wave has been added as an anchor for
the test phase, since it emphasizes artifacts and distortions. The
pitch of the waveform is controlled by MIDI. Since the plugin it-
self does not feature pitch modulation capabilities, a signal just
consists of stationary sinusoids after being generated based on the
note-on event. Assuming stationary sinusoids, a real-valued spec-
tral motif can be constructed. Frequency-domain additive synthe-
sis can handle aliasing by constraining the maximum permitted
frequency of a partial below half of the sampling rate. To get con-
trol over the overtones, the Brightness parameter is implemented
as follows:

A[p] = A[p]e−
p
d , (15)

where A[p] is the amplitude of the current partial index p and d is
an adjustable damping factor.

The plugin is based on the JUCE1 framework and integrates
the KFR2 library for FFT/IFFT and is made publicly available3.

1https://github.com/juce-framework/JUCE
2https://github.com/kfrlib/kfr
3https://github.com/ringbuffer-org/spadd

Table 1: Plug-in parameters and range of values.

Parameter Range of Values

Waveform Sine, Triangle,
Sawtooth, Square, Noise

Noise Density 1 to 10000

Brightness 0.5 to 250

Distance 1.0 to 100.0

Horizontal Displacement
Function

Sine, Cosine,
Sawtooth, Square

Azimuth Angle −180 to 180 degree
Width 0 to 180 degree
Horizontal Dispersion 0 to 300

Vertical Displacement
Function

Sine, Cosine,
Sawtooth, Square

Elevation Angle 0 to 90 degree
Height 0 to 90 degree
Vertical Dispersion 0 to 300

Ambisonics Order 0th,1st, 2nd, 3rd

Normalization SN3D, N3D
Gain Attack 0 to 5 s
Gain Decay 0 to 8 s
Gain Sustain 0 to 1

Gain Release 0 to 8 s

3.1.1. Distortion Analysis

Distortion artifacts mainly stem from the overlap - add process,
which are minimized here by calculating an appropriate phase ad-
justment. Other adjustable sources of distortion are O and K,
regarding the type of window function. In order to inspect the
distortion and to choose suitable parameters for the implemented
algorithm, the SNR is calculated as

SNR = 10 log10

(
Esignal

Enoise

)
(16)

where E is the energy of a signal x[n] of length L:

E =

L−1∑

n=0

|x[n]|2. (17)
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Figure 4: Signal-to-noise ratio for (a) different window functions with increasing number of bins (K) and fixed overlap (O = 128) and (b)
for the Kaiser window (β = 8) with K = 5 dependent on O and the frequency.

Esignal in this case takes a sinusoidal reference signal consistent
with the phase of the synthesized output signal as a basis andEnoise

relates to the difference between the reference signal and the out-
put signal. The first output frame is discarded because there is
no overlap-add data yet. Note that this property generally affects
transient signals, e.g. for H = 256 and fs = 48000 Hz an attack
time of 5.3 ms occurs. Figure 4(a) shows the SNR for different
windows dependent on K with fixed O.

As expected, window functions with a narrower main lobe
converge towards a maximal possible SNR earlier, whereas win-
dow functions with a higher side lobe suppression reach a higher
maximal SNR at the expense of higher K. Hence, to achieve even
higher SNR, a Kaiser window with β > 8 or a Blackman-Harris
window with more than four coefficients could be applied. The
SNR is also dependent on O and the frequency, as shown in Fig-
ure 4(b). The peaks of the curves emerge, if the frequency matches
an exact bin location. Note that O does not have to be a power of
two in general but can be computed efficiently. An SNR ≥ 40 dB
was considered to be sufficient to exclude audible artifacts in [12].
Hence, the Kaiser window (β = 8) with K = 5 and O = 256 and
the Blackman-Harris four-term window withK = 7 andO = 128
are taken into account during implementation.

3.1.2. Performance Analysis

Music production setups usually utilize either internal or external
sound cards (interfaces) for enhanced usability and performance.
Audio drivers typically provide a range of buffer sizes between 16
and 2048 samples, which leads to round-trip latencies between 0.7
and 43 milliseconds, assuming fs = 48000 Hz. Measurements
were taken on an Intel Core i7-7700HQ, representing today’s av-
erage consumer CPU. The benchmark test utilizes a scope based
timer, containing only the frequency and time-domain specific pro-
cess functions, that means all function calls which are the same
for both methods are excluded, e.g. constructing the basic signal
information or midi processing. The plugin was embedded in a
digital audio workstation during testing and ran over 2000 call-

backs. Random partials were generated every callback, taking into
account the branches which stem from (4), (5) and (6). Figure 5
contains the results of the measurements.

As Figure 5(a) shows, the frequency-domain approach is faster
than the time-domain approach above 10 partials. 100 partials are
sufficient for synthesizing the deterministic part of sounds from
most musical instruments, considering the upper frequency limit
of our auditory system and the fundamental frequencies of musi-
cal sounds. For 100 partials, the frequency domain approach is
roughly twice as fast as the time domain approach (0.239ms /
0.112ms). For low frequency sounds, especially synthetic ones,
more partials may be necessary. If non-harmonic partials are con-
sidered in order to create stochastic components, the number of
partials can be increased to several hundreds [23]. For 1000 par-
tials, the performance ratio between time domain and frequency is
about 6 (1.783ms / 0.295ms), which indicates a significant ad-
vantage of the IFFT approach.

As shown in Figure 5(b), the performance load increases with
the Ambisonics order, independent of the number of partials.

3.2. DAW Integration

Typically, working with digital audio material involves using a dig-
ital audio workstation (DAW) for recording, editing or synthesiz-
ing audio content. DAWs mostly support one or more plugin for-
mats, providing flexibility by enabling the use of third-party effects
and instruments. For the developed plugin, the main requirements
are a graphical user interface, support on all major platforms, mul-
tichannel capabilities, and a free licensing model. VST 34 and
CLAP5 have been considered in this context, but since the JUCE
framework does not natively support CLAP, the plugin uses VST 3.

To use Ambisonics, the setup has to support multichannel lay-
outs, which means the DAW must be able to process multiple input
and output sample streams simultaneously. However, many DAWs

4https://steinberg.net/developers
5https://cleveraudio.org
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Figure 5: Benchmark results of (a) 3rd order Ambisonics for the frequency-domain (K = 7, O = 128 and N = 256) and the time-domain
(naive wavetable) with the deadline indicating a buffer size of 64 samples and fs = 48000 Hz. The minimum and maximum values are
shown only for the frequency-domain due to transparency. (b) Comparison of different Ambisonics orders for the frequency-domain (K = 7,
O = 128 and N = 1024) and a buffer size of 256 samples.

do not support proper multichannel workflow. Reaper6 includes
extensive multichannel support but does not provide extended pa-
rameter modulation capabilities easily. Ableton Live7 has no na-
tive support for multichannel plugins, but it integrates Max8 as
Max4Live, allowing the integration of multichannel plugins. The
only drawback is that the GUI of the plugins cannot be directly ac-
cessed anymore, and must be controlled through Max4Live param-
eters. However, comprehensive parameter modulation is a prefer-
able feature for the user study.

Since Abisonics decoding is not integrated into the plugin, an
external decoder has to be inserted after the synthesis plugin. At
this stage, the AllRADecoder9 of the IEM plugin suite is used with
3rd order Ambisonics.

4. USER STUDY

A user study was conducted to investigate the perception of the
source spread in relation to the localizability. User feedback and
open responses were collected to evaluate additional and general
aspects of the instrument.

4.1. Setup and Procedure

A total of 12 participants with a mean age of 27.25 years (SD =
3.6 years), took part in the study. They were seated at a desk in the
center of a 21 channel loudspeaker system in a dome configuration.

The developed synthesizer plugin (Blackman-Harris four-term
window with K = 7 and O = 128) and the AllRADecoder were
integrated into a Max4Live instrument running in Ableton Live 11
on Windows 10. The Ableton Push Controller was used in the

6https://www.reaper.fm
7https://ableton.com/live
8https://cycling74.com/products/max
9https://plugins.iem.at

study, and parameters were automated by Ableton tools like LFO
and Shaper. As the plugin is integrated in Max4Live, only essen-
tial parameters were made accessible through the GUI. Control
over Ambisonics order and normalization, the gain envelope, and
selection of the displacement function (fixed to sine type) were
non-adjustable and hidden from the user.

In the first part of the study, test subjects used the Ableton
Push controller to manually adjust the spatial and timbral parame-
ters. In the second part, parameters were automated by envelopes
and low-frequency oscillators. Finally, the test subjects were able
to give open feedback. The subjects’ experience was evaluated us-
ing a seven-point balanced Likert scale ranging from "Completely
Disagree" (1) to "Completely Agree" (7) and the general sophis-
tication of the Gold-MSI [24, 25]. The parameter settings were
assessed on a five-point Likert scale, and the perceptual qualities
were named based on [26]. Higher values stand for a greater de-
velopment of the corresponding quality of perception.

4.2. Results

The results of the users’ expertise are shown in Figure 6. Fig-
ure 6(a) shows the self-reported experience regarding sound syn-
thesis, DAWs, virtual instruments, and 3D-audio. The scores of
the general sophistication of the Gold-MSI Figure are displayed in
Figure 6(b).

Figure 7 presents the results for the auditory qualities that were
examined in relation to spatial expansion. A paired t-test shows
a statistically significant difference in the localizability between
the conditions with and without spatial spread of the sound source
(t(11) = 2.14, p = .028, one-tailed). Specifically, the mean local-
izability score was higher without spatial extension (M = 4.25,
SD = 0.7) than with spatial extension (M = 3.5, SD = 1.1). The
continuous change of the horizontal and vertical dispersion were
examined for roughness (M = 2.83, SD = 0.99) and degree-of-
liking (M = 3.67, SD = 0.75).
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Figure 6: Experience of the participants of the user study. (a) Self-reported expertise of specialized topics where the gray bar indicates an
average value and (b) determination of the general sophistication of the Gold-MSI with a maximum attainable test score of 126.
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Figure 7: Results of the investigated perceptual qualities in rela-
tion to spatial expansion.

In the open responses it was noted that sounds were more dif-
ficult to localize in the vertical plane, and the Height parameter
was not perceived as particularly influential by some subjects. A
test subject explicitly mentioned a phaser effect occurring with ex-
treme parameter modulations. Another test subject described the
modulated expansion of the signal as more of a tone coloring and
only to a limited extent as a spatial expansion. The changing over-
tone distribution emanating from the displacement function, de-
pending on the number of partials, was explicitly rated as good by
one test subject.

4.3. Discussion

Although sine waves are in general harder to localize, the results
show an influence of angles and spread on the perception of the
synthesized sound. Figure 7 and the t-test indicate that the spatial
expansion of the signal works to a certain extend. According to the
results, sources with increased spread are harder to localize. This
holds true for most real or virtual sound sources and validates the
source widening effect in the proposed approach.

The weaker perception of height extension, compared to width,
has also been noted by some of the test subjects. This can be at-
tributed to the loudspeaker setup, which is more sparse along the
elevation axis. In addition, the human auditory system has a higher
resolution for the azimuth than for the elevation of sound source
positions.

The temporal change of the spread S can provoke a flanger-
like effect. While the resulting tone-coloring effect is perceived
as rough, the roughness is not necessarily perceived as unpleas-
ant. In conclusion, the resulting effect has timbral qualities, which
may not be achieved without the spatial modulation. Considering
one isolated Ambisonics channel, moving notches in the ampli-
tude spectrum occur which can be compared to a moving comb
filter. Partials that are present in one channel at a point in time, are
attenuated in other channels. Thus, the corresponding frequency
modulated comb filters follow the same frequency but with tem-
poral shifts. The flavour of the tonal coloration varies with the
type of the displacement function.

5. CONCLUSION

The presented synthesizer plugin makes IFFT-based additive syn-
thesis in the Ambisonics domain available in conventional music
production workflows on the DAW. The chosen approach demon-
strates a sufficient SNR and the performance analysis reveals an
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expected advantage over additive synthesis in the time-domain.
Furthermore, the IFFT does not represent a bottleneck with re-
spect to the amount of calculations required for each channel of
HOA. Therefore, signals with a high overtone density can also be
efficiently synthesized for higher Ambisonics orders.

The user study results indicate that the chosen method for
spatial distribution can be used to influence source position and
width, as well as tone coloration. For a more detailed investiga-
tion, the experimental design needs to be changed and more test
users should be included.

The integration of multichannel capabilities is still in its early
stages in many DAWs, which makes it difficult to use plugins
for Ambisonics and related technologies without additional cus-
tomization. Considering the rise of spatial audio production tech-
niques in music production, movie sound, extended reality (XR)
and video games, this problem is likely to disappear in the near fu-
ture. Synthesizers with an increased focus on spatial abilities are
thus predestined to become a standard in these domains. Future
work will focus on other waveforms than the basic ones used in
this version. This will also include partial trajectories from previ-
ously analyzed recordings of musical instruments.
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ABSTRACT

Hearing loss affects 1.5 billion people world-wide [1], affecting
many aspects of life, including the ability to hear the television.
Simply increasing the volume may restore audibility of the quietest
elements, but at a cost of making other elements undesirably loud.
Therefore, at the very least, dynamic range compression could also
be useful, fitted to an individual’s frequency-dependent hearing
loss. However, it is not clear whether the audibility of the quietest
parts of TV audio needs to be preserved. This experiment aims to
measure which elements of the audio are important by presenting
normal-hearing listeners with binary masked versions of TV au-
dio presented at 60 dB(A), muting audio below a given sensation
level. It was hypothesised that spectro-temporal regions with the
most power density would dominate perception, such that the less
active regions may not be missed. To find this threshold of percep-
tual significance, a two-alternative forced choice signal detection
experiment was designed in which excerpts from BBC television
shows were binary masked and presented to the participants, with
the task to identify which clips sounded more processed. The re-
sults suggest that discarding audio below 10 phons would rarely
be noticed by most listeners.

1. INTRODUCTION

This paper is part of a larger project which aims to improve the
listening experience for people with hearing loss when watching
the television. Hearing loss affects one in five people in the UK
[2]. The most widely adopted device for improving hearing is the
behind-the-ear (BTE) hearing aid [3] however, it has inherent lim-
itations since it must work in real time with a low power computer.
Another approach to improving audibility is the use of clean audio
for multimedia [4] i.e., audio which has all sounds except dialogue
attenuated. However, most clean audio solutions consist of algo-
rithms used to remove or attenuate background noise—including
music and sound effects, which are fundamental elements of tele-
vision soundtracks which contribute to the narrative of television
programmes.

1.1. Hearing Aids

There are two main categories of hearing loss: conductive and sen-
sorineural [5]. Both hearing losses cause a raised threshold of au-
dibility. In order to restore audibility of quiet sounds, they must
be amplified, although loud sounds cannot be amplified as this

Copyright: © 2023 Robert J. Acheson et al. This is an open-access article distributed
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provided the original author and source are credited.

would cause discomfort for the person with hearing loss. Hear-
ing aids provide multi-band dynamic-range compression in order
to restore audibility in the affected frequency ranges to improve
audibility, without amplifying sounds beyond the level of discom-
fort [6]. Due to their small size, only a small battery can be fitted
to hearing aids. This means the potential computational power of
the hearing aid is limited, in order to preserve battery life. The
hearing aid is also required to work in real time; due to its low
computational power and impossibility of a “look ahead” feature,
i.e., the ability to view the oncoming amplitude envelope, the jux-
taposition of quiet and loud sounds can often impair audibility due
to over-correction, often referred to as overshoot [7]. For example,
if someone were to clap their hands, the hearing aid would atten-
uate the frequency ranges in which the clap is present in order to
prevent damage to the user’s ears. However, the slow release-time
of the hearing aid means that any conversation following the clap
may also be attenuated for a brief time.

Hearing aids are limited in ways which affect both the fre-
quency domain and the temporal domain. The frequency bands
on which the multi-channel dynamic-range compression is applied
are broad, resulting in low frequency resolution. Temporal resolu-
tion limitations are caused by the necessity of real-time operation
in the form of latency. With a view to improve on the hearing
aid for pre-recorded entertainment purposes, the audio can be pro-
cessed offline. This means that the frequency and temporal res-
olutions can be greatly improved upon, and the main limitation
is computation time. However, considering that the audio is pre-
recorded, computation time is less of a pressing issue.

2. PROPOSED SOLUTION

The proposed offline process is based on Ray Meddis’ BioAid al-
gorithm, which is used in [8]. BioAid is similar to the proposed
solution in that it uses a filter bank at the beginning and end of the
signal chain and is psychoacoustically inspired, however the fil-
ter banks used in the proposed solution are comprised of auditory
gammatone filters rather than Butterworth filters. The proposed
solution to be used in this project takes the form of a program de-
signed in MATLAB and consists of two main parts: the analysis
tool and the adaption tool, see figure 1. The analysis tool is used
to examine the incoming audio and compare the amplitudes of fre-
quency bands to a predefined threshold. It can then generate an
adapted amplitude envelope for each frequency band based on the
input amplitude. The adaption tool uses the amplitude envelopes
generated by the analysis tool to adjust the amplitude envelopes of
the frequency bands. Presumably, the audio broadcast on televi-
sion or streaming services has been mixed such that the important
elements are audible to people with normal hearing. Furthermore,
if a person with normal hearing cannot tell when some of the au-
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Figure 1: Signal Flow Chart for the Analysis and Adaption Tool, see sections 2.1-2.3.

dio has been removed, then it could be deemed unimportant to the
listening experience. Using this logic, the important elements of
the audio can be identified by muting parts of the dynamic range
and testing to see if normal hearing people can hear a difference.

2.1. Analysis Tool

To analyse the audio from “the ear’s perspective”, we use a gam-
matone auditory filterbank. The analysis tool takes an audio file as
the input and filters it into frequency bands using the gammatone
filterbank. This auditory filter bank is comprised of n band-pass
gammatone filters, which are modelled on the filters found in the
human cochlea [9]. This means that the audio is separated in the
program with similar frequency resolution to the cochlea. After
filtering the audio into frequency bands, the amplitude envelope
of each frequency band is calculated in order to compare it to the
given threshold.

2.1.1. Filter Bank

The gammatone filters used in the filterbank are modelled on the
human cochlea, designed by Hohmann [9] and implemented us-
ing the Auditory Modelling Tool- box 1.2 [10]. The bandwidths
of these filters are based on experimental data (Equivalent Rect-
angular Bandwidth, ERBs). These bandwidths are closely related
to the critical bandwidth of the auditory filters found in the hu-
man cochlea and were measured using the notched noise method
[11]. The notched noise method involves measuring the audibility
threshold of a signal in a masker, where the signal is a fixed fre-
quency sine tone, and the masker is noise with a notch centred on
the signal frequency. The ERB of a filter can approximated with
the following formula, see equation 1 [12]. To avoid phase delays

and group delays, the audio is filtered twice, the second filtering
being time reversed such that any phase or group delays caused by
the filters are corrected. To maintain the bandwidths of the original
filterbank, the bandwidths of the original filters are doubled.

ERB(f) = 0.108f + 24.7 (1)

The filterbank takes a mono input and has parallel outputs, one
for each of n filters. Each of the frequency bands can be denoted
by the centre frequency (fc) of the gammatone filter used to create
them.

2.1.2. Amplitude Envelope Measurement

The amplitude envelope of each frequency band is calculated to
provide a means of comparing the input signal to the normal hear-
ing (NH) audibility thresholds. The amplitude envelope of each
channel is measured here using the Hilbert transform. This is an
efficient way to measure the amplitude envelope for signals resem-
bling sinusoids as used in [13], [14], and [15].

2.1.3. Low Pass Filtering

The fastest amplitude modulations from the output of the Hilbert
transform were removed by a low-pass filter. As seen in Figure
2, the magnitude of the Hilbert transform contains the overall am-
plitude envelope of the input signal and a rectified version of the
temporal fine structure. The low pass filter reduces all frequencies
over half the bandwidth of the frequency band leaving a smoother
amplitude envelope for the fitting algorithm to compare the input
signal to the given threshold.
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Figure 2: Amplitude Rectification Using Hilbert Transform

2.2. Binary Mask

To test what of the audio above the threshold of audibility is per-
ceived by a person with normal hearing, the smooth binary algo-
rithm was created. Inspired by binary masking used in image pro-
cessing, as used in [16], the objective is to superimpose a mask
of ones and zeros onto the audio such that each amplitude below
a given threshold is assigned the value zero and each amplitude
above the threshold is assigned the value one. Each amplitude
with an assigned value of zero can then be muted. By moving
this threshold and testing whether a perceptual difference has been
detected, the “threshold of perceptual significance” (TPS) can be
measured. This TPS is the point above the threshold of audibility
at which changes to the audio are perceptually significant. The au-
dio below the measured TPS can be permanently muted resulting
in faster computation times without changing the perception of the
audio in its original form.

Some considerations taken when designing the binary masks
were the naturally fast amplitude modulations, measurement of the
“threshold of perceptual significance”, and ensuring no latency is
present.

Figure 3: Plots Showing Amplitude Ramping to Smooth Binary
Mask Function

The binary mask has fast amplitude modulation by nature;
however, this leads to the creation of artifacts which are not de-
sirable when processing audio. To remedy this, linear amplitude
ramping was employed to smooth the binary mask envelope and
prevent extremely fast changes in amplitude (see Figure 3). The
ramping is configured in such a way that should an attack and re-
lease ramp overlap, the maximum of the two ramps is chosen (see
Figure 4).

Figure 4: Binary Mask Ramps with Overlapping Release and At-
tack

Due to the fact that humans don’t perceive loudness on a linear
scale, the binary mask is measured in phons. This means that the
threshold for the binary mask algorithm will be situated at the same
perceptual loudness level across all frequencies using the ISO 226
Equal-Loudness-Level Contour model by Jeff Tackett [17].

2.3. Adaption Tool

The adaption tool performs a Fast Fourier Transform (FFT) on the
input audio file to break it up into its comprising sine tones which
can be described in terms of frequency, magnitude, and phase. It
then performs a “Slow Inverse Fourier Transform” (SIFT). This
SIFT re-synthesises the audio by synthesising each of the com-
prising sine tones individually, allowing for fine amplitude con-
trol at each frequency over time. This fine control is achieved be-
cause each sine wave can be discretely amplitude modulated up to
speeds matching the sample rate of the audio. The binary mask
calculated previously is used to alter the amplitude of the input
audio frequency components. It should be noted that to maintain
intelligibility of speech, the amplitude modulation should not be
excessively fast such that the speech amplitude envelopes are dis-
torted. Similarly, large changes should not be made to consecutive
frequencies to prevent artefacts such as ringing. The formula for
the SIFT is as seen in Equation 2:

y =
1

N

N∑

n=0

x[fc, n]e
−2πjfn.g[fc, n] (2)

where g is the binary mask, N is the total number of samples, x is
the input sample, and y is the output sample.
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3. METHODS

3.1. Participants

Participants for the experiment were recruited through email. Five
participants with normal hearing were recruited (three male and
two female), aged from 20–24, with a mean age of 22. To confirm
their normal hearing, an audiometer was used to test 250 Hz–8
kHz down to 10 phons.

3.2. Comparison Procedure

For the duration of the experiment, the participant was seated in
a sound-treated booth with a window. A monitor was placed out-
side the window, visible to the participant. The participants were
given verbal instruction before the trials. The experiment took the
form of a series of two-alternate forced choice trials. In each trial,
the participant was presented two clips of audio through a pair of
Sennheiser HD600 headphones, each lasting three seconds: one
with binary mask processing, which will be referred to as pro-
cessed; and one without binary mask processing, which will be
referred to as unprocessed. The duration of the onset and offset
smoothing ramps for the binary were set to 10ms and 50ms respec-
tively. Both signals were low-pass filtered as the ISO 226 model
used does not support thresholds above 12.5kHz. The processed
and unprocessed clips presented in each trial were not necessar-
ily from the same source. The order of the processed and unpro-
cessed clips for each trial was randomised. The processed audio
clips were selected randomly from a pool of audio clips for a given
threshold measured in phons. The thresholds were spaced equally
in intervals of five phons (5–35 phons). The participant was asked
to select which of the two audio clips sounded more processed us-
ing ‘[1]’and ‘[2]’on a computer keyboard to select the first and
second audio clips respectively. Their response to each trial was
recorded.

3.3. Stimuli

The audio was sourced from BBC iPlayer. Seven television show
genres were chosen from the iPlayer menu (Drama, News, Music,
Documentary, Sport, Comedy, and Entertainment) and two tele-
vision programs were picked at random from each genre using a
random number generator (with the exception of Drama, for which
only one was chosen). Three audio clips were recorded from each
television show with randomised start times, each lasting five min-
utes. The audio used in the experiment was generated using these
five-minute-long excerpts. For each of the excerpts a clip of three
seconds in length was extracted with a randomised start time. This
was repeated for each threshold level in phons to provide a bank
of 39 audio clips per threshold level.

4. RESULTS

Figure 5 shows the averaged participant responses fitted to a cu-
mulative normal distribution model. As hypothesised, the TPS is
above the auditory thresholds, at approximately 17.1 phons based
on a 75% threshold. The lowest level of performance at 51.7% in-
dicates little noticeable difference between the processed and un-
processed clips. The peak performance at 92% indicates an obvi-
ous difference between the processed and unprocessed clips.

Figure 5: The average accuracy of responses across all partic-
ipants (red circles) and a cumulative normal curve fitted by the
least-squares method (blue line).

5. DISCUSSION

The results are consistent with the hypothesis that the spectro-
temporal regions with less power can often be removed with little
detriment to the listening experience. This suggests that the whole
of the dynamic range does not need to be preserved at all times.
Should this be the case, dynamic range compression algorithms
used to adapt audio for people with hearing loss are not required
to be as aggressive, which in turn reduces the risk of introducing
audible artifacts.

In the current implementation of this experiment, a presenta-
tion level of 60 dB(A) was used, which returned a TPS of 17.1
phons however, it is not clear whether varying the presentation
level would change the TPS. This could be investigated directly
in a future experiment. Measuring the TPS for a range of presen-
tation levels would potentially allow for automation of the binary
mask threshold based on the presentation level, i.e. the TV volume
in a real-world scenario.

When watching TV in real-world conditions, there would be
more background noise and other distractions present compared to
the experiment conditions. This could mean that the TPS may, in
fact, be higher than shown in the results for real-world scenarios.
With the absence of this background noise, it is possible that the
participants are able to identify the processed clips due to the ad-
dition of silence as opposed to the absence of important elements
of audio.

6. CONCLUSION

The focus of this experiment was to identify the key elements to
people with normal hearing of television audio by muting parts of
the audio hypothesised to be unimportant to the listening experi-
ence. The results show that at a presentation level of 60 dB(A),
most audio under 10 phons could potentially be muted without af-
fecting the listening experience. This means that not all of the
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dynamic range needs to be preserved at all times, allowing for less
aggressive dynamic range compression algorithms, and therefore
a reduced risk of introducing audible artifacts. Potential areas of
future research have been highlighted in section 5 to improve the
binary mask algorithm’s flexibility in terms of presentation level.
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ABSTRACT

Measuring the auditory lateralization elicited by interaural time
difference (ITD) cues involves the estimation of a psychometric
function (PF). The shape of this function usually follows from
the analysis of the subjective data and models the probability of
correctly localizing the angular position of a sound source. The
present study describes and evaluates a procedure for progressively
fitting a PF, using Gaussian process classification of the subjective
responses produced during a binary decision experiment. The pro-
cess refines adaptively an approximated PF, following Bayesian
inference. At each trial, it suggests the most informative audi-
tory stimulus for function refinement according to Bayesian active
learning by disagreement (BALD) mutual information. In this pa-
per, the procedure was modified to accommodate two-alternative
forced choice (2AFC) experimental methods and then was com-
pared with a standard adaptive “three-down, one-up” staircase pro-
cedure. Our process approximates the average threshold ITD 79.4%
correct level of lateralization with a mean accuracy increase of
8.9% over the Weibull function fitted on the data of the same test.
The final accuracy for the Just Noticeable Difference (JND) in ITD
is achieved with only 37.6% of the trials needed by a standard lat-
eralization test.

1. INTRODUCTION

The ability to localize sound sources is of considerable importance
for humans and animals; it determines the direction of objects to
be sought or avoided and the appropriate direction to direct visual
attention. Although auditory localization may rely on the sound
arriving at one ear, the most reliable localization cues depend on
the acoustic waves arriving at both ears [1]. The difference be-
tween the two paths from a sound source to the ears creates an
interaural time difference (ITD). In parallel, an interaural level dif-
ference (ILD) occurs due to the head shadow on the contralateral
ear. In humans, the cue that enables sound localization most ac-
curately (up to 1 degree in azimuth) is the ITD [2]. Experiments
capable of isolating ITD used pairs of “on the ear” stimulators,
namely headphones. Early headphone-based tests reported ITD
detection thresholds at microsecond scale, that is, orders of mag-
nitude smaller than all other sensory modalities were able to de-
tect [3].

When headphones are worn, the sound source image is local-
ized inside the head. The term “lateralization” was then adopted

Copyright: © 2023 Andrea Gulli, Federico Fontana et al. This is an open-access arti-
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to describe the apparent sound source position inside the head. On
the other hand, headphones allow for precise control of interaural
differences and do not generate room echoes. Therefore, lateral-
ization were preferred to localization tests when studying sound
source perception inside the laboratory [4]. Since the 1950s, accu-
rate studies have been systematically conducted to determine ITD
thresholds [5]. The lowest were reported to be close to 10 µs.
However, the participants’ hearing and training level necessary to
achieve those thresholds have become clear only recently, along
with the stimuli and measurement technique required for measur-
ing them [6]. Specifically, the stimulus that produced the lowest
ITD threshold was Gaussian noise, bandpass filtered from 20 to
1400 Hz and presented at a sound pressure level of 70 dB. The
most accurate method was a two-interval procedure with an inter-
stimulus interval of 50 ms. The mean ITD threshold in this con-
dition at the 75% corrected level was 6.9 µs for trained listeners,
and 18.1 µs for untrained listeners. However, other studies report
higher ITD values as normal hearing thresholds, i.e., with mean
equal to 263 µs and standard deviation equal to 112 µs [7].

We present an accelerated procedure for reliably determining
individual lateralization thresholds, and compare it to standard ap-
proaches to subjective ITD measurement. We will focus on un-
trained participants with the goal of significantly shortening the
test sessions. This feature would be desirable especially when spe-
cific groups of users are targeted, such as young patients whose
binaural acuity needs to be tested. Moreover, the same procedure
can quickly calibrate and individualize immersive audio technolo-
gies for the most diverse applications and virtual environments [8].

1.1. Psychometric function estimation

A psychometric function (PF) maps the subjective performance
during a perceptual task against a stimulus magnitude, such as
brightness or other intensity levels. Performance is measured as
the percentage of correct responses, or responses where the partic-
ipant was able to detect the stimulus. Ideally, a PF is estimated at
informative sample points on a continuous scale. The level set esti-
mation (LSE) problem consists of identifying the regions where an
initially unknown PF f(x) lies above or below a particular thresh-
old ϑ. In general, a level set S is the set on which f exceeds some
critical value (e.g., S = x : f(x) > ϑ). Efficient LSE is an ac-
tive learning problem [9], involving techniques that use surrogate
models to perform active sampling [10]. The active learning con-
figuration consists of the definition of an acquisition function that
classifies the data points to be labeled according to the current state
of the model and a hand-designed information measure to be maxi-
mized [11]. In Bayesian active-learning (BAL), the basic idea is to
define a statistical model and then tune its parameters in due data
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collection. Typically, the model is initialized with a weakly in-
formative prior distribution which expresses the uncertainty about
these parameters before the start of the experiment. Then, recorded
data provide likelihood terms to be combined with the prior in a
posterior distribution, reflecting the beliefs about the parameters
from the data collected so far. The stimulus for every subsequent
trial is selected so as to maximize some utility measure that is inte-
grated with the current posterior. One of the first BAL procedures
in psychophysics that used Bayesian principles for both modeling
the response and choosing the parameters for the next trial [12] was
designed to classify a subject into one of nine audiometric groups,
and was then validated with numerical simulations. The stimulus
for the subsequent trial was chosen to maximize the mutual infor-
mation between the current and the following unknown estimate
by selecting it with the least expected entropy [13]. Selection was
made by computing the posterior probabilities across all candidate
stimuli for the next trial.

A general BAL procedure for classification and preference
tasks that uses Gaussian Processes (GP) [14] for estimating a sub-
jective response is called Bayesian Active Learning by Disagree-
ment (BALD) [15]. These are the approximation technique and the
acquisition function employed in this study. GP-based Bayesian
inference has been recently employed in machine learning appli-
cations across various disciplines [16], and specifically in audiol-
ogy [17, 18]. GPs in fact incorporate prior hypotheses about the
mean, the smoothness between class boundaries, and the covari-
ance between data points. BALD active learning with GP clas-
sification (GPC) has already been used in auditory applications,
e.g. for optimal setting of a hearing aid [19], and for determining
audiograms [20, 21], equal-loudness contours [22], and psycho-
metric functions [23]. However, it has never been employed in the
measurement of ITD thresholds.

This paper presents: Sec. 2 the mathematical background of
GP and BALD classification; Sec. 3 the characteristics of the spe-
cific model; Sec. 4 the test determining individual lateralization
thresholds with BALD; Sec. 5 the results, and Sec. 6 their discus-
sion. Sec. 7 concludes the paper. As we will see from our results,
GPC with active learning is a valid approximation for the PF, with
a RMSE computed on the whole test set which is smaller than 10%
concerning the conventional Weibull fitting [24]; it achieves sim-
ilar performances as the default procedure (mean error equal to
5.1 µs) by requiring only 37.6% of the trials otherwise needed by
the standard procedure.

2. THEORETICAL BAKGROUND

2.1. Gaussian Processes Classification

Let f : R → R be a latent function on an arbitrary input space
X. A GP is a convenient technique for encoding prior knowledge
about f that can be later updated via Bayesian inference in light of
the observed data. A GP is a collection of random variables, any
finite subset of which jointly forms a Gaussian distribution. There-
fore, a GP is a particular case of a stochastic process. Like the mul-
tivariate Gaussian distribution, a GP is completely specified by its
first two moments: a mean function µ(x) and a positive semidef-
inite covariance function K(x,x′). The mean function expresses
the central tendency of the latent function, while the covariance
function accounts for its correlation structure. Given µ and K, the
latent function f can be endowed with a GP prior distribution

p(f) = GP
(
µ(x),K(x,x′)

)
. (1)

Given a GP prior on f and some observations over the input space,
a prediction can be performed about the behavior of f for unob-
served inputs using Bayesian inference, computed by Bayes’ rule:

posterior =
likelihood× prior

marginal likelihood
.

According to Bayes’ theorem, the joint posterior of the latent func-
tion at training and test inputs given the training observations is

p(f , f∗|X,y, x∗) = p(f , f∗|X, x∗)p(y|f)
p(y|X)

, (2)

where f(x∗) = f∗, and f = f(X). The predictive posterior dis-
tribution can be determined by marginalizing out the training set
latent variables and substituting in (2),

p(f∗|X,y, x∗) =
∫
p(f , f∗|X,y, x∗)df

=
1

p(y|X)

∫
p(y|f)p(f , f∗|X, x∗)df ,

(3)

and by definition of the GP, the joint probability p(f , f∗|X, x∗)
is a multivariate Gaussian. With the posterior, we can compute
a probabilistic prediction of the latent function f at the new input
locations X∗, taking into consideration the previously observed
samples (y,X). The posterior mean and the posterior covariance
on f provide information about the updated beliefs and the remain-
ing uncertainty about the latent function. The likelihood p(y|f)
describes the relationship between the latent function values f and
the observations y at the training inputs X.

The focus of this study is one-dimensional binary classifica-
tion, where observed outputs can only assume two values: 1 (suc-
cess) or 0 (failure). The latent function f is not directly observed
but is instead a hidden function, where larger values of f generate
higher probabilities of success. To obtain the probabilistic distribu-
tion p(y = 1|f), f is “squashed” using a monotonically increasing
sigmoid function Φ to the range [0,1]. For a binary observation yi
associated with an input xi ∈ X,

p(yi = 1|f) = Φ(fi) = Φ (f(xi)) . (4)

One largely used and convenient choice of Φ to deal with binary
classification problems is the inverse-logit, also known as Bernoulli-
logistic function likelihood, given by

Φ(fi) =
1√
2π

∫ fi

−∞
e−

t2

2 dt, (5)

and assuming that the labels y = (y1, . . . , yN ) of the N training
data points are conditional independent if (latent) f are known,

p(y|f) =
N∏

i=1

p(yi|f(xi)). (6)

The predictive posterior distribution in (3) with (6) now becomes

p(f∗|X,y, x∗) = 1

p(y|X)

∫ N∏

i=1

Φ(fi)p(f , f∗|X, x∗)df . (7)

From (7), the probabilistic prediction of class identity for a test
observation y∗ can be computed as:

p(y∗ = 1|X,y, x∗) =
∫
p(y∗ = 1|f∗)p(f∗|X,y, x∗)df∗

=

∫
Φ(f∗)p(f∗|X,y, x∗)df∗.

(8)
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The non-Gaussian likelihood of (5) for the classification frame-
work given by (4) makes the integrals in (7) and (8) analytically
intractable. Dropping the conditioning on the training and test data
points for ease of notation and applying the reverse chain rule, we
have

p(f , f∗|y) = p(f∗|f)p(f |y). (9)

The first term of (9) can be computed by applying the multivari-
ate Gaussian conditional rule to the GP prior, while the second
term can be approximated with variational inference [25]. A mul-
tivariate Gaussian variational distribution q(f) approximating the
posterior p(f |y) is found through the minimization of the Kull-
back–Leibler divergence (KL divergence) [26] KL(q(f)||p(f |y)).
Since this similarity measure is also intractable, the variational ev-
idence lower buond (ELBO) is used as a proxy for the KL diver-
gence minimization:

LELBO = Ep(y,x)

[
Ep(f|u,x)q(u) [log p(y | f)]

]

− KL [q(u)∥p(u)]

≈
N∑

i=1

Eq(fi) [log p(yi | fi)]− KL [q(u)∥p(u)] ,
(10)

where N is the number of data points, q(u) is the Gaussian vari-
ational distribution computed at the inducing function values u,
q(fi) is the marginal of p(fi|u, xi)q(u), p(u) is the GP prior dis-
tribution for the inducing function values. The ELBO is the lower
bound of the log marginal likelihood log(p(y)), also called model
evidence, and it is an expression containing all the parameters
defining the GP prior and the variational distribution; thus, gra-
dient descent can be used to maximize the ELBO concerning the
model parameters to find concrete values for those parameters. In
practice, the negation of (10) will be used as the “loss” function to
determine the “hyperparameters” of the GP prior distribution.

2.2. Bayesian Active Learning by Disagreement

The fundamental principle of active learning requires that a model
actively selects input queries xi ∈ X and observes the system’s re-
sponse yi, rather than passively collecting (xi, yi) pairs. The goal
of information theoretic active learning is to reduce the number of
possible hypotheses in the fastest way, i.e., to minimize the un-
certainty about the parameters using Shannon’s entropy [27]. The
objective is to seek the data point x that maximizes the decrease in
expected posterior entropy [15]:

argmax
x

H[θ|D]− E y∼p(y|x,D)[H[θ|D]],

or, equivalently, the point maximizing the conditional mutual in-
formation between the unknown output and the parameters θ, given
a training dataset D:

argmax
x

H[y|x,D]− E θ∼p(θ|D)[H[y|x,θ]].

BALD searches the x for which the model is marginally most un-
certain about y, holding confident individual settings of the model
parameters.

The BALD algorithm for GPC consists of two steps. First, it
applies an approximate inference algorithm for GPCs to obtain the
posterior predictive mean µx,D and variance σ2

x,D for each point
of interest x. Then, it selects a query x that maximizes the mutual

information. The first term can be expressed in terms of the binary
entropy function h:

H[y|x,D] ≈ h
(∫

Φ(fx)N (fx|µx,D, σ
2
x,D)dfx

)

= h




Φ


 µx,D√

σ2
x,D + 1






 ,

(11)

with h(p) = −p log p − (1− p) log(1− p)(p). The second term
E f∼p(f|D)[H[y|x,θ]] can be approximated to

E f∼p(f|D)[H[y|x,θ]] ≈ C√
σ2
x,D + C2

exp

(
− µ2

x,D
2
(
σ2
x,D + C2

)
)
,

where C =
√
π ln 2/2.

3. GPC FOR 2AFC

Finding the most accurate way to approximate the PF describing
lateralization ability is the main objective of this work. A particu-
larly important value in two alternative forced choice (2AFC) tests
is the point at which the PF assumes a certain percentage, typically
70.7%, 75%, 76%, or 79.4% [28], with which the ITD threshold
is associated. In these psychometric tests, the probability of as-
signing the correct classification label to a specific stimulus cannot
be less than 50%, and the maximum probability must consider a
percentage of errors given by a lapse rate close to zero [29].For
these reasons the Gaussian-modeled latent function is squashed
into the interval [0.5, 1]. The mean and covariance functions of
the GP prior given by (1) are respectively set to a constant func-
tion µ(x) = µ, and the radial basis function

K(x, x′) = exp

(
−1

2
(x− x′)⊤θ−2(x− x′)

)
, (12)

where θ is a length scale parameter. The hyperparameters’ vector
θ = (µ, θ) is determined during the training, i.e., during the min-
imization of the negative log likelihood given by the negation of
the variational ELBO in (10). The variational ELBO is modeled to
approximate the likelihood once it is scaled to the restricted prob-
ability values. This likelihood is computed as

Φ
(
C′) = 1

4

(
1 + erf

(
C′
√
2

))
+

1

2
, (13)

where C′ = µx,D/
√
σ2
x,D + 1, µx,D and σ2

x,D are respectively
the mean and the variance of the Gaussian-modeled latent func-
tion, and erf is the error function:

erf(z) =
2√
π

∫ z

0

exp−t2dt. (14)

To take this scaling into account while computing the acquisition
function of the BALD procedure, we rescale the likelihood be-
tween 0 and 1 at the Shannon’s entropy input. This way, a max-
imum entropy starting around the 75% probability point is ob-
tained.
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Figure 1: Test protocol and experimental flow.

4. THE EXPERIMENT ON ITD DISCRIMINATION
THRESHOLDS

4.1. Participants

Seventeen young adults (5 male and 12 female, mean age: 31.82
± 6.38 years) reporting no hearing deficiencies participated in the
experiment. Twelve had audiometric thresholds equal to or less
than 20 dB hearing level (HL) at octave-spaced frequencies from
125 to 8000 Hz. For those five participants without audiometry,
the answers to Sanders’ questionnaire 1 reported no hearing diffi-
culties. One participant was excluded from the experiment since
reporting to be unable to concentrate sufficiently during the test.
All participants reported no prior experience with a binaural hear-
ing test.

4.2. Acoustic Stimulus and Apparatus

Narrowband noise was synthesized at 10 MHz sampling rate, using
the Python TorchAudio software package [30]. Band-pass filtering
was performed in the frequency domain so as to limit the noise
frequency band to the [20–1400] Hz range [6]. The amplitude level
was calibrated to 70 ± 1 dB SPL using an NTi Audio XL2 sound
level meter. After temporal gating, a short noise burst lasting 0.5 s
was created having a 50 ms squared-cosine onset and offset.

A burst sequence was formed by intertwining identical noise
bursts with silence lasting 0.2 s. The stimulus was formed by pair-
ing a delayed version of this sequence and a new version of the
same sequence, obtained by zero-padding the original until reach-
ing the same length as the former. The delay could be varied so as

1https://www.aooi.it/contents/attachment/c4/ref121.pdf, a validated
questionnaire to evaluate the actual level of communication in various sit-
uations, e.g., at home or in a social environment, accessed Feb 28, 2023.

to define a desired ITD = TR − TL = T − (−T ) = 2T :

RIGHT

T︷ ︸︸ ︷
0, . . . , 0, burst,

0.2 s︷ ︸︸ ︷
0, . . . . . . , 0, burst,

padding︷ ︸︸ ︷
0, . . . , 0

LEFT burst, 0, . . . , 0︸ ︷︷ ︸
padding

, 0, . . . . . . , 0︸ ︷︷ ︸
0.2 s

, 0, . . . , 0︸ ︷︷ ︸
T

, burst
. (15)

The stimulus was presented on two audio channels through a pair
of AKG K240 MKII semi-open headphones, whose frequency re-
sponse was flattened using the AutoEQ software2. Sounds were
reproduced by a 13” MacBook Pro M2 laptop computer after sam-
pling them down to 96 kHz, through interpolation with a sync
function windowed by a Hann window. This sampling rate was
the highest available in the laptop’s audio interface, in practice
limiting the lowest ITD to 10 µs. A GUI enabling attendance to
the task was realized in HTML, CSS, and JavaScript programming
languages as a custom Flask web application. The test took place
in a room with background noise equal to 20 ± 2.5 dB SPL.

4.3. Task and Experimental Protocol

The experimental protocol is illustrated in Fig. 1. During the test,
each participant was sitting in front of the laptop computer running
the GUI. At each trial, the task consisted of listening to two sub-
sequent and randomly balanced stimuli, and then choosing which
sound was the rightmost, by selecting it with the mouse on the
computer screen. At the beginning of each session, five pilot tri-
als were presented having ITD levels equal to 240, 200, 160, 120,
and 80 µs. Correct guesses in all such trials were necessary for
the measurements to start in correspondence with the sixth trial. A
session lasted approximately 10 minutes.

The protocol was designed for determining the PF 79.4% thresh-
old, describing the subjective lateralization performance as a func-
tion of T defined in (15). The target (i.e., rightmost) stimulus

2https://githubq.com/jaakkopasanen/AutoEq, accessed Feb 28, 2023.
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was lateralized twice as much as a nominal ITD, and the refer-
ence source (i.e., leftmost) stimulus was instead lateralized with
an opposite ITD. Hence, an ITD threshold equal to 2T means that
a participant discriminated the target ITD by Tµs from the refer-
ence ITD of −Tµs. The presentation of symmetric ITDs mini-
mizes hemispheric effects, and ensures that participants could not
perform the task based on perceived changes in interaural coher-
ence [28].

The protocol implemented three different procedures:

• adaptive two-interval 2AFC (2I-2AFC hereafter),

• GPC with BALD active learning (BALD hereafter),

• GPC with random acquisition function (RANDOM here-
after).

Accordingly, every session included three series of trials respec-
tively implementing such procedures in a randomly balanced or-
der. When GPC was used, thus enabling active learning and ran-
dom selection of ITDs, the number of trials was empirically set to
15. We compared these three procedures to observe the efficacy
of GPC in ITD threshold estimation and the contribution of the
BALD algorithm. In the standard 2I-2AFC procedure, individual
thresholds were computed using the adaptive track reversal tech-
nique or a Weibull fitting of the participants’ answers. We con-
sider this procedure as a reference since it is commonly used to
determine JND thresholds for many types of stimuli, moreover it
can be designed to converge on a desired percentage. Conversely,
the GPC approximation was compared to a Weibull fitting of the
data collected using the other two procedures. Reversals were in-
cluded in the comparison even though they are known to have high
bias and smaller precision [31], considering their difference from a
Weibull fitting in the same manner as it happens for the upper limit
of a reasonable estimate. The RANDOM procedure was imple-
mented to test the GPC technique separately from active learning,
i.e., to analyze the GPC on training points other than highly infor-
mative data points. Assuming a participant performs consistently
across all tests, the RANDOM procedure will converge, but in a
variable number of iterations dependent on the samples’ random
distribution.

4.3.1. Default 2I-2AFC

An adaptive “three-down, one-up” staircase procedure was chosen,
i.e., T was decreased after three correct responses and increased
after one wrong response. Theoretically this procedure estimates
the 79.4% correct level on the PF [32]. The corresponding series
of trials started with an ITD threshold that was above the threshold
estimated during the pilot series, equal to 80 µs, i.e., presenting
stimuli with T = 40 µs. T step-size was initially a factor of 2 and
then reduced to 1.414 and 1.189 after the first and second “down-
up reversal”, respectively. This series terminated after six reversals
at the smallest step size. T was varied by logarithmic steps [32].

Psychometric functions were estimated using a parametric fit
of a Weibull function to all responses with a non-linear least squares
optimization:

Ψ(x; γ, λ) = γ +
(1− γ − λ)

2

(
1 + erf

(
x− µΨ√
2 · σ2

Ψ

))
, (16)

where γ is the guess rate (i.e., 0.5), λ is the miss rate in the range
[0.01,0.05], and erf is the error function of (14).

4.3.2. GPC

The GPC started with a training set of 20 points: 10 points between
0 µs and 9 µs, all labeled as wrong answers, and 10 points between
91 µs and 100 µs, all labeled as correct answers. T corresponding
to 79.4% of correct answers was found to allow the fitted curve to
reach the closest value to that percentage up to 1 µs. In Fig. 2, the
two plots respectively represent the predictions of the GPC and
Weibull fit, on a test set consisting of 100 equally-spaced points
between 1 and 100 µs. Both identify the 79.4% correct answers
point with a difference equal to 8 µs.

The GPC training, i.e., the hyperparameters’ vector θ opti-
mization, was performed on the normalized data (mean equal to
0 and standard deviation equal to 1) and furthermore constrained
to search only positive values. In this regard, the Adam opti-
mizer [33] was employed with a learning rate equal to 0.1 and
a number of iterations set to 300. The GPC was implemented in
GPyTorch [34], a software platform for scalable GP inference built
on PyTorch.

4.3.3. BALD

The BALD acquisition function was computed at each step to de-
termine the stimulus for the next trial iteratively. T of the binaural
stimulus was randomly selected among all possible points in the
pool, achieving mutual information levels higher than 90% of its
maximum value in that set. The initial pool was made to corre-
spond to the test set, i.e., the 100 points between 1 and 100 µs.
Once a sample was labeled, it was removed from the pool so that
each point was labeled once. After the first random selection, a
new sample was chosen from that restricted subset of the pool be-
ing at least 5 µs far from every previously selected sample. If no
sample satisfied this condition, a random choice was made from
the samples achieving mutual information levels higher than 90%
of its maximum value in the current pool’s subset. The first T
value was randomly drawn between 46 µs and 64 µs.

5. RESULTS

The number of trials during the 2I-2AFC procedure had a mean
value across participants equal to 39.94 and a standard deviation

Figure 2: Starting training data for the GPC (black dots) and pre-
dictions of both the GPC (red line) and the fitted Weibull function
(W, blue line). The dotted horizontal line indicates the 79.4% level
of correct answers.
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Table 1: Individual 79.4% thresholds and means (µ) and standard
deviations (σ) across participants for each technique. The “Rev”
column lists T values found with the reversals procedure.

# @ 79.4% (µs)
2I-2AFC BALD RANDOM
W Rev W GPC W GPC

1 10 14.1 6 1 48 34
2 57 67.2 54 54 56 43
3 25 33.6 23 19 31 22
4 14 11.9 16 10 1 10
5 22 33.6 34 26 2 17
6 39 40.0 57 41 16 13
7 30 33.6 35 23 16 8
8 39 47.6 38 32 57 39
9 46 67.2 48 53 52 52

10 23 28.3 26 22 25 23
11 40 47.6 38 32 54 44
12 10 14.1 19 17 20 15
13 58 67.3 52 55 47 30
14 21 23.8 23 18 20 15
15 39 47.6 51 36 57 66
16 45 47.6 55 49 38 22
17 31 33.6 29 23 39 39
µ 32.3 38.8 35.5 30.1 34.1 28.9
σ 14.4 17.4 15.0 15.5 18.7 15.9

equal to 5.70. The correct percentage had a mean equal to 80.20%
and standard deviation equal to 3.85%. The repeated measures
ANOVA test conducted on the number of trials asserted that the
difference between the averages is big enough to be statistically
significant (p < 0.001), and the magnitude of the difference be-
tween the averages is large (effect size η > 0.9). Table 1 shows
the 79.4% ITDs for every test procedure, computed with the two
respective aforementioned techniques. Mauchly’s test of spheric-
ity indicated that the assumption of sphericity had been violated,
both for the individual T values (χ2(14) = 74.11, p < 0.001),
and their logarithms (χ2(14) = 92.848, p < 0.001), therefore a
Greenhouse-Geisser correlation was used (respectively, ϵ = 0.321,
and ϵ = 0.338). The repeated measures ANOVA test did not re-
veal a significant main effect of either the fitting technique, or the
testing procedure (p > 0.1). The means and standard deviations
across participants of the differences of the 79.4% threshold points
are shown in Table 2, along with their absolute values, between
approximation techniques and procedures. The former reveals the
tendency of the approximation to return an optimistic rather than
pessimistic estimate of the ITD threshold, while the latter gives a
measure of the divergence between the two approximations.

The comparison between the PF curve found with the Weibull
function fitted to the reference test procedure data and the GPC,
and the same Weibull fitting on the BALD and the random sam-
pling procedures has been made using the root mean square er-
ror (RMSE). The lowest RMSE was found between the Weibull
fittings in the reference test procedure and the BALD procedure
(µ = 6.39%, σ = 2.44%), followed by the GPC in the same
test procedure (µ = 7.10%, σ = 2.73%). Both the approxi-
mation techniques in the random procedure have a mean RMSE
above 10% (Weibull: µ = 10.81%, σ = 5.20%, GPC: µ =
11.10%, σ = 4.65%). Figure 3 displays the data of a single in-
dividual collected in a complete test session.

Table 2: Means (µ) and standard deviations (σ) of the differences
(∆) and the absolute values of the differences (|∆|) of the 79.4%
T values found in the three procedures with the three techniques.
Each approximation was compared with the one provided by the
Weibull fitting on the same data, as well as with the approximation
computed by that fitting on the reference 2I-2AFC test procedure
(“WREF”).

Procedure Methods ∆ (µs) |∆| (µs)
µ σ µ σ

2I-2AFC Rev, W 6.5 5.1 6.7 4.8
BALD GPC, WREF -2.2 5.1 5.1 2.4

W, WREF 3.2 6.6 5.6 4.7
GPC, W -5.5 5.3 6.4 4.1

RANDOM GPC, WREF -3.4 15.4 12.1 10.1
W, WREF 1.8 15.2 12.4 9.1
GPC, W -5.1 9.3 9.0 5.7

6. DISCUSSION

The mean values displayed in Table 1 are in line with the thresh-
olds found in literature [7]. Particularly in our experiment, in
which stimuli with a sampling frequency below 100 KHz were re-
produced, no ITDs smaller than 10 µs could be presented to the lis-
teners. However, our participants were not trained for the specific
task, and hence they were not expected to perceive ITD thresh-
olds below this value. Conversely, it was demonstrated that hu-
mans can improve their lateralization skills after a dedicated train-
ing [35, 28].

The ITD is typically allowed to vary on a logarithmic scale
in the lateralization literature, and data analysis is typically done
using geometric means and standard deviation [36, 28]. However,
alternative methodologies [35, 37] employ different test conditions
in terms of the stimuli presented to the participant, and the use of
logarithmic scaling allowed them to find one individual psychome-
tric curve. Second, the goal of those experiments was to determine
the smallest perceivable ITD, hence the use of the geometric mean
and standard deviation to “zoom in” on the end scale of that mea-
sure. On the other hand, we want to determine the individual ITD
thresholds with the same accuracy for any level of lateralization
ability, particularly considering a possible application of the pro-
posed procedure in audiology tests. Moreover, we expect that the
same individual would perform similarly in each test because the
stimulus and the task were kept unchanged during the whole ses-
sion. Thus, data analysis is performed with an arithmetic mean
and standard deviation.

The differences ∆ in Table 2 reveal that the GPC with the
BALD procedure is on average the closest 79.4% approximation
to the reference 2I-2AFC procedure with the specific Weibull fit-
ting (5.1 µs), providing a mean accuracy increase of 8.9% over the
Weibull function fitted to the same data. This difference has the
lowest standard deviation (2.4 µs). The GPC in the BALD proce-
dure scores second for what concerns the signed difference (−2.2
µs), revealing an optimistic tendency; only the Weibull fitting in
the random test procedure has a smaller one (1.8 µs), however the
former has the lowest standard deviation while the latter has one
among the highest, hence reflecting the prominent role of chance
associated with that test procedure. The standard deviations of the
differences ∆ of the RANDOM procedure reflect the random num-
ber of iterations required by the GPC in that procedure to converge.
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Figure 3: Data of a single individual collected in a complete ses-
sion. The top figure shows the GPC PF fittings and WREF fitting.
In the middle figure are displayed the absolute values of the differ-
ences of the 79.4% threshold points, while the bottom figure shows
the RMSEs between the GPCs and the WREF, computed at ev-
ery iteration step of the three procedures. The Weibull fitting in the
2I-2AFC procedure starts at the third iteration because the covari-
ance of the parameters could not be estimated with less than three
data points.

Even if the analyses of variance did not reveal any statistically sig-
nificant main difference, the BALD selection of samples is also
valuable for the Weibull fitting since both the approximations used
on that procedure’s data have the smallest differences in absolute
value and the least dispersed as well.

The RMSEs reported at the end of Sec. 5 confirm the suitabil-
ity of GPC to approximate the PF in a 2AFC procedure and the
ability of the BALD algorithm to identify optimal sampling; a fur-
ther hint of this is that the standard deviations of the RANDOM
procedure are the highest.

Future work may explore different directions. The proposed
experimental protocol may be employed to test pre-trained indi-
viduals instead of novices and feed the GPC with a logarithmi-
cally transformed input to observe which fit gives the best results.
Another direction may evaluate the BALD procedure without vali-
dated prior knowledge, such as for the hearing impaired, and check
whether the starting training set needs to be modified or if other
approximations are more suitable than GPC. The web application
was chosen to share the test between different institutions and au-
diological research labs, allowing them to conduct the experiment
remotely. In the current study, the application was used on a lo-
cal server. The next step will include a thorough verification for
deployment on a cloud platform.

7. CONCLUSIONS

In this study, a test for the fast determination of the Just Notice-
able Difference in interaural time differences has been proposed
and evaluated. A psychometric function was progressively fitted
using Gaussian process classification of the subjective responses
and Bayesian active learning by disagreement, aptly modified to
accommodate a two-alternative forced choice experimental proce-
dure. The results of its comparison with a standard adaptive “three-
down, one-up” staircase procedure show that our process computes
the closest approximation of the average threshold ITD 79.4% cor-
rect level of lateralization concerning the commonly used Weibull
fitting on the reference test, with a mean accuracy increase of 8.9%
over the Weibull function fitted on the data of the same test. The
final accuracy was achieved with only 37.6% of the trials the stan-
dard adaptive staircase procedure needs.

The data and the web application are freely available at https:
//zenodo.org/record/7808559 and https://github.
com/gullogullo/ITDtest, respectively.
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ABSTRACT

Audio decorrelation is a fundamental building block for immer-
sive audio applications. It has applications in parametric spatial
audio coding, audio upmix, audio sound effects and audio render-
ing for virtual or augmented reality applications. In this paper,
we provide insights into the practical design considerations of an
audio decorrelator on the example of the decorrelator contained
within the upcoming MPEG-I Immersive Audio ISO standard [1].
We describe the desirable properties of such a decorrelator, com-
mon approaches for implementation and our particular technology
choices for the decorrelator used in MPEG-I for rendering sound
sources with homogeneous extent.

1. INTRODUCTION

Historically, many electronic sound effects were designed with the
aim to make the sound of an instrument more prominent or “larger”
[2]. Usually this came at the price of certain originally unintended
changes in sound timbre, modulation or pitch variations. Exam-
ples of such effects are (stereophonic) chorus, flanger, phaser and
the like or, if it comes to multitrack recording, the studio tech-
nique of doubling and layering instrumental parts or voices. How-
ever, these artifacts and characteristic sound changes soon were
welcomed and accepted by producers and artists and artistically
integrated into their art performances.

Opposed to these effects, the aim of audio decorrelation is to as
well as possible avoid any perceivable change in the original audio
signal and provide decorrelated, but subjectively indistinguishable
copies of the original input signal. Such decorrelated signals can
then be used e.g. for spatially distributing multichannel sound or
modeling spatial source extent. The latter denotes the technique
of rendering a sound “larger” than the one emitted from a point
source, but rather as if originating from a spatially extended sound
source. Ideally, this can be accomplished without any unintended
artifacts and timbre changes.

Applications for audio decorrelation are in perceptual coding
of audio (parametric stereo/multichannel codecs) [3][4][5], sub-
jective sound enhancement like audio upmix for channel signals
and ambisonic signals and also for Virtual Reality (VR) and Aug-
mented Reality (AR) rendering applications [6]. VR and AR ren-
dering applications implement 6-Degrees-of-Freedom (6DoF) au-
dio rendering for an interactive listener position in 3-dimensional
space (3DoF) plus allowing for arbitrary listener’s head rotary

Copyright: © 2023 Sascha Disch. This is an open-access article distributed under the

terms of the Creative Commons Attribution 4.0 International License, which permits

unrestricted use, distribution, adaptation, and reproduction in any medium, provided

the original author and source are credited.

movements in all three possible axes (pitch, yaw, roll). One ex-
ample of such a render is the upcoming MPEG-I Immersive Audio
Standard [7] [1][8].

The decorrelation described in this paper has been designed es-
pecially for use within said MPEG-I Immersive Audio standard.
In the MPEG-I renderer, it is utilized for modeling sound sources
with spatial extent [9].

However, the decorrelator is pretty much self-contained and
may find uses in other application including spatially enhanced
audio effects. A combination of decorrelation with well-known
traditional audio effects, eg. echo, delay, panning, tremolo, ap-
pears to be interesting to spatially widen and distribute the raw
effect signal.

2. BACKGROUND

2.1. Previous Work

In the past, there have been a number of publications on audio
signal decorrelation, for instance from Kendall [10], Boueri et al.
[11] and Kermit et al. [12]. A publication of Potard et al. [13] ad-
dressed the rendering of sound source width through decorrelation
and Anemüller et al. [9] have utilized the decorrelator presented in
this paper to model spatially extended sound sources.

Purnhagen et al. [14] proposed audio decorrelation for paramet-
ric spatial audio coding, e.g. so-called parametric stereo. Here, the
decorrelated signal can be seen as the side signal of a Mid/Side
(M/S) representation of a stereo signal whereas the original input
signal is the mid signal. Two decorrelated output signals are then
obtained from the M/S representation by conversion to Left/Right
(L/R) stereo. An adaptive M/S mix can be used to adjust the per-
ceived spatial width.

Newer publications discuss the insight that transients should be
treated differently from other signal parts in decorrelation as sug-
gested by Disch et al. [15] and Penniman [16]. The reasoning
behind this is two-fold: on one hand, unwanted transient disper-
sion shall be avoided as an audible artefact. On the other hand,
convincing multichannel reproduction of spatial width of ambi-
ence signals consisting of dense transient events (e.g. applause) is
not so much achieved through altered waveforms as produced by
common decorrelation techniques, but rather through a widespread
spatial redistribution of these individual transient events by fine
grain temporal panning [15][17].

2.2. Decorrelator Design Criteria

Audio decorrelators for practical real-time applications ideally
have to fulfill the following requirements:

• Reasonable computational complexity
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• Low latency

• Stream processing capability (single pass processing)

A general audio signal may conceptually be composed of a mix-
ture of many different signal classes, like steady tones, transients,
speech, talking or singing voice or noise. All these signal classes
contained in the signal need to be processed by the decorrelator
with little artifacts. So, a well-designed decorrelator should have a
number of perceptual properties:

• Shall preserve sound timbre

• Shall not sound reverberated

• Shall avoid modulations of amplitude or pitch

• Shall allow precise reproduction of transients

• Shall decorrelate mixtures of spatially distributed transient
events (applause, rain drops, fire crackling)

Audio decorrelation processing with reasonable latency and com-
putational complexity is most successfully attempted by applica-
tion of filters [18]. Allpass filters have the useful property to heav-
ily influence the phase of a signal through their phase response
while having a flat magnitude response. Although the signal wave-
form at a given point in time is dissimilar to the original signal, yet
its timbre is still the same. The most simple allpass filter is a pure
delay corresponding to a linear phase response. However, when in-
put signal and filter output are combined, strong regularly spaced
comb-filtering results and timbre colorization occures.

Therefore, allpass filters that sufficiently alter the signal’s phase
in a more uneven way are preferably used, e.g. a combination
of different allpass filters in series or multiple allpass filters in a
nested structure, where the delay element of one allpass filter is
replaced by a second allpass filter. These filters usually have a
long, ringing impulse response that is audible as a reverberant tail
of the processed sound.

For that reason, key to successful audio decorrelation using all-
pass filters is the preservation or the reconstruction of the signal’s
temporal and spectral envelope. Any reverberant tail caused by the
long impulse response of the filters can be suppressed by applica-
tion of envelope shaping and thereby will become inaudible.

The phase response of suitable allpass filters is also likely to
impair transients in the signal mix through phase dispersion, e.g.
for sharp signal onsets like plugged strings or piano tones. A ded-
icated handling of such transients within the decorrelator process-
ing can further improve perceptual quality.

3. DECORRELATOR CONCEPT

3.1. Overview

The MPEG-I decorrelator is designed to match the criteria de-
scribed above with respect to perceptual quality but also with re-
spect to latency, complexity and stream processing capability.

It is based on overlapping DFTs for analysis of the incoming
signal and synthesis of the decorrelated signal. A combination of
a pre-delay and an allpass filter chain is applied in the (subsam-
pled) DFT subband domain followed by a time/Frequency (t/F)
envelope shaper. The envelope shaper applies an individual tem-
poral envelope shaping in the DFT’s spectral subbands. A short
DFT block size of 256 samples at 48kHz sampling rate keeps la-
tency low at ~2.7ms and also enables direct t/F envelope shaping
downstream in DFT domain with sufficient temporal resolution.

A dedicated transient handling excludes transients from being
subjected to phase dispersion. Excluding onset transients from
decorrelation of most point sources (apart from e.g. mono record-
ings of multi-transient mixtures) appears to not impair the overall
listening impression of spatial extent, which is the main task of
the MPEG-I decorrelator. As explained in subsection 2.1, for said
ambient mixtures of spatially distributed transient events, the indi-
vidual transient events would have to be spatially re-distributed by
other techniques e.g. by rapid amplitude panning [15].

Consequently, transient signal blocks are copied unaltered into
the decorrelator output signal. When adding/subtracting original
signal and processed signal in the output assembly stage, a scaling
factor accounts for the addition of these coherent signal parts and
ensures equal level with the incoherently added/subtracted decor-
related signals.

The transient handling entirely aims at an artefact-free repro-
duction of transient onsets. In consequence, relevant time con-
stants of the transient handling are designed to be shorter than
pre-delay/filterdelay such that any traces of delayed and dispersed
transient onsets are excluded from the output signal.

Figure 1 depicts the block diagram of the decorrelator. To create
two decorrelated output signals yOut1 and yOut2 from one input
signal x, the MPEG-I decorrelator performs the steps that are de-
scribed in the following.

Novel contributions - to our best knownledge - of our new
decorrelator design are the application of low order Schroeder all-
pass filters in the subsampled DFT domain on complex spectral
subband signals, the transient handling functionality and the com-
putationally efficient co-use of the DFT for subband filtering and
subband envelope estimation and shaping.

3.2. Input Buffering

The decorrelator has an internal processing cycle, managed by an
input ring buffer, of 256 sample frames with a 128-sample overlap
between subsequent processing frames. A sine window according
to Equation 1 is applied where m = 0...M − 1 is the time index
within a frame n and M = 256.

xWin(m) = xIn(m) · sin ((m+ 0.5) · π/M) (1)

Next, a 256-point Discrete Fourier Transform (DFT) is per-
formed on the windowed input frame xWin(m) to obtain K =
129 complex valued frequency bins XDS (n) for each frame n.
In the following processing, the temporal sequences of individual
DFT coefficients are treated as a set of spectral subband signals
with n being the time index subsampled by a factor of 128 with
respect to m.

3.3. Pre-Delay and Allpass Filters

The k = 0...K − 1 complex DFT coefficients of each DFT sub-
band (index k is omitted where possible for better readability) are
passed through a delay, as illustrated in Equation 2, where Dd is
the pre-delay. This pre-delay is set to 4 frames (~10.7ms).

XDel(n) = XDS(n−Dd) (2)

Next, the delayed signal XDel(n) is allpass filtered according
to Equation 3

H (z) =
γ + z−D

1 + γ · z−D
(3)
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Figure 1: Decorrelator signal flow overview. Based on overlapping DFTs for analysis of the incoming audio signal, a combination of
pre-delay and allpass filter chain is applied in the DFT subband domain followed by a time/Frequency (t/F) envelope shaper and the output
assembly stage controlled by a transient handling. The transient detection information (dashed line) influences the internal mixing process
of the output audio signals.

The chained series of i allpass filters APi is further illustrated
in Equation 4, where filter coefficients are γ = 0.7 and Dapi rep-
resents the amount of delay of each allpass filter, which is set to 1,
2, 3, 5 frames for i = 1, 2, 3, 4.

Yi(n) = γ ·Xi(n) +Xi(n−Dapi)− γ · Yi(n−Dapi) (4)

In the following steps, XDS(n) is denoted the direct signal
(DS), while YPS(n), which went through the delay and the series
of allpass filters, is called the processed signal (PS).

As a side note - if needed in future applications, a set of mutu-
ally independent decorrelators can be obtained by variation of pre-
delay/allpass filter parameters and structures as sketched in sub-
section 2.2.

3.4. Transient Handling

In the decorrelator’s output, transients are excluded from the pre-
delay and allpass processing. This is managed by the transient han-
dling. A transient in the current frame is detected by calculating
whether the energy of the current frame, summed over k = 4...K
frequency bins, is stronger than the previous frame by a threshold
T = 2.8. The accuracy of transient detection is not overly criti-
cal; a false positive transient detection result, for example, will just
exclude the falsely classified signal part from decorrelation caus-
ing no further artefacts. For this reason, the implemented transient
detection algorithm was kept rather simple and computationally
efficient.

Two counters control the transient processing: a so-called hold
counter and an inhibition counter. The hold counter controls the
duration of the detected transient event and the inhibit counter en-
forces a minimum temporal separation between detected transient
events. Both are initially set to their inactive state 0. When a tran-
sient is detected tn = 1 and the inhibition counter is inactive, a
hold counter is started for the next 8 frames (~21.3ms) to control
a muting of the PS in the output mix. Also, the inhibition counter
starts counting to prevent a hold counter start in the next 56 frames
(~149.3ms). In addition, if another transient is detected during this

inhibition time, this will re-start the inhibition counter, and the in-
hibition time will be increased from 56 to 64 frames. With these
time constants, pulse trains with a pulse frequency greater than ap-
proximately 6Hz will not be subjected to the dedicated transient
processing. The threshold of 6Hz was chosen since at that fre-
quency pulses are still clearly perceived as separate events in fast
succession (where preservation of transient perceptual quality is
essential) rather than a continuous tonal sound (where good decor-
relation is desireable). When active counters reach their maximum
count, they are reset to their inactive state 0.

The durations reflected in the counters for transient handling
have been chosen to be larger than pre-delay and allpass filter de-
lay to suppress any traces of dispersed transients in the PS. Ad-
ditionally, a hysteresis is implemented for avoiding on/off tog-
gling that may happen e.g. when the input signal contains low
frequency pulse trains with slight temporal variations of pulse dis-
tance around the inhibition time.

The energy in current frame is calculated using the DS. The en-
ergy of the current frame is smoothed by a first order IIR lowpass
filter with “forgetting factor” δ = 0.4. Equation 5 illustrates how
energy of the current frame, ETr(n), is calculated from the en-
ergy of the previous frame, ETr(n − 1), and the DS, XDS,k(n).
Equation 6 defines the calculation of the transient detection state
parameter tn.

ETr(n) = δ · (
K∑

k=4

XDS,k (n)
2) + (1− δ) · ETr (n− 1) (5)

tn =

{
1 if ETr (n) > T · ETr (n− 1)

0 otherwise
(6)

3.5. Envelope Shaping

The following equations explain the t/F envelope shaping. For
each time frame n, in the output ŶPS (n), each frequency bin of
the PS is amplified or attenuated if it is weaker or stronger by a
factor of β = 1.5 as compared to the DS. Equation 7 and Equation
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5 illustrate the estimation of the energy of the current PS,Ep,k(n),
and of the current DS, Ed,k(n), smoothed by a first order IIR low-
pass filter with “forgetting factor” α = 0.4. Equation 9 represents
the t/F shaping process depending on the energy relations. Finally,
the PS is scaled with a fixed factor f = 1.1 that was empirically
determined to adjust the mean signal energy to match the DS en-
ergy.

Ep,k (n) = α · YPS,k (n)
2 + (1− α) · Ep,k (n− 1) (7)

Ed,k (n) = α ·XDS,k (n)
2 + (1− α) · Ed,k (n− 1) (8)

ŶPS (n) =

=





f · YPS (n) ·
√

β·Ed,k(n)

Ep,k(n)
if Ep,k (n) > β · Ed,k (n)

f · YPS (n) ·
√

Ed,k(n)

β·Ep,k(n)
if Ed,k (n) > β · Ep,k (n)

f · YPS (n) otherwise
(9)

A 256-point Inverse Discrete Fourier Transform (IDFT) is per-
formed on ŶPS (n) to convert the processed frequency bins back
to 256 time domain samples. To prepare for overlap-add in the
output signal assembly, the signal is windowed with the same sine
window as used for analysis.

3.6. Output Signal Assembly

The decorrelated output is generated as illustrated in Equation 10.
In regular decorrelator operation, when the hold counter is inac-
tive, the two decorrelated output frames are obtained from the M/S
representation by conversion to L/R stereo as seen from the sum
and difference computation of xWin(m) and yPS(m), respec-
tively. If a transient was detected and the hold counter is activated,
the two output frames will carry an identical signal consisting of
the windowed input signal weighted by a scaling factor. The scal-
ing factor 1√

2
adjusts the energy of the “transient part” 2·xWin(m)

to match the energy of the “non-transient part” that is obtained by
combining two incoherent signals xWin(m) and yPS(m). The
windowing (computationally efficient inherited from the overlap-
ping DFT frames) ensures a smooth cross fade when switching
between the regular and the transient operation modes.

{
yOut,1(m) = xWin(m) + yPS(m)
yOut,2(m) = xWin(m)− yPS(m)

}
if hold cnt inactive

{
yOut,1(m) = 2√

2
· xWin(m)

yOut,2(m) = 2√
2
· xWin(m)

}
if hold cnt active

(10)
Finally, the windowed frames are re-combined in an overlap-

add procedure with 128-sample overlap between subsequent pro-
cessing frames.

4. COMPLEXITY

The decorrelator was designed for high perceptual quality at low-
est possible computational complexity. Allpass filtering is imple-
mented using very simple subband IIR filters. The application of

pre-delay and allpass filtering is done in (subsampled) DFT do-
main. The analysis DFT of the input signal - the direct signalXDS

- can thereby be efficiently used for both filtering and as input to
t/F-envelope shaping. The DFT windowing is co-used for tran-
sient handling controlled output signal cross fade as can be seen in
Equation 10.

If a set of many mutually decorrelated output signals is desired,
the entire set may advantageously share said analysis DFT and
parts of the envelope shaping calculations, specifically the energy
estimation according to Equation 8 and the transient handling pro-
cessing according to Equations 5 and 6, since these are solely de-
pendent on the common direct input signal XDS(n) .

The exact complexity is determined by DSP hardware and on
the DSP implementation, so here a pen-and-paper estimate is
given. The following Table 1 provides an overview on the number
of arithmetic operations of the different parts of the decorrelator.
Operations (OP) are multiplications (MUL) or additions (ADD);
Divisions (DIV) and square roots (SQRT) are assumed to equal 25
OP each (which is a very conservative assumption that might be
too high on modern DSP hardware).

The processing takes place in 50% overlapped windowed 256
sample blocks. According to [19], a 256-point real-data FFT/IFFT
consumes 3022 operations. All further operations in DFT domain
are to be calculated on 129 complex subband signals, hence the
factors of 129 and 2, respectively. To arrive at operations per sam-
ple, all numbers are normalized on the 128 sample time domain
stride of the overlapped DFT.

The computational complexity of the decorrelator is a moderate
7.4 MOPS (Million Operations per Second).

5. QUALITY

Some properties of the new decorrelator design presented in this
paper have been compared with the ones of the MPEG Surround
(MPS) decorrelator [5] as a baseline. Figures 2 and 3 display plots
of mean correlation of the two output signals, Figures 4 and 5 dis-
play plots of mean magnitude differences of the two output sig-
nals as a function of frequency for the MPS decorrelator and the
new decorrelator design. The measurements were obtained using
pink noise as an input signal. From the plots it is apparent that
the remaining correlation of the output channels is always below
0.045 and the magnitude differences are always less than 0.3 dB in
the relevant audio frequency range. So, the new decorrelator de-
sign is on par with the perfomance of the MPS decorrelator while
avoiding the much higher delay and computational costs caused by
the Quadrature Mirror Filterbanks (QMF) of the MPS decorrela-
tor. Thorough expert listening confirmed a high overall perceptual
quality and a transparent transient reproduction of the new design.
Nevertheless, a formal perceptual evaluation will be done in the
future.

6. APPLICATION IN MPEG-I

In MPEG-I Immersive Audio, sources with homogeneous spatial
extent are modelled by a number of decorrelated point sources
that are spatially distributed in the VR scene geometry. The nec-
essary decorrelated point source signals are derived from one or
more “original” input signals that are the direct signals input to the
decorrelator. One example of such a source with spatial extent is
the park fountain in the MPEG-I VR test scene depicted in Fig-
ure 6. In the MPEG-I Immersive Audio Reference Software, the
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Table 1: Decorrelator complexity estimation. Operations (OP) equal multiplications (MUL) or additions (ADD); Divisions (DIV) and
square roots (SQRT) are assumed to count 25 OP each.

Operations (OP) per 128 sample frame Sum of OP/frame
Analysis window (Equation 1) 256 ·MUL 256

256-point real-data FFT/IFFT 2 · FFT (see [19]) 2 · 3022 = 6044

4 Schroeder allpass filters on complex data (Equation 4) 4 · 129 · 2 · 2 ·MUL; 4 · 129 · 2 · 2 ·ADD 32 · 129 = 4128

Energy envelope estimation (Equation 78) 2 · 3 · 129 ·MUL; 2 · 2 · 129 ·ADD; (6 + 4) · 129 = 1290

Transient detection (Equation 5) 3 · 126 ·MUL; 2 · 126 ·ADD (3 + 2) · 129 = 645

t/F Envelope shaper (Equation 9) 2 · 129 ·MUL; 1 · 129 ·DIV ; 1 · 129 · SQRT (2 + 25 + 25) · 129 = 6708

Synthesis window 256 ·MUL 256

Overlap+add 256 ·ADD 256

Output assembly (Equation 10) 2 · 128 ·ADD 256

Total 19839

Total OP/sample OP/sec@ fs = 48kHz
Decorrelator 155 approx. 7.4 MOPS

Figure 2: Baseline MPS Decorrelator: mean correlation between
decorrelator output channels as a function of frequency.

presented decorrelator is available as an implementation in C++
[8].

7. CONCLUSIONS

In this paper, we describe the design considerations behind the
decorrelator that is part of the upcoming MPEG-I Immersive audio
standard and that is used for rendering sound sources with homo-
geneous extent. We present details of the actual implementation
and provide computational complexity numbers showing a mod-
erate total complexity of 7.4 MOPS for two decorrelated signals
at 48kHz sampling rate. We also provide measurements on corre-
lation and spectral magnitude differences of our new decorrelator
design compared to the MPEG Surround (MPS) decorrelator as a
baseline, showing that regarding these measurements the new de-
sign is on par with the baseline while minimizing processing delay
and computational costs. We suggest that the new decorrelator de-
sign at hand might also be useful for integration in other spatial
audio applications and audio effects.

Figure 3: New decorrelator design: mean correlation between
decorrelator output channels as a function of frequency.
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ABSTRACT
Neural networks have been found suitable for virtual analog mod-
eling applications. Several analog audio effects have been success-
fully modeled with deep learning techniques, using low-latency
and conditioned architectures suitable for real-world applications.
Challenges remain with effects presenting more complex responses,
such as nonlinear and time-varying input-output relationships. This
paper proposes a deep-learning model for the analog compression
effect. The architecture we introduce is fully conditioned by the
device control parameters and it works on small audio segments,
allowing low-latency real-time implementations. The architecture
is used to model the CL 1B analog optical compressor, showing an
overall high accuracy and ability to capture the different attack and
release compression profiles. The proposed architecture’ ability to
model audio compression behaviors is also verified using datasets
from other compressors. Limitations remain with heavy compres-
sion scenarios determined by the conditioning parameters.

1. INTRODUCTION

The unique timbre and sound coloring provided by analog circuits
and their nonlinearities are still appealing to musicians and sound
engineers. The digital emulation of vintage analog musical instru-
ments and audio effects, known as Virtual Analog (VA), has been
an active field of research and development for several years [1].
To date, a variety of digital emulations of audio analog devices
have been introduced [2]. Recently artificial neural networks have
been successfully employed also for VA audio effects [3, 4]. In
particular, nonlinear distortion circuits [5, 6, 7] have been accu-
rately modeled using architectures based on Convolutional Neural
Networks (CNN) and Recurrent Neural Networks (RNN). Models
suitable for real-world applications (i.e., low-latency and real-time
computation) have also been proposed [8, 9, 10]. Challenges re-
main for nonlinear time-varying audio effects, where the state-of-
the-art employs models requiring long audio segments and large
networks [11], which are detrimental for latency and real-time
computation. This work further investigates time-varying effects,
in particular dynamic range compression. Audio compression is a
nonlinear effect that reduces the dynamic range of the input sig-
nal by a given amount when this exceeds a given threshold [12].
Compression is usually applied to reduce the dynamic range of
the signal. The gain reduction is time-varying according to vari-
able attack and release times. In an early attempt to model an
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analog compressor/leveling amplifier [13], an artificial neural net-
work, based on fully-connected layers, predicts the STFT of the
compressed signal. The model, in this case, is large and works
with long segments of the input signal. State-of-the-art modeling
of audio compression is based on Temporal Convolutional Net-
works (TCN), which have been adapted to model analog compres-
sion [14], allowing real-time computation. However, input-output
latency is still high because the model requires a long input seg-
ment (∼1.5 seconds) to compute a segment of output accordingly
to the receptive field of the network. Specifically, the lower bound
latency is equal to the size of the receptive field, which in this case
is between 101 and 1008 ms. Both works aimed at modeling the
TELETRONIX LA-2A leveling amplifier with only two condition-
ing parameters: a binary switch to choose between the limit and
compression modes and the peak reduction. Lastly, a gray-box
model for the same device is presented in [15], where RNN and
Multi-Layer Perceptron (MLP) networks are used in combination
with traditional signal processing techniques. In particular, MLP
is used to predict the parameters of the static compression curve
based on the conditioning information, while RNN predicts the
time parameters for the filters controlling the attack and release
times. This model emulates only the compression mode (i.e., the
switch parameter is fixed) and includes the peak reduction param-
eter as conditioning.

In our previous work, we focused on dynamic range compres-
sion as well but modeling another analog compressor device [16].
We investigated the use of Encoder-Decoder (ED) Long Short
Term Memory (LSTM) based architectures to learn a static tem-
poral profile of the TUBE-TECH CL 1B opto compressor (i.e.,
fixed attack and release time) conditioned to two control parame-
ters: compression ratio and threshold. The architectures we used
are relatively small with respect to network size and length of in-
put segment, allowing low-latency real-time implementations of
the model. Here we present improvements to the previously pro-
posed architecture, and we use it for fully-conditioned modeling
of the CL 1B, including variable attack and release time. Gener-
ally, LSTMs, when taken alone, struggle to learn long temporal
dependencies, while CNNs require long receptive fields to model
them. We show how combining LSTM and CNN in an ED ar-
chitecture improves the modeling accuracy, enabling learning var-
ious compression amounts and temporal profiles given by differ-
ent combinations of threshold, ratio, attack, and release values.
The ED architecture can provide similar accuracy using networks
with a relatively small number of parameters and a small input
size compared to TCN-based works. The output gain parameter of
CL 1B, and of other compressors as well, is excluded from con-
ditioning because it controls an independent amplification stage
applied after the compression, which is not influencing the com-
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pression process. In analog compressor devices, the output gain
can add characteristic harmonic distortion after the compression
stage, but modeling distortion circuits is beyond the scope of this
work. Such circuits can be modeled separately from existing tech-
niques [8]. In addition, [13] showed that a single architecture can
model compressors with different characteristics; thus we evaluate
the proposed ED models with a set of heterogeneous compressors.
The rest of the paper is organized as follows. Sec. 2 presents the
various compressors used in this study and the associated datasets.
Section 3 details the proposed architecture. An overview of the ex-
periments carried out to validate the architecture is in Sec. 4, while
the results are presented in Sec. 5. Sec. 6 concludes the paper.

2. DATASETS

In this section, we describe the various compressor datasets we use
to train and test our models. Using multiple datasets collected from
devices with different characteristics allows for verifying whether
the proposed deep learning architecture can model audio compres-
sors in general rather than only a specific unit.

2.1. CL 1B Compressor

The CL 1B1 is an analog optical compressor manufactured by
TUBE-TECH. In optical compression, a lighting-emitting element
is fed with the audio signal, and this illuminates a light-sensitive
resistor, also known as a photocell. The amplitude of the input sig-
nal determines the brightness of the element that, in turn, changes
the resistance in the gain attenuation circuit. This device presents
five variable control parameters: ratio, threshold, attack, release
times, and output gain. We have built the CL 1B dataset2 by
recording data directly from the device as described in [16]. For
this study, we have extended the dataset to include variable ra-
tio, threshold, attack, and release time, but for each combination
of the control parameters, we have limited the audio recording to
210 seconds. The output gain is fixed to 0 dB. Input signals in-
clude frequency sweeps (ranging from 20 Hz to 20 kHz), white
noises with increasing amplitude (linear and logarithmic ramp),
guitar, bass, and drums recordings (loop and single notes), and vo-
cals. The output signal was recorded for 5 different values of each
of the four parameters (equally spaced within the selected range),
resulting in 625 combinations, which corresponds to a dataset of
∼ 36 hours recorded at 48 kHz. Threshold values ranges from 0
to −40 dBu, ratio values from 2:1 to 10:1, attack time from 0.5
to 300 ms, and release time from 0.05 to 10 seconds. The exact
values of attack and release time are not marked on the device;
therefore, we assume a linear range between the maximum and the
minimum and the maximum indicated in the manual. The record-
ings associated with each combination of the control parameters
are split into 21 parts of 10 seconds. From these, 50% of them
are randomly removed, ensuring that no parameter combination
is either over- or under-represented in the training set (i.e., ran-
dom selection with uniform distribution against parameter com-
binations). Therefore, the complete training set includes ∼ 18
hours of recording associated with 625 different parameter combi-
nations, out of which 20% is used for validation.

1http://www.tube-tech.com/
cl-1b-opto-compressor/

2https://doi.org/10.5281/zenodo.6497085

2.2. Software Compressors

To further verify the extent to which the proposed architecture
models audio compression, we have built three additional datasets
from software compressors. We have selected compressors im-
plemented as VST plugins because data collection can be com-
pletely automated, adapting an existing tool to work with audio
effects [17]. The selected plugins are: the Softube FET Compres-
sor3, the PSP MicroComp4, and the u-he Presswerk5. The first is a
pure digital audio compressor, while the other two are VA devices.
The input signal is the same described in Sec.2.1. For each soft-
ware compressor, we have selected 4 variable parameters, summa-
rized in Tab. 1, with functionality and range close to those selected
for the CL 1B dataset. Also, in these cases, the 210 seconds out-
put signals were recorded at 48 kHz for 625 different combinations
of the control parameters (i.e., 5 equally spaced values within the
selected ranges). The training, validation, and test set are built
identically to that of CL 1B. Since FET Compressor has a fixed
threshold, we have included in the set of variable parameters its
input gain, which allows us to vary the relative attack/release point
with respect to the input signal.

Table 1: Selected variable parameters and respective ranges for
the software compressors.

VST Parameter Values
ratio [2:1, 12:1]

MicroComp threshold [0, -30] dB
attack time [0.5, 300] ms
release time [0.05, 3.30] s
ratio [2:1, 10:1]

Fet Compressor input [-6, +6] dB
attack time [20, 800] µs
release time [0.05, 1.1] s
ratio [2:1, 10:1]

Presswerk threshold [-10, -40] dB
attack time [0.1, 150] ms
release time [0.015, 2.5] s

2.3. LA-2A Leveling Amplifier

Teletronix LA-2A Leveling Amplifier6 is an analog lim-
iter/compressor, whose optical gain reduction works similarly to
the CL 1B. The LA-2A is used in all previous works on black box
modeling of analog compression [14, 15]. We consider this de-
vice in our experiments to allow a performance comparison with
the state-of-the-art, although the LA-2A has a fundamental differ-
ence from other compressors used in our study. The LA-2A does
not present variable attack and release time that users can fix us-
ing dials. Instead, the LA-2A presents an average attack time of
10 ms and a multi-stage release. The duration of the first stage is
0.06 seconds, while the second stage of release is controlled by
the photocell’s memory, which depends on the brightness and time
the light-emitting has been on. The duration of the second stage
ranges from 0.5 to 5 seconds for the complete release. This implies

3https://www.softube.com/fet-compressor-mk-ii
4https://www.pspaudioware.com/products/

psp-mastercomp#psp-microcomp
5https://u-he.com/products/presswerk/
6https://www.uaudio.com/hardware/la-2a.html
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that if the compression is heavy and/or the signal has been above
the threshold for a long time, the LA-2A’s release will be slower.
Therefore the attack and release times of the LA-2A are unknown
a priori but depend on the past input signal. The device presents
an output gain, a switch controlling if the device is operating in
a limit or compression mode, and a peak reduction that controls
the amount of compression to apply. The LA-2A dataset7 [13]
contains approximately 20 hours of recordings at 44.1 kHz of the
device fed with various acoustic and synthetic instruments, per-
cussive clips, excerpts of musical pieces, tones, and noise bursts.
The dataset includes the variations of two control parameters (in
total 20 combinations): the binary switch that sets the device in ei-
ther compress or limit mode and the peak reduction parameter that
controls the amount of compression as a function of the input level.
We use the same training, validation, and test split included in the
dataset, representing 80%, 15%, and 5%, respectively. Record-
ings taken for each combination of the control parameters are not
identical in both duration and contents.

3. PROPOSED ARCHITECTURE

The architecture we propose was developed by experimenting pri-
marily with the CL 1B dataset, starting from the ED model we
investigated in our previous work [16]. The encoder processes n
past sample of the input sequence together with the additional con-
ditioning parameters and returns its final internal states and output.
The output is discarded while the internal state is passed to the de-
coder as its initial internal state. The decoder learns to predict the
target sample at each time step, given the input sample at the cur-
rent time step and a number n of past input samples. The improved
architecture we propose in this paper is illustrated in Fig. 1. The
input signal and conditioning parameters are fed to the network
separately. In order to reduce the model complexity of the en-
coder, we replaced the LSTM layer with a 1D convolutional layer,
which provides a representation of the signal’s past information us-
ing fewer trainable parameters. Control parameters are fed to the
encoder through a simpler fully-connected layer. The decoder still
includes an LSTM layer, but it works on a larger input-output au-
dio segment rather than on single samples. The architecture uses as
input a segment of 2w past sample of the input signal x, which we
split into two halves: one labeled as "far" past ([x−2w, ..., x−w])
and one labeled "recent" past ([x−w, ..., x0]). The "far" past rep-
resents the input for the encoder, and the "recent" past is the input
for the decoder, both of size w. The encoder output, representing
the internal states of the LSTM layer in the decoder, must match
the LSTM number of neurons u. The LSTM layer is followed
by a fully-connected layer with sigmoid activation function. Fi-
nally, at the output, we have another fully-connected layer with, in
our case, a number of neurons of the same decoder input segment,
where each neuron predicts an audio sample. With this architec-
ture, the size of the output layer, o, can be reduced to predict as
little as one sample at a time, allowing a fine-grain accuracy at the
expense of the computational cost. In our experiments, we used
input and output signal segments of identical size to minimize the
computational complexity of the model and to work similarly to
most real-time audio stream processing applications, in which in-
put and output buffer sizes are identical. Lastly, preliminary exper-
iments showed that kernels of the convolutional layer with identi-
cal size to the encoder input size led to better accuracy. In addition,

7https://zenodo.org/record/3824876

this choice simplifies the architecture as no transformation of the
convolutional layer’s output is needed to match the dimensional-
ity of the LSTM internal state. Conditioning parameters compose
the input vector for the fully-connected layer in the encoder, as
illustrated in Fig. 1. Before feeding the networks, the condition-
ing values are normalized between [0, 1]. The output of the fully-
connected layer is added to the output of the convolutional one in
order to compute the states to give to the decoder. The internal
state size has to match the number of units of the LSTM layer; for
this reason, the number of units is the same for all the layers.

4. EXPERIMENTAL DESIGN

4.1. Models

As stated in previous sections, our objective is to achieve an accu-
rate black-box modeling of audio compression using deep-learning
models with low latency and low computational complexity. We
limit our investigation to ED models with w set to (16, 32, 64),
representing the number of input samples for both the encoder and
decoder. The size w is also the intrinsic audio latency of our archi-
tecture. Our models work with an overall input segment size of 2w
samples. Therefore, in a hypothetical real-time audio stream pro-
cessing application, the overall latency of the system is 5w samples
(4w of latency for the double input-output buffering). To contain
the computational cost of the models’ inference, we take two ap-
proaches. First, we limit the number of trainable parameters to
∼ 100k at most, and therefore we investigate only models with
(32, 64, 128) numbers of units u. Second, we minimize the fre-
quency at which the inference has to be executed to predict the
stream of output samples. In particular, we consider only out-
put sizes o equal to w, which requires only two predictions to fill
the output audio block with size 2w. Execution time and mem-
ory requirements can be further reduced using existing techniques
such as pruning [18], quantization [19], tensor decomposition [20],
knowledge distillation [21], and skip-RNN [22]. Low-latency for
digital audio effects is essential for live-audio applications, while
in production settings, modern digital audio workstations can au-
tomatically compensate for the plugin’s latency to avoid temporal
misalignment in multi-track mixing. However, automatic compen-
sation works only within a limited range. For example, AVID Pro
Tools can automatically manage up to 4096 samples of latency.

In order to compare our architecture with the state-of-the-art,
we implemented a TCN network that can be trained with our CL
1B dataset. We adapted the best architecture from [14] to work
at 48 kHz, taking as input 72, 000 samples (1.5 s) of the au-
dio signal and predicting an output segment of 58, 668 samples
(∼ 1.2 s) with a receptive field of 13, 332 samples (∼ 278 ms).
This, together with the use of the LA-2A dataset in our experi-
ments, allows a comprehensive cross-comparison of our architec-
ture against the state-of-the-art. Comparisons with baseline archi-
tectures, such as simple LSTM or dense layers, are detailed in our
previous work [16].

4.2. Training & Testing

All models are trained with a batch size of 128 and employing
Adam [23] optimizer with gradient norm scaling of 1 [24]. ED
models use an initial learning rate of 10−4, while TCN model uses
3 10−4, as reported in [14]. Models are trained for 50 epochs ex-
cept for the LA-2A case, in which we train models for 60 epochs
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Figure 1: Proposed architecture. Encoder consists of two layers: one taking the conditioning control parameters and the other one taking
the past of the input signal. Control parameters are processed by a fully-connected layer, while the input is processed by the convolutional
layer. The outputs of both layers are added to each other to compute the internal states that act as conditioning for the LSTM layer
composing the decoder. The decoder takes the "current" input signal. w is the size in samples of the encoder and decoder input signals,
and u is the number of units, representing as well dimension of the layer’s outputs. The internal states dimension must match the number
of units of the LSTM layer; for this reason, we selected the same number of units for all the layers. A fully-connected layer with p units and
sigmoid activation function is placed after the LSTM layer, producing the decoder’s output. This is fed to another fully-connected layer,
including o neurons with linear activation function generating the o output samples of the model.

to allow a comparison with [14]. Preliminary experiments vary-
ing input size 2w and the number of units u of the ED models
use only half of the CL 1B dataset, still representing 625 combi-
nations of conditioning parameters. The best-performing model,
detailed in Sec. 4, is trained using the full dataset for 200 epochs
in total. Results for the test loss are computed with the model’s
weights that minimize the validation loss throughout the training
epochs. We have asserted the ability of the ED architecture to
predict conditioning values never seen during the training in our
previous investigation [16]. On the other hand, predicting abrupt
and quick changes in the dynamic was challenging for the network.
Similar behavior is also present in [15], where the prediction error
increases with the increasing of the conditioning peak reduction
value (i.e., in scenarios with larger dynamics change between in-
put and output). Instead, conditioning values unseen during train-
ing do not determine a significant increase in the prediction error.
For this reason, in this study, we test the generalization capability
of the network using pairs of input signals and conditioning values
unseen during the training phase, as detailed in the CL 1B dataset
description.

4.3. Loss Function

As emerged in our previous work on CL 1B [16], error hikes dur-
ing the attack phase of the compressor, triggered by fast changes in
the input signal amplitude. To address this limitation, we investi-
gate the use of different loss functions: we evaluate the Mean Ab-
solute error (MAE), the Error-to-Signal Ratio (ESR), and a Short-
Time Fourier Transform-based (STFT) loss function with different
resolutions (window size of [8, 16, 32] and hop size of [2, 4, 8], re-
spectively). As expressed in Eq. 1, the STFT-based loss function
minimizes the spectral difference between the target and the pre-

dictions with a multi-resolution spectral loss. The component of
the spectral loss with resolutionm compares the two audio signals
by summing the L1 differences between both their linear- and log-
spectrograms. The models are trained for 50 epochs using differ-
ent loss functions. Since absolute values returned by different loss
functions are not comparable, results are qualitatively assessed by
inspecting the waveforms of the predictions against the true out-
puts, focusing on the accuracy of the attack phase of the com-
pression. Subsequently, we further explore combinations of the
mentioned loss functions for training the model.

LSTFT (y, ŷ) = |||STFTm(y)| − |STFTm(ŷ)|||1
+ || log(|STFTm(y)|)− log(|STFTm(ŷ)|)||1

(Eq. 1)

5. RESULTS & COMPARISONS

This section details the performance of the proposed architecture
with the datasets detailed in Sec. 4. Comparisons with the state-of-
the-art are included in Sec. 5.1, where the best TCN architecture
from [14] is used to model the CL 1B; in Sec. 5.4 where our best
ED architecture is used to model the LA2A used in all previous
works on deep-learning modeling of dynamic range compression;
and in Sec. 5.5, where latency and computational cost of our best
ED model are compared with the best TCN architecture from [14].
Datasets, source code, trained models, audio examples, and addi-
tional figures available online8.

8https://github.com/RiccardoVib/
CONDITIONED-MODELING-OF-OPTICAL-COMPRESSOR
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5.1. CL 1B

Tab. 2 details validation and test loss for models with different
input segment size 2w and different numbers of units u. Accu-
racy is inversely proportional to the input size. Smaller sizes allow
predicting output samples with a finer grain, resulting in smaller
errors, although the network is fed with a smaller segment of au-
dio samples. The accuracy is proportional to the number of units
u, as larger networks appear to be beneficial to the model’s ac-
curacy. The most accurate model presents input segments 2w of
32 samples and 128 internal units u. Even if the best configura-
tions resulted in 128 internal units, we used 64 hidden units for
the final model. Therefore, we trained the model for 200 epochs,
and we will refer to it for the figures and results detailed in the
rest of this section. Associated validation and test loss are shown
at the bottom of Tab 2. The model continues to learn at the in-
crease of epochs, and conceivably losses could further decrease if
training continues. The choice of 64 units is determined by our
goal of minimizing computational complexity. A model with 128
units has almost four times the number of trainable parameters and
brings improvements in the losses that do not justify the choice of
having a bigger computational complexity. On the other hand, a
bigger number of hidden units could lead to more remarkable im-
provements when increasing the number of training epochs. We
noticed that the predicted signals include spurious tones generated
by errors at the boundary of the output segments. We found that
the frequency of such tones is equal to nFr/o, where Fr is the
sampling rate, o is the output size, and n is an integer represent-
ing the number of overtones, ranging from 1 to 6. The amplitude
of the spurious tones does not exceed −70 dB; hence these are
often masked by the compressed output audio signals within high-
frequency contents. Cumulative figures on prediction error, such

Table 2: Validation and test loss (MSE) for ED model against dif-
ferent input segment sizes 2w and the number of units u. The test
loss refers to unseen audio samples during training but seen con-
ditioning values. The number of trainable parameters and epochs
is also detailed. The models are trained for 50 epochs, using half
dataset and MSE as the loss function. The bottom section of the ta-
ble refers to the selected best model, which has been trained using
the full dataset for up to 200 epochs.

2w u Val Loss Test Loss Params Ep. Data
32 32 1.45e−5 1.12e−5 8,912 50 50%
- 64 1.09e−5 8.75e−6 24,912 - -
- 128 1.00e−5 8.08e−6 81,488 - -

64 32 6.01e−5 5.39e−5 10,976 - -
- 64 1.60e−5 1.29e−5 28,000 - -
- 128 1.03e−5 8.76e−6 86,624 - -

128 32 3.28e−4 3.47e−4 15,104 - -
- 64 3.60e−4 3.79e−4 34,176 - -
- 128 3.13e−4 3.20e−4 96,896 - -

32 64 1.42e−5 1.74e−5 24,912 50 100%
- - 6.92e−6 8.21e−6 - 200 -

as averages across the entire dataset, are poorly informative with
respect to the model’s conditioned behavior. For this reason, we
analyze the trend of prediction accuracy against the four condi-
tioning parameters. The two colormaps in Fig. 2 display the errors
for all combinations of attack and release time with fixed ratio and
threshold, as well as for all combinations of ratio and threshold

with fixed attack and release time. The fixed parameters were set
at the middle of their range. To provide a fair and informative
representation of the model’s conditioned behavior, the MSEs are
computed using the same audio signal for all parameter combi-
nations, which includes 10 second of percussive and bass sounds
taken from the test set. The various conditioning scenarios de-
termine major changes in the dynamic range of the output signal,
which should be taken into account when comparing the MSEs. To
overcome this challenge and allow direct comparison of the errors,
we compute the MSEs represented in Fig. 2 after normalizing tar-
get outputs to [−1,+1] and applying the same normalization fac-
tor to the model’s predictions. From the left image, it is evident
that the prediction accuracy drops with the growth of attack and,
in particular, release time. This reflects that with longer temporal
dependencies, accurate prediction is more challenging. The right
image shows that heavy compression scenarios (i.e., higher ratio
and lower threshold) are also more challenging to be predicted ac-
curately. Since the dataset was randomly split, for some parameter
combinations, the overall percentage of signal above the threshold,
which triggers the compressor, may not be identical between the
training and test set. This, in turn, could be the reason why the
error variations are not monotonic, in particular for the left col-
ormap. However, we should also consider that the MSE ranges
illustrated in Fig. 2 are extremely small, as visible from the associ-
ated color-bar values. Fig. 3 shows an example with three different
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Figure 2: ColorMaps of the test loss (MSE) for different combina-
tions of conditioning parameters. Test errors for different values of
attack and release times, with ratio and threshold fixed to−20 dBu
and 6:1 (Left). Test errors for different values of ratio and thresh-
old, with attack and release time fixed to the middle of their range
(Right). Errors are computed after normalizing targets to [−1,+1]
and applying the same normalization factor to the predictions.

settings of attack time, specifically for 0.5, 150, and 225 ms. Other
parameters are fixed to ratio 6:1, threshold −30 dBu, and release
time 0.05 s. It is visible how the model has learned different com-
pression temporal profiles. The model handles the RMS envelope
quite accurately, applying the gain reduction accordingly to the
different attack time values. Lastly, Tab.3 compares the test losses
(MSE and MAE) of the best TCN model from [14] and of our best
ED model when trained with the CL 1B dataset. The losses after
50 epochs are reported, and the ED model shows better perfor-
mance. In addition, from informal listening, it is evident that the
TCN model introduces more audible artifacts than the ED model.

5.2. Loss Functions

Fig. 4 shows prediction versus target output for a plucked bass ex-
ample using models trained with four different loss functions. We
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Figure 3: Example of input waveform (first row) and associate
output predicted versus target waveforms (second to fourth rows)
for increasing values of attack time: 0.5, 150, and 225 ms. The
ratio, threshold, and release time are set to 6:1, −30 dBu, and
0.05 s, respectively. The horizontal lines on the input waveform
represent the threshold level.

Table 3: Test losses (MSE and MAE) for ED and TCN model.
Losses refer to unseen audio samples during training but seen con-
ditioning values. The number of trainable parameters and units is
also detailed. The kernel size k, dilation factor d, and number of
TCN blocks are reported for the case of TCN networks. The models
are trained for 50 epochs with MSE as the loss function.

Models k u d n MSE MAE Params
TCN 13 32 10 4 9.54e−4 1.33e−2 51,464

ED-32 - 64 - - 1.74e−5 1.93e−3 24,912

select a plucked bass sound because its amplitude envelope (sharp
attack and decaying amplitude) is representative of scenarios that
the model struggles to cope with, in particular during the initial
phase of the compression. The plots refer to heavy-compressed
scenarios (−40 dBu as threshold and 10:1 as ratio). In general, we
found that models introduce more audible artifacts when these are
accurate with onsets crossing the threshold and vice versa. When
using MAE as the loss function, the models generate fewer arti-
facts but fail to learn the compression attack phase, applying the
gain reduction instantaneously. On the other hand, when using
MSE, the models learn the compressor attack and release phases
more accurately but produce more audible artifacts. Using ESR
or STFT-based loss functions provided poor performances, in par-
ticular, the latter one. The STFT-based’s poor performance could
be affected by the small output segment sizes that do not allow
adequate frequency resolution. No combinations of loss functions
led to advantages with respect to the attack phase. For this reason,
we use the MSE only as the loss function for the training of our

models, whose performance is detailed in previous sections.

Figure 4: Predicted waveform against the target for models trained
using different loss functions: MSE, MAE, ESR, and STFT-based.
The target example refers to a heavy-compressed plucked bass sce-
nario (−40 dBu as threshold and 10:1 as ratio). These results are
used to determine the influence of the loss functions on the predic-
tions and are not representative of the accuracy of the final model.

5.3. Software Compressors

Tab. 4 reports the validation and test loss associated with the soft-
ware compressor datasets. These are obtained training for 50
epochs, the best model configuration derived from the CL 1B ex-
periments, which uses 32 samples as the input segment 2w, 64
hidden units u, and MSE as the loss function. The order of mag-
nitude of the losses for all software compressors is similar to the
CL 1B case, proving that the ED model is able to learn different
compression profiles.

Table 4: Validation and test losses (MSE) for ED model against
software compressors. The models have 64 as the number of units
u, and the input segment size 2w is equal to 32 samples. The
models are trained for 50 epochs and use MSE as the loss function.

Dataset Val Loss Test Loss
MicroComp 5.85−5 8.35e−6

Fet Compressor 1.25e−4 6.68e−5

Presswerk 4.42e−5 5.29e−5

5.4. LA-2A

Tab. 5 shows different test losses of our model trained on the LA-
2A dataset for 60 epochs using different input segment sizes. The
trend is similar to CL 1B, smaller input/output size turns in more
accurate results. The MAE loss is also reported in the table in or-
der to have a direct comparison with the TCN models in [14]. The
number of hidden units is set to 64 to limit the number of train-
able parameters, which are detailed in the table as well. Our pro-
posed architecture trained on the LA-2A dataset presents an MSE
two orders of magnitude greater than the one obtained with the
CL 1B dataset. Although the ED model presents a higher loss,
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it is still competitive with the TCN-based stat-or-the-art black-
box model of the LA-2A, which presents a lower MAE equal to
7.66e−3 but uses almost twice as many trainable parameters and
has a latency of 302 ms. Convolutional models generally converge
quicker than LSTMs, which need a considerably larger number of
training epochs to achieve similar losses. Hence this comparison
based on an equal number of training epochs may be unfair to our
ED model, which features an LSTM layer in the decoder. In addi-
tion, the LA-2A device presents faster attack and release time and
fewer conditioning parameters than CL 1B. As stated before, the
LA-2A has no tunable attack and release times, but these depend
on the past state of the luminescent element. This can motivate
the slight drop in accuracy of our architecture, which may not be
able to infer the right compression temporal profile from the audio
signal without explicit input data on attack and release time. The
difference in the MSE can also be determined by differences be-
tween the datasets, such as type and levels of input signals, which
have an impact on the overall amount and distribution of the audio
compression.

Table 5: Test loss (MAE, MSE, and ESR) for the ED model against
different window input sizes. Both the encoder and decoder have
64 as the number of units. Input size refers to the number of to-
tal input samples used to compute the outputs; the encoder and
decoder input sizes has to be considered half of this value. The
number of trainable parameters is also reported. The models are
trained for 50 epochs and use MSE as the loss function.

2w MAE MSE ESR Params
32 2.48e−2 1.59e−3 2.43e−1 24,656
64 2.54e−2 1.63e−3 2.49e−1 27,744
128 2.65e−2 1.64e−3 2.51e−1 33,920

5.5. Efficiency

The architecture we propose is designed to minimize latency and
computational complexity, aiming at live audio applications. Con-
sidering the best model with 32 samples as input segment 2w, the
ED model has a latency of 16 samples, equivalent to 0.33 ms sam-
ples at 48 kHz sampling rate. The total latency in real-time audio
stream processing application, including the double input-output
buffering, is equal to 80 samples, equivalent to 1.66 ms. Tab. 7
reports the Floating Point Operations (FLOPs) required for each
layer of the ED model. Breaking down the network, we have three
Fully Connected (FC), one convolutional, and one LSTM layer.
Each layer requires a different number of FLOPs, depending on
the encoder and decoder input sizes w, number of conditioning
parameters d, and output size o. The convolutional layer’s FLOPs
are influenced by the length of the kernel k and the number of
filters f , which in our architecture are equal to w and u, respec-
tively. In Tab. 7, we detail FLOPs for ED models with different
input-output sizes and the respective intrinsic latencies, which are
a key difference from the state-of-the-art TCN models. In [14],
the most accurate TCN model has a latency of 302 ms, whereas
experiments are detailed with other TCN models with latency as
small as 101 ms. In our case, the best ED model presents a la-
tency of only 0.33 ms. On the other hand, the most accurate TCN
model is less computationally demanding since the inference pre-
dicts significantly longer segments of audio than our ED model.
In particular, the inference requires 215, 664 FLOPs, equivalent to

just 4 FLOPs per sample. Finally, we have also experimented us-
ing a TCN architecture that can deliver latency as low as our best
ED model, using input and output segments of 32 and 16 samples,
respectively. Results show that the TCN model trained on the CL
1B dataset is less accurate than the equivalent ED model. In partic-
ular, the MSE after 50 epochs is 4.20e−5 (TCN) versus 1.74e−5

(ED) as reported in Tab.2.

Table 6: Number of Floating Point Operations (FLOPs) for the
different layers of the ED model. d is the number of conditioning
parameters, w is the input size, o is the output size, u is the number
of hidden units, k is the kernel shape, and f is the number of filters.

Layer FLOPs
FC (conditioning) 2 x d x u
FC (decoder) 2 x u x u
FC (output) 2 x u x o
Convolutional 2 x f x k
LSTM 8 x (w + u) × u
Sigmoid function 4 x u

Table 7: FLOPs for ED models with different input-output sizes
(total FLOPs for inference, FLOPs per audio samples, and re-
quired GFLOPS for real-time implementation) and associated
intrinsic latency (without accounting for the audio input-output
buffering), considering 48 kHz sampling rate.

2w u FLOPs FLOPs/smp GFLOPS Latency
32 32 16,256 1,016 0,49 0.33 ms
32 64 52,480 3,280 1.57 -
32 128 186,368 11,648 5.59 -
64 32 22,912 716 0.34 0.66 ms
64 64 64,256 2,008 0.96 -
64 128 208,384 6,512 3.13 -

128 32 39,296 614 0.29 1.33 ms
128 64 90,880 1,420 0.68 -
128 128 255,488 3,992 1.92 -

6. CONCLUSION

We proposed a deep-learning architecture for black-box modeling
of audio dynamic range compression. The model is in an Encoder-
Decoder based on LSTM and convolutional layers. The encoder
processes the near-past audio samples together with the values of
the control parameters, which are encoded in a state helping the
decoder to infer the output given the associated input samples. We
demonstrated that the proposed architecture is able to model dif-
ferent types of compressors, three software, and two analog ones,
with different compression characteristics. The model is designed
to minimize latency and computational complexity and ease imple-
mentation in real-time audio stream processing applications. We
conditioned the model against variations of the compressor’s con-
trol parameters, including compression ratio, threshold, attack, and
release time. The latter two change the system’s temporal charac-
teristics because the gain reduction is applied and removed in a
different amount of time. Therefore, the architecture is able to
learn nonlinear time-varying characteristics of the dynamic range
compression, subject to attack and release time values, passed as
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conditioning parameters to the network. The model is competi-
tive with state-of-the-art works presenting similar accuracy while
using shorter input signal segments. Prediction accuracy drops
slightly with heavy compression settings. In particular drastic
dynamic changes during the attack phase of the compression are
the most challenging to predict and produce audible artifacts. We
have also investigated the influence of different training loss func-
tions, showing how the MSE is the most suitable to model the
initial phase of the compression. Finally, we detailed the latency
and computational complexity of the proposed architecture. Fu-
ture work includes investigations to reduce the presence of audible
artifacts, which are also clearly visible from spectrograms of the
predicted output. Preliminary experiments suggest that ED mod-
els with smaller output sizes may significantly contribute to min-
imizing the presence of audible artifacts while slightly penalizing
efficiency in terms of computational cost and intrinsic latency.
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ABSTRACT

Despite the prevalence of modern audio technology, vacuum tube
amplifiers continue to play a vital role in the music industry. For
this reason, over the years, many different digital techniques have
been introduced for accomplishing their emulation. In this paper,
we propose a novel quadric surface model for tube simulations
able to overcome the Cardarilli model in terms of efficiency whilst
retaining comparable accuracy when grid current is negligible. Af-
ter showing the model capability to well outline tubes starting from
measurement data, we perform an efficiency comparison by imple-
menting the considered tube models as nonlinear 3-port elements
in the Wave Digital domain. We do this by taking into account the
typical common-cathode gain stage employed in vacuum tube gui-
tar amplifiers. The proposed model turns out to be characterized
by a speedup of 4.6× with respect to the Cardarilli model, proving
thus to be promising for real-time Virtual Analog applications.

1. INTRODUCTION

Vintage audio gear based on tube amplifiers is known for produc-
ing many of the distinctive sounds that characterize music genres
such as blues, rock, and metal. Many professional electric gui-
tar players prefer tube amplifiers due to the pleasing distortion
they produce, resulting in a rich and warm sound. However, the
high cost of reproducing tube-based analog audio gear and the de-
creasing supply of electrical components used in popular pieces
of audio equipment have made these sounds inaccessible to many.
As a result, Virtual Analog (VA) modeling has become a popular
alternative as it seeks to create digital algorithms that accurately
replicate the behavior of analog audio effects. This has resulted
in many software implementations that serve as convenient digital
counterparts for expensive, bulky, and fragile analog equipment,
of which tube guitar amplifiers are a noteworthy example.

Two broad categories of models are used in VA modeling:
“black-box” models that emulate the effect of a specific piece of
gear by replicating its input-output behavior, using, for example,
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neural networks [1], Volterra series [2], or block-oriented Wiener-
Hammerstein models [3]; “white-box” methods which emulate the
reference circuit by solving the corresponding system of ordinary
differential equations (or differential algebraic equations), using,
for example, the Port-Hamiltonian approach [4], the State-space
approach [5], or Wave Digital Filters (WDFs) [6, 7]. In this work,
we are interested in deriving efficient “white-box” models of audio
circuits with vacuum tubes, such that we can leverage the knowl-
edge of schematics in order to address VA modeling.

Among vacuum tubes, triodes are the most widespread [8].
Before the advent of solid-state electronics, these devices were
used in a variety of audio circuits, including preamplifiers, power
amplifiers, equalizers, and compressors. In particular, the basic
construction of a triode vacuum tube consists of three main com-
ponents [9]: a cathode, a grid, and an anode (also known as plate).
The cathode is a heated filament that emits electrons, while the an-
ode is a positively charged electrode that attracts the electrons. The
grid is a wire mesh located between the cathode and the anode that
can control the flow of electrons between them. Over the years,
many other designs of vacuum tubes have been introduced, mostly
adding other grids between cathode and plate (e.g., pentodes).

Several models of vacuum tubes have been presented so far [8,
10]. In [11], tubes are modeled by combining linear filters and
waveshapers, while the state-space approach and numerical meth-
ods are used in [12] and [13], respectively. Nonetheless, numer-
ous implementations make use of WDFs. In fact, in the WD do-
main, circuits with up to one nonlinear element described by an
explicit mapping can be solved with no use of iterative solvers,
even using stable discretization methods (e.g., Backward Euler,
trapezoidal rule, etc.), making WDFs interesting for real-time sce-
narios [14]. For instance, examples of WDF tube implementations
can be found in [15], [16], [17], [18], [19], or [20], in which tri-
odes are modeled combining Wave Digital (WD) principles to neu-
ral networks. However, most of the implementations available in
the literature refer to two triode models: Koren [21] and Cardarilli
models [22]. The first is based on a phenomenological model of
the triode operation, while the second provides a simple yet accu-
rate representation of triodes using a set of analytical expressions
that describe the tube transfer function.

In this paper, we propose a new quadric surface model of vac-
uum tubes which is characterized, at the same time, by high effi-
ciency and accuracy as long as grid current is negligible. Starting
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from the generic equation describing quadric surfaces and consid-
ering a grid current equal to zero, we obtain a multivariate quadric
equation able to outline the plate-to-cathode characteristics of tri-
odes in active region employing just three parameters. These can
be then fitted on datasheet or measurement data by applying a sim-
ple least squares method [23]. With respect to Koren model, the
proposed approach is more accurate and almost as accurate as Car-
darilli model if we assume a null grid current. Moreover, the model
is characterized by a lower number of parameters, making the fit-
ting operation more lightweight and simple. Although many dif-
ferent implementations of the proposed model can be pursued, we
decided to realize it as a 3-port Wave Digital (WD) block, which
we later employed for emulating the common-cathode gain stage
typically found in tube guitar amplifiers.

The paper is organized as follows. In Section 2, we provide
a background on triode modeling, by discussing both Koren and
Caradilli models. We introduce the proposed quadric surface model
in Section 3, and we draw a first comparison with the traditional
models presented in the previous section focusing on their accu-
racy. Then, in Section 4, we address the emulation of a typical
common-cathode gain stage considering the famous 12AX7 tri-
ode, and we run a comparison with Cardarilli model regarding the
efficiency. Section 5 concludes this paper.

2. BACKGROUND ON TRIODE MODELING

Let us consider the vacuum tube depicted in Fig. 1(a). Such a de-
vice presents three terminals, and thus, it is typically known under
the name of triode. The basic structure of a triode consists of an
evacuated glass envelope containing three electrodes: a cathode
“k” (or heated filament ), a grid “g”, and a plate “p” (also referred
to as anode). Such a vacuum tube is the ancestor of modern tran-
sistors; in fact, it functions as an electronic amplifier by controlling
the flow of electrons between the cathode and anode via the elec-
tric field generated by the grid [10]. By modulating the voltage
applied to the grid, the current flow between the cathode and an-
ode can be varied, allowing for amplification of signals. A triode
operates as a “normally on” device, meaning that electrons flow
to the positively biased plate even when the grid voltage is at its
quiescent value. As the grid becomes more negative with respect
to the cathode, the anode current is progressively reduced. Hence,
in order to prevent the anode current to be turned off, a constant
voltage is typically applied to the cathode. Moreover, the bias en-
sures that the positive peaks of the signal do not drive the grid
voltage close to the cathode one, which would result in nonlinear
behavior and the generation of grid current. The grid voltage that
completely blocks electrons from reaching the anode is, instead,
called cutoff voltage. Finally, in order to obtain linear amplifica-
tion, the voltage on the grid must remain above the cutoff voltage
without exceeding the cathode potential.

Different models of triodes are available in the literature. Usu-
ally, such models rely on a current source for the plate current
ip that is dependent on both the grid-to-cathode voltage Vgk and
the plate-to-cathode voltage Vpk [9]. In the following, we present
two traditional models widely used for VA applications, i.e., Ko-
ren [21] and Cardarilli [22] models.

2.1. Koren Model

In [21], Koren presents a phenomenological model able to describe
the behavior of triodes making use of a small amount of parame-
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Vgk
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ip
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Figure 1: (a) Circuit symbol of the triode reporting the current and
voltage conventions employed in this paper. The plate is marked
with “p”, the grid is marked with “g”, while the cathode is marked
with “k.” (b) Triode augmented with the reference node O.

Table 1: Parameters for modeling 12AX7 triode with Koren
model [21].

Parameter Value Parameter Value

k 1.4 kg1 1060 Vk/A
kk 600 µk 100
kvb 300 V2 − −

ters. The model equations are designed such that the plate current
ip > 0 whenever the plate-to-cathode voltage Vpk > 0. In particu-
lar, Koren model is defined as follows

ip =
V1

k

kg1
(1 + sgn(V1)) , (1)

ik = − ip − ig , (2)

where ik and ig are the cathode and grid currents, respectively, and

V1 =
Vpk

kk
log


1 + exp


kk


 1

µk
+

Vgk√
kvb + V 2

pk






 ,

Vgk =Vg − Vk , Vpk = Vp − Vk ,

(3)

whereas sgn(·) is the sign function, µk is the amplification fac-
tor, and k, kg1, kk, and kvb are real parameters. Moreover, Vp, Vg,
and Vk are the plate, grid, and cathode voltages, respectively. Ko-
ren already provides the values of such parameters for modeling
the main triodes found in audio circuitry [21], as well as fitting
methodologies for obtaining implementations of custom triodes.
The positive direction of tube currents and voltages are assumed
to be compliant with Fig 1(a). Furthermore, Koren model entails a
diode between grid and cathode; as a matter of fact, ig is typically
computed employing common diode models or approximated with
a time-varying resistor dependent on the grid-to-cathode voltage,
as explained in [24]. Finally, it is worth pointing out that such a
model is derived assuming that plate and grid are mutually insu-
lated [21].
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Table 2: Parameters for modeling 12AX7 triode with Cardarilli
model [22].

Parameter Value Parameter Value

G0 1.102 mA/V2/3 µ0 99.705

G1 15.12 µA/V5/3 µ1 −22.98 kV−1

G2 −31.56 µA/V8/3 µ2 −0.4489 V−2

G3 −3.286 µA/V11/3 µ3 −22.27 kV−3

h0 0.6 V Voff −0.2 V
h1 0 D 0.12
h2 0 V−1 K 1.1
h3 0 V−2 − −

2.2. Cardarilli Model

The triode model developed by Cardarilli et al. [22] relies on a
unique approach that combines physical and interpolative tech-
niques. This model replaces the constant parameters typically used
in classical formulations for plate current ip and grid current ig
with splines that depend on the grid-to-cathode voltage Vgk. The
resulting model, which is based on the current and voltage direc-
tions illustrated in Fig. 1(a), is defined as

ip = G

√(
Vgk +

Vpk

µ
+ h

)3

, (4)

ig =





ip

1+D

(
Vpk

Vgk−Voff

)K if Vgk > Voff

0 if Vgk ≤ Voff

, (5)

ik = − ip − ig , (6)

where

G =

3∑

i=0

GiV
i

gk , µ =

3∑

i=0

µiV
i

gk , h =

3∑

i=0

hiV
i

gk , (7)

and G is the perveance, µ is the amplification factor, h models
the effects introduced by the initial electron velocity, while Voff is
the threshold grid-to-cathode voltage above which grid current is
present. The classical plate-current formulation shown in (4) plays
a significant role in describing the behavior of triodes. In addition,
for the case Vgk > Voff, the grid current expression of (5) is simi-
lar to the empirical relation presented in [9], where the numerical
constants K and D help taking into account the contact potential
effect.

Together, these formulas offer a valuable insight into the func-
tioning of triodes and are useful tools for analyzing and modeling
their behavior in electronic circuits. Moreover, in [22] a technique
for calculating the values for all the parameters shown in (4), (5),
and (7) based on curve fitting of datasheet data is presented. This
approach helps to ensure the accuracy of the model, which has
been shown to reproduce the transconductance behavior of triodes
with high fidelity. Finally, unlike other triode models, Cardarilli
model can provide highly accurate results even in saturation con-
ditions.

Table 3: Parameters for modeling 12AX7 triode with the proposed
model.

Parameter Value Parameter Value

kp 1.014× 10−5 kpg 1.076× 10−5

kp2 5.498× 10−8 V2 − −

3. PROPOSED QUADRIC SURFACE MODEL

In this section, we propose a new memoryless triode model based
on a quadric surface approximation. The model is characterized by
a lower number of parameters and by simpler mathematical oper-
ations with respect to those involved in the two traditional models
of Section 2. On the other hand, for the sake of computational effi-
ciency, it assumes null grid current, thus sacrificing accuracy when
the grid voltage approaches and exceeds the cathode voltage.

The model is derived by exploiting the similarity between part
of the typical triode characteristics ip(Vgk, Vpk) and a quadric sur-
face. In particular, we start by considering the general quadric
surface equation [26]

kp2V
2

pk + kg2V
2

gk + k2i
2
p + kpgVgkVpk + kpkVpkip+

+kgkVgkip + kpVpk + kgVgk + k1ip + k0 = 0 ,
(8)

where kp2, kg2, k2, kpg, kpk, kgk, kp, kg, k1, k0 are real coefficients.
In order to exploit such an equation for modeling the plate current
ip, we set k1 = −1 and k2 = kpk = kgk = 0 for avoiding depen-
dences on ip cross-products or second-order powers, yielding

ip = kp2V
2

pk + kg2V
2

gk + kpgVgkVpk + kpVpk + kgVgk + k0 . (9)

It is worth pointing out that in (9), the terms Vgk and Vpk are present
with all the powers up to the second order, allowing us to account
for different contributions of both the plate-to-cathode voltage and
the grid-to-cathode voltage whilst increasing the descriptive capa-
bility of the model.

Looking at the typical triode characteristics in datasheets, we
recognize that the different curves obtained by varying Vgk are
somehow tangent to the Vpk-axis in the ip − Vpk plane. Therefore,
by imposing ip = 0 and solving for Vpk, we obtain

Vpk =

√
∆− Vgkkpg − kp

2kp2
(10)

with

∆ = V 2
gk(k

2
pg− 4kg2kp2)+Vgk (2kpkpg − 4kgkp2)− 4k0kp2 + k2p ,

(11)
and, by enforcing ∆ = 0, we constraint the vertex of the quadric
to be on the Vpk-axis. If we then solve it for k0, we obtain

k0 =
V 2

gk(k
2
pg − 4kg2kp2) + Vgk(2kpkpg − 4kgkp2) + k2p

4kp2
, (12)

which once substituted into (9) yields

ip = kp2V
2

pk +
k2pg

4kp2
V 2

gk + kpgVgkVpk + kpVpk +
kpkpg

2kp2
Vgk +

k2p
4kp2

= ip(Vpk) = ipk .
(13)
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Figure 2: Accuracy comparison between the ip − Vpk characteristics obtained with Koren model (a), Cardarilli model (b), and proposed
model (c) and the one reported on the 12AX7 datasheet [25].

For any given Vgk, (13) describes a parabola whose vertex lies
on the Vpk-axis. In order to match datasheet curves [25], we only
use the branch where the first derivative of ip with respect to Vpk,
i.e.,

i′p =
dip(Vpk)

dVpk
, (14)

is non-negative, and assume ip to be equal to zero otherwise. There-
fore, considering once again the conventions reported in Fig. 1(a)
and the initial hypothesis on the grid current, we may write down
the proposed quadric surface model as follows

ip =

{
ipk i′p ≥ 0
0 i′p < 0

, (15)

ig = 0 , (16)
ik = − ip − ig . (17)

In any case, Vpk ≥ 0 is also always assumed to hold true, as other-
wise a region with negative static resistance would be introduced.

It is worth pointing out that the real coefficients of (13) can be
computed starting from datasheets or measurements data, making
use of common fitting techniques, such as a simple least squares
method [23]. Moreover, as anticipated at the beginning of the sec-
tion, the model presents just three parameters, which do increase
the convergence performance of such fitting techniques, making it
suitable to model with ease triodes available on the market. Then,
the model mainly relies on a second-order formula which leads
to closed-form solutions when equated to similar simple expres-
sions (e.g., when coupled with linear systems), which makes it
particularly suited for implementing fully-explicit white-box cir-
cuit models when such conditions are met. Finally, the quadric
surface model is also able to describe pentodes in triode configu-
ration.

In order to test the accuracy of the representation, we compare
the ip − Vpk characteristics found on datasheets to that obtained
by means of the proposed model. We do this also for the two tra-
ditional models presented in Section 2. Let us take into account
the famous 12AX7 triode, which was employed in many different
tube stages, as our reference vacuum tube. Tables 1, 2, 3 report
the values of the coefficients to be used for modeling such a triode
with Koren model, Cardarilli model, and proposed model, respec-
tively. Fig. 2, instead, reports the results of such a comparison;

the 11 curves present in each of the three plots are obtained by
considering different values of Vgk. From the leftmost up to the
rightmost, these curves are computed with Vgk equal to 0, −0.5,
−1, −1.5, −2, −2.5, −3, −3.5, −4, −4.5, −5. In particular,
in Fig. 2(a) the results of Koren model are reported, in Fig. 2(b)
those of Cardarilli model, while in Fig. 2(c) those of the quadric
surface model. In all the three plots, the data acquired from the
12AX7 datasheet [25] are marked with blue crosses. In Fig. 2, it
is possible to observe that, in common operating regions [27], the
proposed model is more accurate than Koren model and is almost
as accurate as Cardarilli model, while featuring a lower number of
parameters. In fact, the 15 parameters controlling Cardarilli model
allows this to better grasp the nuances at higher Vpk. Nonetheless,
we can state that the proposed model maintain, in general, a com-
parable accuracy since the of values of Vpk for which it starts to de-
viate from the measured characteristics are not often encountered
in real applications.

3.1. 3-port Wave Digital Implementation

Although the proposed model can be implemented making use of
different techniques, in this work we decided to use WDFs. The
design procedure of WDFs entails a port-wise description of the
reference circuit, whose elements and topological interconnections
are realized as input-output blocks characterized by scattering re-
lations. In order to accomplish such a description, WDFs make
use of a change of variable, turning port voltage v and port cur-
rent i (the so-called Kirchhoff variables) into incident wave a and
reflected wave b with the addition of a free parameter per port Z
called port resistance [6]. Such a free parameter constitutes a pow-
erful mean for removing delay-free loops formed when Wave Dig-
ital (WD) blocks are interconnected [6, 28]. Among the differ-
ent wave definitions present in the literature [6, 29, 30], the most
widespread is that of voltage waves, i.e.,

a = v + Zi , b = v − Zi ,

v =
a+ b

2
, i =

a− b
2Z

,
(18)

which is employed for deriving WD implementations of circuit el-
ements [7, 31] and N -port topological junctions [32]. We aim at
deriving a triode WD implementation of the quadric surface model
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Figure 3: Typical common-cathode gain stage found in tube am-
plifiers.

such that it can be used in common WD structures. In particular,
we here derive a 3-port triode model following the approach de-
scribed in [18, 33]. Hence, we add a reference node O to the tri-
ode model, as shown in Fig. 1(b), and name the port between the p
node andO as port 1, the port between the g node andO as port 2,
and the port between the k node and O as port 3. Such a reference
node will be coincident with the ground node when the model is
exploited for circuit emulation. Then, each of these ports is charac-
terized by the set of variables {ax, bx, Zx} with x = 1, 2, 3 being
the port number.

If we apply the linear transformation in (18) to (16) and (17),
and solving for b2 and b3 we readily obtain

b2 = a2 , (19)

b3 = a3 +
Z3

Z1
(a1 − b1) , (20)

while doing the same with (15) and solving for b1 gives us

b1 = ±
√
∆1√

2Z1kp2γ
− 1

4Z1kp2γ2
− η , (21)

where

∆1 =
1

8Z1kp2γ2
+ a1 + η , (22)

γ = 1 +
Z3

Z1

(
1 +

kpg

4kp2

)
, (23)

η =
β + α

2

kp2γ
, (24)

α = kp + kpg

(
a2 − a3 − Z3

2Z1
a1

)
, (25)

β = kp2

(
1− Z3

Z1

2
a1 − a3

)
. (26)

Using the above equations, we can express

i′p = kpgVgk + 2kp2Vpk + kp =

= kpg

(
Z3

2Z1
(b1 − a1) + a2 − a3

)
+

+ kp2

(
Z3

Z1
(b1 − a1) + b1 + a1 − 2a3

)
+ kp ,

(27)

and hence
i′p ≥ 0⇔ b1 ≥ −η , (28)

assuming that all the involved model parameters and port resis-
tances are positive. This should always be the case given how the
model was constructed and that negative port resistances are re-
lated to incompatible sign conventions [34]. By comparing (28)
with (21), it is evident that the first term in this last equation must
be positive (necessary but not sufficient condition), hence the square
root must be taken with the positive sign.

Since (21) is effectively the solution of the intersection of a
line with a paraboloid pointing downwards in a 4-dimensional space,
the cases in which ∆1 < 0, and thus in which such an intersection
does not exist, can be interpreted as if Vpk or ipk are too small or
negative. In order to handle these occurrences, as well as the cases
in which the resulting Vpk, ipk, or i′p are negative, we propose the
following algorithm:

1. compute ∆1 using (22);

2. if ∆1 ≥ 0 then

(a) compute b1 using (21) taking the square root with
positive sign;

(b) if i′p < 0, computed according to (27), force ip = 0
(open circuit condition) by setting b1 = a1;

otherwise, if ∆1 < 0 set b1 = a1 (i.e., ip = 0, open circuit
condition);

3. if the resulting Vpk < 0, force it to be Vpk = 0 by setting

b1 =
(Z3 − Z1)a1 + 2Z1a3

Z1 + Z3
(29)

according to (18) and (20).

Please notice that such a model is implemented in a fully ex-
plicit fashion, i.e., without the need for iterative solvers. Further-
more, it is worth pointing out that the quadric surface model can
be also realized as a 2-port WD block, for example by employing
the vector definition of waves in [30, 35], or, more generally, as
a N -port with N ≤ 6 following the approach discussed in [33].
Different WD implementations of the proposed model may lead
to different advantages, potentially broadening the class of circuit
models that can be implemented in an explicit fashion. For in-
stance, the WD 2-port implementation by means of vector waves
would allows us to explicitly realize triode stages with Miller ca-
pacitance or characterized by complicated topologies [9], which,
instead, may not be realized by means of the 3-port implementa-
tion. However, when the number of multi-port nonlinear elements
is ≥ 2, iterative methods must be employed for the solution of the
WD structure [31].

4. EXAMPLE OF APPLICATION

Let us consider the common-cathode gain stage shown in Fig. 3,
typically found in tube amplifiers. The same circuit has been taken
into account in many other publications concerning the emulation
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Table 4: Values of the circuital components of Fig. 3.

Parameter Value Parameter Value

Vdd 250 V Rp 100 kΩ
Ri 1 MΩ Ro 1 MΩ
Rg 20 kΩ Rk 1 kΩ
Ck 10 µF Ci 100 nF
Co 10 nF − −

of vacuum tubes, e.g., in [18]. With reference to the triode stage,
the input signal is represented by the voltage generator Vin. Capac-
itorCi and resistorRi form a highpass filter which removes the DC
(Direct-Current) component from the input if present. The cathode
circuit, instead, is composed of a parallel connection between re-
sistor Rk and capacitor Ck, and sets the signal-dependent biasing
for the triode. The plate is connected to the DC voltage source Vdd

via resistor Rp, which is responsible for the node “p” bias point.
Then, the plate is also connected to the series between the DC de-
coupling capacitor Co and load resistance Ro, whose voltage is
taken as output variable. The values of the circuital parameters are
reported in Table 4. The nonlinear amplification introduced by the
triode together with the dynamic nature of the stage can generate
a rather complex signal-dependent distortion on the output Vout.

We implement the common-cathode stage in the WD domain
following the same approach and using the same WD structure
employed in [18], i.e., by considering the 3-port WD block mod-
eling the triode at the root of a connection tree. In order to test
the accuracy of the WD implementation, we realize the same cir-
cuit in LTspice, which is a widespread freeware software for cir-
cuit simulations, together with the proposed triode model. We set
Vin = A sin (2πkf0/fs), where A = 2.5 V is the amplitude, k is
the sampling index, f0 = 1 kHz is the fundamental frequency, and
fs = 44.1 kHz is the sampling frequency; in addition, we consider
the duration of the sinusoidal input equal to 1 s. We select once
again the 12AX7 as our reference triode, whose mdoel parameters
are reported in Table 3. Fig 4 shows the output of the simulation,
in particular the first three periods. The green dashed curve repre-
senting the LTspice simulation is overlapped with the continuous
blue curve representing the WD simulation, pointing out the ac-
curacy of the representation. Moreover, Fig. 4 also reports the re-
sults of the WD simulation obtained substituting the proposed tri-
ode model with the WD 3-port implementation of Cardarilli model
(with no grid current) proposed in [18]. We select Cardarilli model
over Koren model for drawing a comparison with state-of-the-art
implementations of triodes since it is characterized by a higher ac-
curacy, as shown in Fig. 2. Looking at Fig. 4, we can state that the
two different realizations of the common-cathode stage are consis-
tent, and that just a slightly different behavior can be spotted for
the negative half-wave, which reflects the lack in restricting Vpk to
non-negative values in the Cardarilli model.

As a final test, we perform an efficiency comparison simu-
lating the same common-cathode stage in the WD domain em-
ploying both the proposed model and Cardarilli model. The two
WD implementations, realized as GNU Octave scripts and avail-
able at https://dangelo.audio/dafx2023-quadric.
html, differ only for the considered 3-port WD triode model. Un-
der same operating conditions, we launch 20 runs of both algo-

0 0.5 1 1.5 2 2.5 3
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200
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Figure 4: Voltage Vout at the output of the triode stage shown in
Fig 3. The continuous black curve represents the result of the WD
simulation employing the proposed model, the dotted blue curve
represents the result of the WD simulation employing Cardarilli
model, while the dashed green curve represents the LTspice simu-
lation employing the proposed model.

rithms on an AMD Ryzen 3 3200G processor, considering as in-
put a mono guitar audio signal of duration 16 s and sampled at
fs = 96 kHz. We then measure the simulation time tsim, and we
average it over the number of runs for obtaining a fairer estimate.
While the WD implementation with Cardarilli model takes on av-
erage 355.02 s, the WD implementation with the proposed model
takes on average 76.55 s, showing thus a speedup of about 4.6×
over the traditional approach. It follows that the proposed quadric
surface model is able to run much faster without compromising
the accuracy of the representation, and, for this reason, can be a
valuable triode model to be employed for real-time Virtual Analog
applications.

5. CONCLUSIONS

In this paper, we proposed a novel triode model based on a quadric
surface approximation. The model is characterized by only three
parameters, involves simpler mathematical operations with respect
to traditional models, such as Koren [21] and Cardarilli [22], and
can lead to fully-explicit white box models. Considering the fa-
mous 12AX7 as a reference triode, we compared the plate current
characteristics obtained with both the Cardarilli and Koren mod-
els and the proposed model to the one reported on its datasheet,
showing that, when grid current is negligible, the new approach is
more accurate than Koren’s and almost as accurate as Cardarilli’s
even though the latter presents a number of parameters five times
higher. Although the model can be realized in many circuit simu-
lation methods, we decided to implement it as a 3-port WD block,
which we later employed for the emulation of the typical common-
cathode gain stage found in tube amplifiers. Under the same oper-
ating and modeling conditions, we drew an efficiency comparison
between the quadric surface model and Cardarilli model, measur-
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ing a 4.6× speedup, which makes the proposed methodology very
appealing for Virtual Analog applications.

Further work may concern the extension of the proposed model
to other operating conditions by including, e.g., the tube diode be-
tween grid and cathode and the modeling of more complex vac-
uum tubes, such as tetrodes, pentodes, etc., by applying the same
modeling methodology introduced in this paper but considering
quadric hypersurfaces.
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  ABSTRACT 

Sound field rendering with finite difference time domain (FDTD) 
method is computation-intensive and memory-intensive. This re-
search investigates an FPGA-based acceleration system for sound 
field rendering with the high-order FDTD method, in which spa-
tial and temporal blockings are applied to alleviate external 
memory bandwidth bottleneck and reuse data, respectively. After 
implemented by using the FPGA card DE10-Pro, the FPGA-based 
sound field rendering systems outperform the software simula-
tions conducted on a desktop machine with 512 GB DRAMs and a 
Xeon Gold 6212U processor (24 cores) running at 2.4 GHz by 11 
times, 13 times, and 18 times in computing performance in the 
case of the 2nd-order, 4th-order, and 6th-order FDTD schemes, 
respectively, even though the FPGA-based sound field rendering 
systems run at much lower clock frequency and have much small-
er on-chip and external memory. 

1. INTRODUCTION 

Room acoustic simulation exhibit numerical methods to model 
sound propagation phenomena in spatial and time domain, and are 
applied widely in many engineering and scientific applications, 
such as sound source localization [1-3], virtual reality [4-5], artifi-
cial reverberation [6], boundary impedance estimation [7], and so 
on. Many analysis algorithms have been proposed for sound field 
rendering in room acoustics, in particular, FDTD method, which 
has already become one of essential methods in room acoustics 
since it was introduced to analyse acoustical behaviour by O. Chi-
ba et al., D. Botteldooren et al., and L. Savioja et al. [8-11]. FDTD 
method solves wave equation with a finite number of stencil 
points in a discretized sound space using numerical method, and 
provides much higher accuracy over other methods like geometric 
methods. The inherent problem of FDTD method is dispersion 
error, and oversampling in spatial grids is usually required to sup-
press the numerical dispersion. As a result, computation and 
memory demand are increased significantly. Although many 
works were done at algorithmic level to solve this problem, such 
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as digital waveguide mesh topologies [12-15], explicit second-
order accurate schemes [16], high-order explicit “large-star” 
schemes [17], and two-step explicit FDTD schemes with high-
order accuracy [18-20], these approaches still suffer from high 
computational cost. In general, to solve wave equations using 
FDTD method, computing capability is increased as the fourth 
power of frequency and is proportional with the volume of a 
sound space [6], and the size of the required memory is third pow-
er of frequency. Given the auditory range of humans (20 Hz-20 
kHz), analyzing sound wave propagation in a space corresponding 
to a concert hall or a cathedral (e.g. volume of 10000-15000 m3) 
for the maximum simulation frequency of 20 kHz requires peta-
flops of computing capability and terabytes of memory. This re-
quires computing systems to have huge computational capability 
and large memory bandwidth.  

In recent years, graphic processing units (GPUs) and field 
programmable gate arrays (FPGAs) have been applied to speed up 
computation in sound field rendering because of their much higher 
parallel computational capability over traditional general-purpose 
processors [21-36]. In particular, latest FPGAs contain thousands 
of hardened floating-point arithmetic units, several Megabytes of 
on-chip block memories to cache data, and millions of reconfigu-
rable logic blocks. These on-chip hardware resources may be ap-
plied to directly implement sound wave equations to accelerate 
computation in contrast with software simulations in GPUs and 
general-purpose processors. Furthermore, system data paths can 
be customized in accordance with the data flow of a sound field 
rendering system to improve computing performance. On the oth-
er hand, the high-order FDTD method provides more accurate ap-
proximation on the second-order partial derivative and reduces 
dispersion. In this research, an FPGA-based accelerator is devel-
oped to speed up computation in sound field rendering with the 
high-order FDTD method. The main contributions of this work 
are summarized as follows. 
(1) A high-order FDTD method. The related formula is derived, 

including approximation of the second partial derivative us-
ing Lagrange polynomial interpolation, the updated equation 
of 4th-order and 6th-order FDTD schemes. 

(2) Design and implementation of an FPGA-based sound field 
rendering system with the high-order FDTD method. Spatial 
and temporal blockings are adopted to reduce memory 
bandwidth requirement and reuse data. 

(3) Performance evaluation and analysis based on the prototype 
machine. The proposed rendering system is designed using 
OpenCL and implemented using the FPGA card DE10-Pro. 
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Its performance is evaluated through analyzing sound prop-
agation in a three-dimensional shoebox with dimensions be-
ing 16m×8m×8m, incidence being an impulse, and sampling 
rate of sound being 44.1 kHz. Compared with the software 
simulations performed on a desktop machine with 512 GB 
DDR4 RAMs and an Intel’s Xeon Gold 6212U processor 
running at 2.4 GHz, the proposed rendering systems speed 
up computation by 11 times, 13 times, and 18 times in the 
2nd-order, 4th-order, and 6th-order FDTD schemes, respec-
tively.  

The rest of this paper is organized as follows. The high-order 
FDTD schemes are introduced in Section 2. In Section 3, system 
design is described, including spatial blocking, temporal blocking, 
and system architecture. System performance of the FPGA-based 
prototype machine is presented in Section 4, followed by the con-
clusions drawn in Section 5.  

2. HIGH-ORDER FDTD SCHEME 

A high-order approximation in FDTD method gives more accurate 
approximation, reduces dispersion, and increases valid bandwidth 
[37]. In general, Lagrange interpolation [38] and Taylor series ex-
pansion [39] are applied for such approximation. In this research, 
the Lagrange polynomial method is used to approximate the sec-
ond-order partial derivative in spatial domain. 

2.1. Approximation of second-order partial derivative 

In a 4th-order scheme, the Lagrange polynomial is assumed as 
equation (1) and pass through five adjacent points 

0 1 2 3 4(0, ), ( , ), (2 , ), (3 , ), (4 , )f f f f f     along x axis. The   is the 

unit of x axis. 
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Equation (2) can be solved through matrix inversion, and the pa-

rameters 
0 1 2 3 4, , , ,a a a a a  are obtained as shown in Equation (3) 

[17][40].  

 

0 0

0 1 2 3 4
1

0 1 2 3 4
2 2

0 1 2 3 4
3 3

0 1 2 3 4
4 4

25 48 36 16 3

12

35 104 114 56 11

24

5 18 24 14 3

12

4 6 4

24

a f

f f f f f
a

f f f f f
a

f f f f f
a

f f f f f
a


=


− + − + − =

 
 − + − +

=


− + − + −
= 


− + − + =

 

 

 
 
 
 
 

(3) 
 
 
 
 
 
 

Then the second derivative of ( )f x  equals to Equation (4). In 

order to get a centered difference approximation, the middle point 

2(2 , )f  of the five adjacent points are chosen to approximate the 

second derivative, which is shown in equation (5). 
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Thus, the approximated parameters for the second derivative is 
1 4 5 4 1

( , , , , )
12 3 2 3 12

− − −
, and 

0 1 2 3 4( , , , , )f f f f f  corresponds to the 

values of the points 

( 2, , ), ( 1, , ), ( , , ), ( 1, , ), ( 2, , )i j k i j k i j k i j k i j k− − + + along x axis 

in a three dimensional Cartesian space, respectively. The similar 
derivation can be conducted for the 6th-order approximation, in 
which ( )f x  is assumed to be 

6 5 4 3 2

6 5 4 3 2 1 0( )f x a x a x a x a x a x a x a= + + + + + +  and seven 

adjacent points are required to solve the equation.  

2.2. High-order FDTD scheme 

Sound wave propagation in a cubic space is governed by the equa-
tion.  

 2 2 2 2
2

2 2 2 2
( )

P P P P
c

t x y z

   
= + +

     

 

(6) 

 

where P denotes sound pressure, c is the speed in air, t is time, x, y 
and z are Cartesian coordinates in a three-dimensional space. To 
solve Equation (6), high-order approximation, such as equation 
(5) for the 4th-order approximation, is applied to approximate the 
second-order partial derivative instead of the second-order center 
difference method. In general, the high-order approximation in 
time domain increases memory requirement because more data at 
previous time steps are involved in computation while the high-
order approximation in spatial domain introduces additional com-
putations due to more neighbor grids are needed to update value 
of a grid. In order not to increase memory requirement but just 
increase computations of updating sound pressure of a grid, the 
second-order approximation in time domain and high-order ap-
proximation in spatial domain are applied on Equation (6), which 
are shown as follows.  
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Letting x y z l =  =  =   and inserting Equation (7) into 

Equation (6), the updated equation for the 4th-order scheme is ob-
tained and shown in Equation (8) [40], in which c t l =    is 
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the Courant number. A similar derivation can be conducted on the 
6th-order scheme and Equation (9) is yielded to update sound 
pressure of a grid. 
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Equations (8) and (9) show that sound pressures of the neigh-
bor grids along axes at previous time steps are needed to update 
sound pressure of a grid. The neighboring grids are in six axial 
directions. Two and three neighbor grids are in each direction in 
the 4th-order and 6th-order schemes, respectively. Computing 
sound pressure of a grid requires 11 additions, 2 subtractions, 3 
multiplications, and 14 memory accesses in the 4th-order FDTD 
scheme while it needs 17 additions, 2 subtractions, 4 multiplica-
tions, and 20 memory accesses in the 6th-order FDTD scheme. In 
addition, since the high-order and 2nd-order approximation are 
applied on the space domain and time domain, respectively, the 
proposed FDTD scheme has high-order accuracy in space domain 
while it remains 2nd accuracy in time domain. For example, the 
4th-order FDTD scheme provides 4th-order accuracy in space and 
2nd-order accuracy in time. 

Stability condition and dispersion are important in the FDTD 
method. J. Mourik discussed the stability condition and dispersion 
of high-order FDTD method and claimed that the 4th-order 
scheme was the best in terms of valid bandwidth up to 16th-order 
scheme [17][41]. The valid bandwidth of the 4th-order scheme 
was about 1.5 times and 1.1 times of those of the 2nd-order and 
6th-order schemes, respectively, and the valid bandwidth dropped 
a little bit along with every increase of the order after the 4th-
order. The stability condition for the 4th-order and 6th-order 

FDTD schemes are 0.5   and 15
68

  , respectively. In 

addition, high-order FDTD boundary conditions were also inves-
tigated by J. Mourik [41]. To simplify system design and evalua-
tion, boundary conditions are not discussed in this paper. 

3. SYSTEM DESIGN 

From Equations (8) and (9), sound pressures of grids at previous 
two continuous time steps (time steps n and n-1) are required to 
compute sound pressures of grids at time step n+1, and huge 
amounts of data are read from and written back to memory as the 
grid dimensions are increased. Therefore, it is impossible to store 
all data in the on-chip block RAMs of FPGA, which are about 
several Megabytes in size, to reduce data access overhead in the 
case of large sound spaces even though the size of on-chip block 

memories inside current FPGAs has been increased significantly. 
Instead, external on-board DDR4 DRAMs on the FPGA card, 
which are several Gigabytes in size are needed to store data during 
computing. Another challenge is how to reuse data and reduce 
memory bandwidth requirement. In this research, spatial blocking 
is introduced to reduce the required memory bandwidth between 
the computing engine and on-board memory, and temporal block-
ing is employed to reuse data and reduce data accesses to external 
memory.  

3.1. Spatial Blocking 

Spatial blocking is applied to reduce the required on-chip 
memory, and it is employed in many deep-pipeline implementa-
tions of stencil computation on FPGA [42-43]. As shown in Fig. 
1(a), a large sound space with Nx × Ny × Nz grids is decomposed 
into small spatial blocks and each spatial block has Cx × Cy × Nz 
grids. A small spatial block is further partitioned into x-y planes 
along the z dimension (Fig. 1(b)). Computations are performed 
plane by plane in a spatial block while they are carried out along 
the x dimension in a plane. Equations (8) and (9) indicate that data 
values of three adjacent planes are required to calculate new re-
sults. In the current design, shift registers are introduced as on-
chip buffers to stream in data. As illustrated in Fig. 1, n values of 
the plane i+1, all values of the planes i-1 and i are firstly streamed 
into a shift register from external memory to compute sound pres-
sures of grids on the plane i, the computing unit then fetches data 
from the shift register and computes sound pressures of n grids on 
the plane i concurrently. Then, the shift register is shifted right by 
n data, and another n new data are written into the head of the 
shift register while n old data are evicted from the tail at each 
clock cycle. When computations in a plane are completed, data in 
a new plane are streamed in the shift register and computation is 
moved to the next plane. This procedure is repeated until sound 
pressures of all grids in a spatial block are computed, and then 
computation is switched to the next spatial block. The shift-
register-based buffer can be efficiently implemented by the on-
chip block RAMs inside an FPGA. 

Using shift register minimizes the size of on-chip buffer by 
only storing sound pressures of the needed grids in a spatial block. 
Furthermore, current FPGAs provide abundance of block RAMs, 
therefore, much larger on-chip buffers can be implemented to 
store sound pressures of grids in a large spatial block to speed up 
data access. In addition, to parallelize computation spatially and 
improve utilization efficiency of the external on-board memory 
bandwidth, data are coalesced, and computations are vectorized to 
calculate n grids concurrently through loop unrolling in each spa-
tial block. If the dimension of a spatial block is Cx × Cy and n 
grids are computed in parallel, the depth of the shift register is 
calculated through Equation (10).  

 2depth rad Cx Cy n=    +  (10) 

where rad is the stencil radius and it is 1, 2, and 3 for the 2nd-
order, 4th-order, and 6th-order FDTD schemes, respectively. In 
contrast, the depth of the shift register is 2×rad×Nx×Ny+n if the 
spatial blocking is not applied. During implementation on an 
FPGA, parts of the shift register will be replicated to support par-
allel accesses because of the limited number of ports in each block 
RAM unit. Such replication will require more block RAMs inside 
an FPGA.  

Computing sound pressures of grids on boundary planes 
(front, real, right, and left) of a spatial block needs data from its 
neighbor spatial blocks. But these data are not read into the shift 
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register during the computations of current spatial block. To avoid 
data exchange between adjacent spatial blocks, overlapped block-
ing is applied and such grids on boundary planes of a spatial block 
are treated as internal grids of the related neighbor spatial blocks 

and computed later. The size of the overlapped parts of neighbor 
spatial blocks are linearized to the stencil radius rad and the di-
mension of a spatial block (Cx × Cy).  

 
Figure 1: Spatial blocking 

3.2. Temporal Blocking 

Temporal blocking allows system to continuously compute sound 
pressures of grids of a spatial block at different time steps. Hence, 
data access to external memory is reduced. To implement tem-
poral blocking, a computing kernel consisting of several replicated 
processing elements (PEs) is designed, and each PE computes 
sound pressures of grids in the same spatial block at different time 
steps. As shown in Fig. 2, several PEs are cascaded to compute 
sound pressures of grids in a same spatial block at continuous time 
steps. For example, PE0 calculates sound pressures of grids at time 
step n. The computed results are sent to PE1 and then PE1 com-
putes sound pressures of grids in the same spatial block at time 
step n+1. Such computation procedure is repeated until the final 
PE computes sound pressures of grids at time step n+k-1. Thus, 
access to external memory is reduced, and computation is sped up 
because sound pressures of a spatial block at several time steps are 
computed concurrently. Since computation of a given PE starts 
only after the outputs of the previous PE are available, computa-
tion in a PE is always behind its previous PE.  
 

 

Figure 2: System diagram 

3.3. System Design 

The system diagram of the FPGA-based sound field rendering 
system is presented in Fig. 2, which consists of the Data input 

module, Computation engine, and Data output module. The Data 
input module streams data of a spatial block from the external 
DDR DRAMs on the FPGA card plane by plane, and feeds data to 
the computation engine. The computation engine consists of 16 
PEs. Each PE computes sound pressures of grids in a spatial block 
at a time step, and all PEs are applied to compute sound pressures 
of grids in the same spatial block at continuous 16 time steps. The 
Data output module writes the computation results back to the ex-
ternal memory.  

A PE computes sound pressure of a grid according to its posi-
tion, incidence, and sound pressures of its neighbor grids at previ-
ous time steps. The computed results are sent to the neighbor PE 
except for the final PE, in which they are written back to the ex-
ternal memory through the Data output module. As shown in Fig. 
3, a PE includes system controller, four buffers (shift_register_p1, 
shift_register_p2, shift_register_posi, and 
shift_register_incidence), and computing units. The functions of 
each module are described as follows. 

• System controller. Each grid has an associated position flag, 
which will be applied to choose the updated equation in the 
computing unit. The system controller reads position flag and 
data values at previous time steps from the Data input module 
or a neighbor PE according to the computation flow, and 
writes them into the related shift registers like 
shift_register_p1, shift_register_p2, shift_register_posi, re-
spectively. Then the computing unit computes sound pressures 
and sends the computation results to the neighbor PE except 
for the final PE, in which the computed results are written 
back to the external memory directly through the Data output 
module. 

• Shift_register_p1, shift_register_p2, shift_register_posi, and 
shift_register_incidence. To compute sound pressures of grids 
at time step n, data values at time step n-1 and n-2 are 
streamed in the shift_register_p1 and shift_register_p2, re-
spectively. In a PE, the input data data_p1 is directly passed to 
the next neighbor PE as the data values at time step n-2 while 
the computed results are output to the next neighbor PE as the 
data values at time step n-1. The data values are exchanged 
through high bandwidth channels between neighbor PEs. The 
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position flags of grids are kept in the shift_register_posi. Since 
all PEs compute sound pressures of grids in a same spatial 
block, the position flag of a grid is same in all PEs, and a PE 
just passes the position_flag to its next neighbor PE. The inci-
dent data are stored in the shift_register_incidence.  

• Computing unit. The computing unit fetches data from four 
buffers and compute sound pressures. It is designed based on 
the sound field rendering algorithm, namely Equations (8) and 
(9) for the 4th-order and 6th-order FDTD schemes.  

 

Figure 3: PE structure 

4. PERFORMANCE EVALUATION 

The proposed sound field rendering systems based on the 2nd-
order, 4th-order, and 6th-order FDTD schemes were designed us-
ing the OpenCL programming language and implemented using 
the FPGA card DE10-Pro from Terasic Company [44]. The FPGA 
card contained a Stratix 10 SX FPGA (1SX280HU2F50E1VG) 
and 8 GB on-board external DDR4 DRAMs. To verify and esti-
mate the performance of the developed sound field rendering sys-
tems, sound propagation in a three-dimensional shoebox with di-
mension being 16m×8m×8m was analyzed. The incidence was an 
impulse, and the number of the computed time steps was 32. As a 
comparison, relative counterpart systems were developed using 
the C++ programming language, and executed on a desktop ma-
chine with 512 GB DDR4 DRAMs and an Intel Xeon Gold 6212U 
processor (24 cores) running at 2.4 GHz. The OpenCL codes were 
compiled using the Intel FPGA SDK for OpenCL 19.1 while the 
reference C++ codes were compiled using the GNU compiler 
(version: 4.8.5) with the option -O3 and -fopenmp to use all 24 
processor cores. During analysis, the sound speed was 340 m/s, 
sampling rate is 44.1 kHz, the Courant number   was 

3 151, ,
3 2 68

 in the 2nd-order, 4th-order, 6th-order FDTD 

schemes, respectively, and all boundaries were clamped to 0, i.e. 
phase-reversing fully reflective boundaries. Data were single-
precision floating point in both the FPGA-based rendering sys-
tems and software simulations. The development environment in 
the FPGA-based sound field rendering system and software simu-
lation is shown in Table 1. As presented in Table 1, the memory 
size of external and on-chip memories in the FPGA-based system 
is much smaller than that of the desktop machine in the software 
simulation, and the FPGA system runs at much lower clock fre-
quency over the desktop machine.  

4.1.  Hardware resource utilization 

Table 2 presents the hardware resource utilization of the FPGA-
based sound field rendering systems with the 2nd-order, 4th-order, 
and 6th-order FDTD schemes when the size of a spatial block is 

128 × 128, the number of PEs is 16 in the computation engine, 

and the number of grids computed concurrently is 16. Equations 

(8) and (9) indicate that as the order of the FDTD scheme is in-
creased, the number of operations are increased, more data are 
streamed in the shift registers, more DSP blocks, which are uti-
lized to implement multipliers, are involved in computation, and 
more RAM blocks are required to implement the shift registers to 
store data during computing. From Equation (10), the utilized 
RAM blocks are significantly affected by the size of a spatial 

block. If the size of a spatial block is changed from 128 × 128 to 

256 × 256 in the 2nd-order FDTD scheme, the number of utilized 

RAM blocks will be increased from 1785 to 5129. In addition, 
since the control of shifting and reading out data from the shift 
registers at a clock cycle is complicated in the sound field render-
ing system with the higher-order FDTD scheme, the system data 
path becomes more complex, and the clock frequency is decreased.  

From Table 2, the hardware resources are not utilized effi-
ciently in the current design. The logic blocks, DSP blocks, and 
RAM blocks are used by 29%, 6%, and 15% of the relative valid 
resources inside the FPGA, respectively. Thus, the size of the spa-
tial block and the number of grids computed in parallel can be fur-
ther increased in the current design. On the other hand, as the size 
of the spatial block and the number of grids computed in parallel 
are increased, the data path in the hardware system may become 
complicated, and clock frequency may be decreased, which will 
result in the degradation of computing performance. Therefore, 

Table 1: Development environment 

  FPGA 
software  

simulation 

computing unit Stratix 10 SX Intel Xeon Gold 

6212U  

# of cores 5760 DSP blocks 24 cores 

frequency about 350 MHz 2.4 GHz 

on-chip memory 
28.6 MB block 

RAMs 

L1 cache: 1.5 MB 

L2 cache: 24 MB 

L3 cache: 35.75 MB 

external 

memory 

8 GB  

DDR4-2400 

512 GB  

DDR4-2933 

operating  

system 
CentOS 7.2 CentOS 7.2 

programming  

language  
OpenCL C++ 

compiler 
Intel FPGA SDK 

for OpenCL 19.1 

GNU compiler 

(version: 4.8.5) 

fabrication  14 nm 14 nm 

 Table 2: Hardware resource utilization 

orders 
logic  

utilization 

DSP 

blocks 

RAM 

blocks 

clock  

frequency 

(MHz) 

2nd  
269,159 

(29%) 

342 

(6%) 

1,785 

(15%) 
357 

4th 
293,001 

(31%) 

630 

(11%) 

3,764 

(32%) 
355 

6th 
335,237 

(36%) 

918 

(16%) 

4,309 

(37%) 
337 
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the size of the spatial block and the number of grids computed 
concurrently cannot be increased unlimitedly. 

4.2.  Computation time 

When the size of the spatial block is 128 × 128, the number of PEs 
is 16, and the number of grids computed concurrently is 16, Table 
3 presents the average rendering time at each time step in the 
FPGA-based sound field rendering systems and software simula-
tions in the case of the FDTD schemes with different orders. Alt-
hough the desktop machine in the software simulations runs at 
much higher clock frequency and has much larger external and 
on-chip memories than the FPGA-based sound field rendering 
systems, the FPGA-based sound field rendering systems speed up 
computation by 11 times, 13 times, and 18 times in the 2nd-order, 
4th-order, and 6th-order FDTD schemes, respectively, over soft-
ware simulations performed on the desktop machine. In the 
FPGA-based rendering system, sound pressures of grids at time 
steps n and n-1 are stored into two independent DDR4 DRAMs, 
and they are fetched through two independent channels and 
streamed into the on-chip shift registers inside FPGA. The over-
head to access data from the shift registers is usually one clock 
cycle. In contrast, all sound pressures are stored in external 
memory in the software simulations, and external memory is ac-
cessed frequently to fetch or write back data during computation. 
The data access is constraint by the memory bandwidth and the 
access overhead is very large. Although on-chip caches inside the 
processor may reduce the overhead of accessing data, their bene-
fits to the computing performance improvement are limited as the 
grid dimension is increased. Moreover, data are reused through 
temporal blocking in the FPGA-based system, and sound pres-
sures of a spatial block at 16 continuous time steps are computed 
in parallel. This further reduces data access to the external 
memory. All these lead to the performance improvement of com-
putation in the FPGA-based sound field rendering system. 

In the current performance evaluation, the Courant number is 

3 151, ,
3 2 68

 in the 2nd-order, 4th-order, 6th-order FDTD 

schemes, respectively. As the order of the FDTD scheme is in-
creased, although the clock frequency of the FPGA-based sound 
field rendering system decreased a little bit, the computing time at 
each time step is decreased significantly because the grid dimen-
sion becomes smaller and the number of grids is reduced. But it is 
worth noting that different Courant numbers will impact upon the 
valid bandwidth of the outputs in each FDTD scheme. 

4.3.  Computational Throughput  

The computational throughput stands for the number of grids up-
dated per second at each time step and is calculated by using the 
following formula.  

  

_

grid

updated

time step

N
SP

t
=  

 

(11) 

where 
gridN  is the number of grids, and 

_time stept  is the average 

computing time at a time step. Table 4 shows the computational 
throughput in the FPGA-based sound field rendering systems and 
software simulations in the case of the FDTD schemes with dif-
ferent orders. As shown in Table 4, the FPGA-based system up-
dates grids at much higher speed over the software simulations 
because it achieves much better computing performance at each 
time step. On the other hand, as the order of the FDTD scheme is 
increased from the 2nd to 6th, the computational throughput is 
improved about 9.5%. 

4.4.  Discussion  

In the current evaluation, sound propagation in a simple three-
dimensional shoebox was analyzed using the developed FPGA-
based sound field rendering system with the high-order FDTD 
method. For a sound space with complex geometries, decomposi-
tion methods to discretize a sound space into a grid mesh are re-
quired. In the hardware system, the data flow to stream data from 
the external on-board memory will be changed, and the system 
data path may become complicated. Furthermore, all boundaries 
were clamped to 0 in current evaluations. If complex boundary 
conditions are adopted, the updated equations for the grids on the 
boundaries are needed to be derived from the high-order FDTD 
method, and the computing unit inside a PE will be changed in the 
FPGA-based sound field rendering systems because the updated 
equation is different in accordance with the position of a grid.  

On the other hand, the computing pattern in sound field ren-
dering with FDTD methods is stencil computation in principle, in 
which the bottleneck of computing performance is memory band-
width. In the current design, the spatial blocking is applied to alle-
viate the required memory bandwidth, and the temporal blocking 
is adopted to reuse data and reduce memory access to external 
memory. Although FPGA provides on-chip block memories with 
large bandwidth, the size of on-chip block memories is limited, 
such as several Mega bytes. And the FPGA card DE10-Pro pro-
vides large size on-board external memory, which is 8GB DDR4-
2400 DRAMs. In the FPGA-based acceleration system, computa-
tion is sped up through customization of data path according to the 
data flow during computing and parallelism of PEs. In contrast, 
current GPUs provide several Giga bytes high speed and high 
memory bandwidth (HBM) memories, and data access overhead 
will be reduced significantly. Moreover, development of an 
FPGA-based system needs much hardware knowledge even 
though high level synthesis is widely applied in recent years. De-
velopment of a GPU-based system is relatively easier than that of 
FPGA-based system. All these results in that GPUs are more pop-
ular in computing than FPGAs. At next step, a sound field render-
ing system will be developed using GPU and compared with the 

Table 4: Computational throughput (Ggrids/s) 

orders FPGA software simulation 

2nd 8.8457  0.8015  

4th 8.3604  0.6235  

6th 9.6882  0.5207  

Table 3: Rendering time per time step (s) 

orders FPGA software simulation 

2nd 0.0486  0.5363  

4th 0.0333  0.4458  

6th 0.0238  0.4437  
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proposed FPGA-based sound field rendering system to validate 
which platform is better for sound field rendering.  

5.  CONCLUSIONS 

High-order FDTD method provides more accurate approximation 
and smaller dispersion. The sound field rendering with FDTD 
method is computationally intensive and memory intensive. In this 
research, an FPGA-based sound field rendering system based on 
the high-order FDTD method is developed to speed up computa-
tion. The spatial blocking is applied to reduce the size of the re-
quired on-chip buffer and memory bandwidth, and the temporal 
blocking is adopted to reuse data and compute sound pressures of 
grids in the same spatial block at 16 continuous time steps in par-
allel. In the sound field rendering system with the 2nd-order, 4th-
order, and 6th-order FDTD schemes, the FPGA-based system 
achieves much higher performance in computing and computa-
tional throughput over the software simulations carried out in a 
desktop machine even though the FPGA-based rendering systems 
run at much lower clock frequency and has smaller on-chip and 
external on-board memories. The evaluation results demonstrate 
that FPGAs are promising for sound field rendering. In future 
work, the decomposition methods to discretize a sound space with 
complex geometries into a grid mesh and the high-order FDTD 
schemes with complicated boundary conditions will be studied, 
and a real-time sound field rendering system based on the pro-
posed architecture and high-order FDTD methods with complicat-
ed boundary conditions will be investigated, in which input inci-
dence, computation, and computed results are all handled at real 
time. As a comparison, a counterpart system based on GPUs will 
be developed to compared with the FPGA-based sound field ren-
dering system and explore the suitable platform for sound field 
rendering. 
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ABSTRACT

Velvet noise is a sparse pseudo-random signal, with applications in
late reverberation modeling, decorrelation, speech generation, and
extending signals. The temporal roughness of broadband velvet
noise has been studied earlier. However, the frequency-dependency
of the temporal roughness has little previous research. This pa-
per explores which combinative qualities such as pulse density,
filter type, and filter shape contribute to frequency-dependent tem-
poral roughness. An adaptive perceptual test was conducted to
find minimal densities of smooth noise at octave bands as well as
corresponding lowpass bands. The results showed that the cut-
off frequency of a lowpass filter as well as the center frequency
of an octave filter is correlated with the perceived minimal den-
sity of smooth noise. When the lowpass filter with the lowest
cutoff frequency, 125 Hz, was applied, the filtered velvet noise
sounded smooth at an average of 725 pulses/s and an average of
401 pulses/s for octave filtered noise at a center frequency of 125
Hz. For the broadband velvet noise, the minimal density of smooth-
ness was found to be at an average of 1554 pulses/s. The results of
this paper are applicable in designing velvet-noise-based artificial
reverberation with minimal pulse density.

1. INTRODUCTION

Velvet noise is a sparse pseudo-random noise sequence, which
consists of ternary values (−1, 0, and 1) [1] and has a constant
power spectrum [2]. Velvet noise was originally proposed by Kar-
jalainen and Järveläinen to model room reverberation [1]. It is
known that late reverberation resembles exponentially-decaying,
filtered white noise [3, 4, 5]. Broadband velvet noise has been
shown to retain its perceived smoothness with lower pulse densi-
ties in comparison to other types of sparse noise sequences [6]. At
2000 impulses per second, velvet noise has been shown to sound
smoother than Gaussian white noise (GWN) [6].

The perceived temporal smoothness of velvet noise has been
investigated mostly on broadband noise sequences [6]. Kar-
jalainen and Järveläinen [1] made an initial study on the frequency-
dependency of the temporal roughness, where lowpass filtered
velvet-noise, with a cutoff frequency of 1.5 kHz, was shown to
sound smoother than GWN with a pulse density of 600 pulses/s.
This paper investigates further the frequency-dependent psychoa-
coustic temporal roughness of velvet-noise sequences. Having a

Copyright: © 2023 Jade Roberts et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

clear understanding of the frequency-dependency of the temporal
roughness can help in the design and optimization of reverberation
models based on sparse noise sequences.

The earliest sparse-noise-based reverberation algorithm was
proposed by Rubak and Johansen [7, 8]. Their algorithm is based
on totally random noise (TRN), which is a type of sparse pseudo-
random noise with an equal probability of any sample having a
non-zero value. The proposed minimal pulse density for produc-
ing high-quality noise with the TRN was reported to be between
2000 − 4200 pulses/s, however for a lowpass filtered noise with
cutoff at 8 kHz.

Rubak and Johansen also proposed a recursive structure for
computational efficiency [7], which was further improved by Kar-
jalainen and Järveläinen [1] by replacing the TRN with velvet
noise and by introducing time-variation. The time variation was
introduced to reduce the periodicity of repeating the same short
velvet-noise sequence inside the recursive structure. A further
problem arises from the time-variability which creates warbling
especially on stationary input sounds [1, 9, 10]. An alternative so-
lution to mitigate the periodicity problem was proposed in [10],
where interleaved velvet-noise sequences hide the repetitiveness.

A different approach to reverberation modeling was taken in
[4, 5], where filtered velvet noise segments were concatenated to
model target late-reverberation. It was shown empirically that
lower pulse density could be used towards the end of the model
response, where the bandwidth was reduced. Recently, it was also
shown that colored velvet noise can be generated directly by con-
trolling the pulse location distribution [11, 2]. A practical algo-
rithm for generating velvet noise with a lowpass spectrum, called
dark velvet noise (DVN), was later proposed in [12]. The cut-
off of DVN can be varied in time to generate characteristic late-
reverberation, where the low frequencies decay slower than the
high frequencies.

Another application for velvet-noise is to implement an effi-
cient decorrelator [13, 14]. An optimization scheme for minimiz-
ing the spectral coloration introduced by the velvet-noise decorre-
lator was proposed in [14]. Velvet noise has been also used in hy-
brid reverb structures combining it with feedback delay networks
(FDN) [15, 16]. Short velvet-noise filters are applied either within
the feedback matrix [16] or at the inputs and outputs of the FDN
[15]. Additionally, velvet-noise has been used in vocoder-based
speech generation by serving as excitation signals [17].

In this paper, the perceptual temporal roughness of velvet
noise at octave bands as well as at lowpass bandwidths with the
octave band center frequencies as the cutoffs are studied in a per-
ceptual test. Additionally, the time-domain smearing of various
filter orders is investigated objectively to narrow down the filter
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Figure 1: Velvet-noise sequence, filtered with an octave-band filter
at the center frequency Fc = 1.5 kHz, using different filter orders
N ∈ {2, 4, 6, 8} from top to bottom. The consecutive plots are
offset for better visualization. The grid size Td = 0.5 ms is shown
with a dotted line.

selection for the listening test. An adaptive perceptual test was
implemented in Matlab, where the subjects control the density of
test velvet noise signals. The test aims to find perceptual density
thresholds where each test signal still sounds as smooth as a refer-
ence velvet noise signal with the pulse density of 2000 pulses/s.

The rest of this paper is organized as follows. Section 2 gives
relevant background on velvet noise and temporal roughness. Sec-
tion 3 describes the design of the filters for the listening test. Sec-
tion 4 introduces the listening test setup. The results of the listen-
ing test are analyzed in Section 5. Section 6 concludes the paper
and comments the future work.

2. BACKGROUND

This section explains the concepts behind velvet noise and tempo-
ral roughness.

2.1. Velvet Noise

Velvet noise is a sparse random noise sequence comprised of only
sample values of −1, 0, and 1. Each frame contains a single ran-
domly placed impulse with randomized sign; the rest are zeros,
leading to a sparser noise than GWN. The number of nonzero im-
pulses per second is defined as the pulse density ρ, i.e.,

ρ =
fs
Td
, (1)

where Td refers to the average distance between impulses mea-
sured in samples and fs refers to the sampling rate. In this work, a
sampling rate of fs = 44100 Hz is used for all generated signals.

Karjalainen and Järveläinen [1] found that a pulse density of
ρ = 1500 pulses/s satisfied the aim of minimal pulse density and
maximal smoothness. This was the sweet spot for a perceived
smoother noise than GWN. To prevent gaps and clusters of sample

values which contribute to the perception of temporal roughness,
the impulse locations are determined as [6]

k(m) = ⌊mTd + r1(m)(Td − 1)⌉, (2)

where m refers to the pulse counter while r1(m) refers to the se-
quence of uniformly distributed random values between 0 and 1,
and ⌊·⌉ is the rounding operation. The velvet-noise sequence is
computed with

s(n) =

{
2⌊r2(m)⌉ − 1, when n = k(m)

0, otherwise,
(3)

where n is the sample index and r2(m) is another uniform random
number sequence to decide when an impulse will be 1 or −1. In
Fig. 1, the black line at the top shows a broadband velvet noise
sequence. Here, the impulses of 1 or −1 appear only once in each
frame.

Additionally, velvet noise is featureless with a flat power spec-
trum [6]. The computing time of a convolution with velvet noise is
much shorter than that of GWN because it mainly consists of zeros
and where there are impulses in velvet noise, the ones and minus
ones are easy to multiply by [4, 5].

2.2. Temporal Roughness of Sparse Noise

Temporal roughness is a psychoacoustic quality of sparse noise se-
quences where the lower the pulse density the rougher the signal is
perceived [1, 6]. Temporal roughness has not been fully defined in
the literature but it might be directly related to the roughness which
is defined as the sensation caused by amplitude-modulated sine
waves with modulation frequencies between 15 − 300 Hz range.
The sensation reaches its maximum around modulation frequency
of 70 Hz [18].

Rubak and Johansen [7] observed that when the delay of a
comb filter is increased above 25 ms one starts to perceive rough-
ness in the sound and the perception changes from the coloration to
the time-domain character. The value 25 ms corresponds to a fre-
quency of 40 Hz for the pulses of the comb filter, which falls close
to the modulation frequency causing maximal roughness sensa-
tion. Furthermore, it is reported that the modulation signal does
not have to be periodic to cause the perception of roughness [18]
The random assignment of pulses in sparse noise sequence can be
interpreted as pseudo-random amplitude modulation [19].

Velvet noise has the ability to sound smoother than GWN,
leading to the question of at which pulse densities is velvet-noise
perceived as smooth versus perceived as temporally rough. In pre-
vious studies on sparse noise, optimal pulse densities for still main-
taining perceived smoothness were researched in multiple ways
such as first-order lowpass filtering reverberation tails and using
totally random noise [7, 8] as well as using velvet-noise [1] which
gave results of 2000 − 4200 pulses/s [7, 8] and 1500 pulses/s [1]
as optimal smoothness, respectively.

3. FILTER DESIGN

In order to investigate the frequency-dependent temporal rough-
ness of velvet noise, filtering is to be applied to the white velvet-
noise sequences. In this research, both lowpass and octave-band
filtering is applied. In this section, the properties of various filter
orders are investigated, to narrow down the filter parameters for
the perceptual test.
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Figure 2: Velvet-noise sequence, filtered with a Butterworth low-
pass filter with the cutoff frequency Fc = 1.5 kHz, using different
filter orders N ∈ {2, 4, 6, 8}, cf. Fig. 1.
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Figure 3: Effective length of the (a) octave-band filters
and (b) lowpass filters at the center frequencies Fc ∈
{125, 250, 500, 1k, 2k, 4k, 8k, 16k} Hz, using different filter or-
ders N ∈ {2, 4, 6, 8}.

3.1. Time-domain Smearing

Time-domain smearing refers to the energy of a signal being
spread across a longer period of time during playback which also
means a loss of detail in the signal itself. Fig. 1 shows an ex-
ample velvet-noise sequence (black) and its filtered versions (col-
ored) with various filter orders of an octave band filter centered
at Fc = 1.5 kHz. As the order of the filter increases the time
response gets more and more smeared in time. With the second-
order octave filter (blue) in Fig. 1, the pulse locations are still
visible. A similar trend is shown in Fig. 2, which shows the

velvet-noise sequence filtered with a lowpass Butterworth filter
with various filter orders. The second-order lowpass filter shows
more smearing than the second-order octave filter. This is why the
fourth-order octave filters were used to compare against the low-
pass filters.

Fig. 3a and Fig. 3b show the effective length of the octave-
band filter and the Butterworth lowpass filter, respectively. Again,
various filter orders are compared. The effective length is com-
puted with Matlab function impzlength with a tolerance of
−60 dB. Longer effective lengths of the filter will result in more
time-domain smearing. The overall trend in Fig. 3 is that higher
filter order and lower center frequency or cutoff frequency result
in longer effective length. Furthermore, the difference in effective
length between the lower and higher center frequencies grows with
the filter order. Thus, for the listening test design we opted to use
the second-order lowpass filters which introduce minimal smear-
ing. For the octave filters order four was used, since the steepness
of the second-order lowpass is most similar to that of a fourth-order
octave filter.

3.2. Listening Test Filters

Two types of filters were used in the final listening test: second-
order Butterworth lowpass filters and fourth-order octave-band fil-
ters. A lowpass filter attenuates frequencies above a specified cut-
off frequency and the frequencies below the cutoff are retained.
The Butterworth lowpass filter [20] is often used in audio be-
cause of its maximally flat magnitude response in the passband
and monotonic roll-off in the stopband. The magnitude responses
of the used octave filters and lowpass filters are shown in Fig. 4a
and Fig. 4b, respectively. Note: There is a slight shift of the low-
pass passband versus the passband of the octave filters.

As for octave filters, an octave means an interval where there
is a frequency ratio of 2:1, the upper frequency is twice the lower
frequency. This is important when using the filter which consists
of bandpass filters, the bandwidth of each filter will always be a 2:1
ratio. There are ten octave bands within the human hearing range.
Octave filters are used because they can be utilized for measuring
noise power at certain frequency ranges. They also give insight
into the human hearing of temporal roughness which was the aim
of this study. The magnitude response is shown in Fig. 4a. The
center and cutoff frequencies were calculated using base 10. The
nominal center frequencies of the octave filters used in the test are
shown in Table 1 and is also shown by the peaks/centers of the
octaves filter magnitude responses in Fig. 4a.

4. LISTENING TEST DESIGN

To test the perception of smoothness in velvet noise, a listening test
was employed using Matlab App. As shown in Fig. 5 of the test
user interface, there is a reference signal and a test signal. The ref-
erence signal was broadband velvet noise of 2000 pulses/s which
has been shown to be perceived as smooth [1]. The participant
was asked to find the lowest possible pulse density in which the
test signal sounded as smooth as the reference. There was not a
specific practice page, but testers were given a brief introduction
to the sliders and signals where they could ask questions about the
task. In this opportunity, they were able to familiarize themselves
with the loudness level of the signals, the buttons and the slider
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(a)

(b)

Figure 4: (a) Fourth-order octave and (b) second-order Butter-
worth lowpass filter magnitude responses with center/cutoff fre-
quencies one octave apart between 125 Hz and 16,000 Hz.

function. The test required the participant to move the slider ac-
cordingly to match their perception of where the velvet noise sig-
nal is still smooth, but on the edge of being rough. The movement
of the slider changed the pulse density of the velvet noise signal

Table 1: Nominal center frequencies used to test the effect of oc-
tave and lowpass filters. For the lowpass filters, the center fre-
quency was used as the cutoff frequency. Note: The lowest 2 oc-
taves of the audio range are omitted, only octaves 3 to 10 were
used in testing.

Octave band Nominal center frequency (Hz)

3 125
4 250
5 500
6 1000
7 2000
8 4000
9 8000
10 16000

Figure 5: User interface of the listening test. The participant
chooses the lowest density where the test sound is still as smooth
as the reference. The user can choose to play and stop the refer-
ence sound and the test sound. The participant can also go back
to the previous or go to the next page using the respective buttons.

and automatically played the test sound set to the chosen pulse
density. Each page’s velvet noise condition contained all possible
pulse densities between 50 and 2000 and the reference remained at
2000 pulses per second for each test page. A pulse density of 2000
was chosen for the reference as previous papers on sparse and vel-
vet noise respectively found already 1500 and 2000 as acceptably
smooth pulse densities [1, 6].

The test signals presented were either unfiltered, filtered
through an octave filter or through a lowpass Butterworth filter.
Sound examples of the test signals are available on the compan-
ion web page of this paper1 The filters used center frequencies or
cutoff frequencies calculated from octave bands 3-10, shown in
Table 1. The listening test was composed of two linked MATLAB
apps, the first assessed octave filtering, while the second assessed
lowpass filtered and broadband velvet noise. The center frequency
change in the filters between pages was randomized. The lowest
two center frequency bands were omitted due to being too low for
users to perceive, and, for this reason, are not included in Table 1
either.

The loudness level for each signal was set based on the EBU R
128 standard at -23 LUFS (Loudness Unit Full Scale). LUFS is a
loudness measurement based on the human perception of loudness.
This was used over the counterpart of RMS (root-mean-square)
power which is the average power of a signal without any weight-
ing. Additionally, the use of LUFS was due to the frequency-
dependent nature of loudness LUFS can account for. Normalizing
the loudness between test signals was to ensure that rating was not
influenced by how loud the signal sounded such as the perception
that high frequencies are louder compared to low frequencies.

1http://research.spa.aalto.fi/publications/
papers/dafx23-vn-roughness
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Figure 6: Violin plot of minimal pulse density for smooth-sounding
lowpass filtered velvet noise.

The final listening test sound pressure level of the isolated
listening booths used for testing was calibrated to 60 dB [6] us-
ing a RA0045 G.R.A.S Ear Simulator. The simulator followed
IEC 60318-4 regulations. Participants listened to the signals using
Sennheiser HD-650 headphones.

There was a total of 34 listening test pages with 16 pages
testing octave-filtered velvet noise, 16 testing pages for lowpass-
filtered velvet noise, and two pages testing unfiltered velvet noise.
This was done so that each signal of same conditions: filter type
and center frequency or cutoff frequency, occurred twice during
the test to compare individual differences and assess the reliability
of the participants’ ratings.

In total, there were 12 participants between ages 19 and 42
who completed the octave filtered velvet noise tests and 18 partic-
ipants between ages 19 and 42 who completed the lowpass filtered
velvet noise test all with previous experience in a formal listen-
ing test. For each test signal, there were two pages, and a corre-
lation was calculated for each participant between the two pages
for each center frequency/cutoff frequency. This was done using
corrcoef in MATLAB. If the participant’s mean correlation co-
efficient was below 0.5, meaning their answers were too different
for the same stimuli to be considered, their data was discarded.
Fortunately, no participants had a correlation coefficient under 0.8
and therefore, all participant data was assessed.

5. RESULTS

The results in Fig. 6 and Fig. 7 show the rated pulse density in the
y-axis against the center frequencies of the 8 octave bands used
in this study on the x-axis. The rated pulse density values come
from the participant’s task of setting the slider to where they per-
ceive the lowest possible density where it still sounds as smooth
as the reference signal. In both violin plots [21], the central white
dot refers to the median of the data within the specific octave band
center frequency. The means are indicated by a horizontal line
in each violin. The median and mean values can be found in Ta-
bles 2 and 3. These values were calculated using an average of

Figure 7: Minimal pulse density for smooth-sounding octave fil-
tered velvet noise.

each participant’s answers for each filter band and filter type re-
spectively.The top and bottom of the thick grey line in the cen-
ter of each plot refers to the first and third quartiles. Both plots
seem to follow somewhat of a curve showing that there is some
frequency-dependence on the perception of smoothness. Espe-
cially the octave-filtered velvet noise was rated with a consistently

Table 2: Nominal cutoff frequencies used for lowpass cutoffs and
their corresponding median and mean results.

Cutoff frequency (Hz) Median (pulses/s) Mean (pulses/s)

125 668 725
250 912 896
500 1155 1120

1000 1242 1260
2000 1415 1350
4000 1487 1455
8000 1541 1509

16000 1571 1548
Broadband 1587 1554

Table 3: Nominal center frequencies used for octave filters and
their corresponding median and mean results.

Center frequency (Hz) Median (pulses/s) Mean (pulses/s)

125 290 401
250 368 433
500 447 557
1000 756 794
2000 1038 1035
4000 1107 1183
8000 1240 1212

16000 1315 1299
Broadband 1587 1554
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lower pulse density than for the low pass filtered velvet noise.

Fig. 6 demonstrates that lower cutoff frequencies allowed the
pulse density of the velvet noise to be lower than that of broadband
and octave-filtered signals. The signals were rated at nearly half
the pulse density of broadband in the lowest octave band center
frequency cutoff of 125 Hz, whereas in the highest human hearing
octave band frequency cutoff, there was little difference.

We found the broadband velvet noise had a median of 1587
pulses/s and a mean of 1554 pulses/s where the signal still sounded
as smooth as the reference signal, as shown in Fig. 6, which is
similar to results in the original velvet noise study [1], where 1500
pulses/s was found to be an optimal smoothness. The filter shapes
of the second-order Butterworth lowpass filters and the fourth-
order octave filters were similar, however, the octave-filtered vel-
vet noise had much lower ratings.

A repeated measures two-way analysis of variance (ANOVA)
test with factors of center or cutoff frequency and repetition was
used to assess the statistical significance of the octave-filtered vel-
vet noise and the lowpass-filtered velvet noise separately. the sec-
ond factor of repetition was tested to determine if there were sig-
nificant differences in how a participant rated the same stimuli.
For both filtered velvet noises, the dependent variable was pulse
density. ANOVA preconditions such that the data is normally dis-
tributed, the dependent variable of rated pulse density is on a con-
tinuous scale and the sphericity of the two trials per participant
showing equal amounts of variance were met. More specifically, a
Kolmogorov–Smirnov test was conducted on the rated pulse den-
sities for each center and cutoff frequency at a 1% significance
level which found the data to be normally distributed for both the
lowpass filtered data and the octave filtered data separately. A
Mauchly sphericity test was also conducted which found that for
each participant, the density ratings across the center or cutoff fre-
quencies were normally distributed.

For the octave-filtered noise, the repeated measures two-way
analysis was chosen to show the effect of center-frequencies and
repeating trials on participant pulse density rating. The two-
way ANOVA test showed that center-frequencies was significant
and repeated trials were not significant on pulse density with F-
statistics of F (9, 99) = 79.801, p < .001 and F (1, 11) =
.995, p > .001, respectively. The interaction between frequency
and repetition was also not significant with an F0-statistic of
F (9, 99) = 1.609, p > .001.

For the lowpass-filtered noise, the two-way analysis was cho-
sen to show the effect of cutoff frequency and repetition of condi-
tions on pulse density ratings. There was no significant effect from
repetition, F (1, 16) = .278, p > .001. or from the interaction be-
tween repetition and frequency, F (9, 144) = 1.475, p > .001.
The two-way repeated measures ANOVA testing found only sig-
nificant effect from cutoff frequencies on pulse density rating such
that F(9, 144) = 354.15, p < .001.

Additionally, a post-hoc paired t-test was conducted with a
Bonferroni-Holm correction on both the lowpass and octave fil-
tered noise tests which showed that between neighboring center
or cutoff frequencies, the pulse density ratings were statistically
significant (p < .01) except between 4 kHz and 8 kHz as well as
between 8 kHz and 16 kHz. This means that pulse densities above
4 kHz show no important differences in pulse density ratings.

6. CONCLUSIONS

We studied the frequency-dependency of temporal roughness of
velvet noise in human noise perception. The results showed that
second-order lowpass filtering and fourth-order octave filtering,
the shape of the filter, allows for temporal smearing meaning that
the resulting signal can still seem smooth at lower densities than
that of broadband velvet noise. Octave-filtered noise at the lowest
frequencies showed even lower pulse density ratings than lowpass
filtered velvet noise. This study showed that artificial reverbera-
tion modeling which utilizes filtering and velvet noise can employ
lower pulse densities than what is currently used which allows for
more efficient computation.
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ABSTRACT

In designing a frequency tracker, the goal is to follow the con-
tinual time variation of the frequency from a particular sinusoidal
component in a noisy signal with a high accuracy and a low sam-
ple delay. Although there exists a plethora of frequency track-
ers in the literature, in this paper, we focus on the particular class
of frequency trackers that are built upon an adaptive notch filter
(ANF), i.e. a constrained bi-quadratic infinite impulse response
filter, where only a single parameter needs to be estimated. As
opposed to using the conventional least-mean-square (LMS) al-
gorithm, we present an alternative approach for the estimation of
this parameter, which ultimately corresponds to the frequency to
be tracked. Specifically, we reformulate the ANF in terms of a
state-space model, where the state contains the unknown param-
eter and can be subsequently updated using a Kalman filter. We
also demonstrate that such an approach is equivalent to doing a
normalized LMS filter update, where the regularization parameter
can be expressed as the ratio of the variance of the measurement
noise to the variance of the prediction error. Through an evaluation
with both simulated and realistic data, it is shown that in compari-
son to the LMS-updated frequency tracker, the proposed Kalman-
updated alternative, results in a more accurate performance, with
a faster convergence rate, while maintaining a low computational
complexity and the ability to be updated on a sample-by-sample
basis.

1. INTRODUCTION

Frequency estimation is a well-known problem in signal process-
ing with a long history [1, 2] and continues to be relevant for a
number of audio-related applications1 including acoustic feedback
detection [3, 4], automatic music transcription [5], tuning of mu-
sical instruments, and audio effects such as pitch-shifting just to
name a few. Specifically, it refers to the problem of estimating the
frequency of a sinusoidal component from a set of noisy observa-
tions. In cases where the periodic component of the noisy obser-

∗ This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-
Curie grant agreement No. 956369. The research leading to these results
has received funding from the European Research Council under the Euro-
pean Union’s Horizon 2020 research and innovation program / ERC Con-
solidator Grant: SONORA (no. 773268). This paper reflects only the
authors’ views and the Union is not liable for any use that may be made of
the contained information.

1Although certainly not limited to audio as it is also relevant in biomed-
ical signal processing, power-line monitoring, and seismology for instance.
Copyright: © 2023 Randall Ali et al. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

vations consist of harmonically-related sinusoidal components and
it is the lowest frequency component that is being estimated, the
problem is often referred to as fundamental frequency (f0) estima-
tion or pitch estimation [1, 2].

In this paper we are concerned with following the continual
time variation of the frequency pertaining to a particular sinusoidal
component of an audio signal, and hence we refer to the type of
frequency estimation as frequency tracking. The main considera-
tion for a frequency tracker is that it needs to have a low sample
delay, with the ideal case being zero delay, and can be updated on
a sample-by-sample basis. More concretely, the problem of fre-
quency tracking can be summarized as finding an updated estimate
of the frequency given a new set of samples or simply just one (in
the real-time scenario) and a prior estimate of the frequency [6].
Several approaches for this have been proposed in the literature
[6, 7, 8, 9], where the problem is referred to as pitch tracking.

The frequency tracker investigated in this work is one based
on adapting the coefficients of a constrained bi-quadratic (biquad)
infinite impulse response (IIR) filter [3, 4, 10, 11, 12], which func-
tions as an adaptive notch filter (ANF). In a nutshell, the centre
frequency of the ANF is continually updated so as to cancel a high-
energy sinusoidal component in an attempt to minimize the mean-
square of the output signal power. One main advantage of using
the constrained biquad filter is that only one parameter needs to be
adapted in order to obtain a frequency estimate. Furthermore, by
expressing the filter in its direct form II, this single parameter can
be updated very efficiently [12] such as with a least-mean-square
(LMS) algorithm [3, 4], resulting in a frequency tracker that can
be updated on a sample by sample basis. Moreover, the compu-
tational complexity is very low, making the algorithm suitable for
real-time applications.

Our contribution in this paper is a subtle but powerful exten-
sion of the aforementioned approach, whereby we reformulate the
ANF in terms of a state-space model, with the state containing
the unknown parameter to be estimated. In such a formulation,
a Kalman filter [13] can then be used for updating the state and
hence for frequency estimation and tracking. We subsequently re-
fer to this frequency tracker2 as a Kalman ANF (KalmANF). We
will demonstrate that the KalmANF is equivalent to a normalized
LMS (NLMS) filter update [14, 15], where the regularization pa-
rameter can be expressed as the ratio of the variance of the mea-
surement noise to the variance of the prediction error [14], both of
which can be tuned accordingly. This results in a more accurate
frequency tracker as compared to one that uses an ANF updated
with an LMS algorithm, while maintaining a low computational

2As a consequence of using the ANF approach, we stick to the term of
frequency tracking as opposed to pitch estimation since an estimation of
the frequency will not necessarily correspond to a fundamental frequency,
but to the frequency of the sinusoidal component contributing to most of
the energy in the audio signal.
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complexity and the ability to be updated on a sample-by-sample
basis.

In relation to prior work, a state-space approach of the ANF
has also been considered in [16], however an alternative formula-
tion was used, and a relation with the normalized LMS was not
established. In [17], an extended Kalman filter was used to up-
date a single parameter adaptive comb filter (i.e. multiple ANFs),
whereas we consider a single ANF in this paper, which allows us
to have a linear state-space model. Several other Kalman filtering-
based approaches to frequency tracking also exist [18, 19, 20, 21,
22], but they are not built upon an ANF.

The remainder of this paper is organized as follows. In Section
2, we review the ANF, i.e. the constrained biquad IIR filter, and
how the LMS algorithm is used to update the filter coefficients.
In section 3, we reformulate the problem in terms of a state-space
model where the state contains the relevant filter coefficients to be
updated. By applying a Kalman filter, it is then shown how the
KalmANF is equivalent to using an NLMS algorithm with a well-
defined time-varying regularization parameter. In section 4, we
evaluate the KalmANF in comparison to its LMS-based counter-
part on both simulated and realistic data, where it is demonstrated
that the KalmANF outperforms the ANF frequency tracker that
uses an LMS algorithm in terms of its accuracy and convergence
speed.

2. LEAST-MEAN-SQUARE ADAPTIVE NOTCH FILTER

Let us consider the following signal model in the discrete-time
domain, with n being the discrete-time index:

y(n) = Ao(n) sin [nωo(n) + ϕo(n)] + g(n) (1)

where y(n) is a measured signal consisting of a sinusoidal com-
ponent, Ao(n) sin [nωo(n) + ϕo(n)], with time-varying param-
eters: amplitude Ao(n), phase ϕo(n), digital angular frequency
ωo(n) = 2πfo(n)/fs, where fo(n) is the frequency (Hz), and fs
is the sampling frequency (Hz). This model is very broad in the
sense that the remaining component, g(n) can be representative of
a number of signals such as a broadband desired signal, additional
harmonics, or simply noise depending on the application. Given
the measurement, y(n), our goal is to track the time-variation of
fo(n). The approach that we follow is to design an ANF that can
be applied to y(n) to effectively suppress the sinusoidal compo-
nent and by consequence will also result in a frequency tracker.

A well-known technique of designing an ANF is to adaptively
compute the parameters of a constrained IIR filter [10, 11, 12],
which can be done quite efficiently using an LMS algorithm [3].
In this paper, since our signal model only consists of one sinu-
soidal component, we will simply consider a constrained biquad
IIR filter, i.e. with two-zeros and two-poles. Firstly, let us recall
the biquad filter in the z-domain without any constraints:

H(z−1) =
bo + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(2)

which for bo = 1, can be expressed in polar coordinates (in the
complex plane) in terms of a zero radius, ζ, and zero angle ωz ,
and a pole radius, ρ, and pole angle, ωp as follows

H(z−1) =
(1− ζejωzz−1)(1− ζe−jωzz−1)

(1− ρejωpz−1)(1− ρe−jωpz−1)
(3)
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Figure 1: (Left) Pole-zero plot of a constrained biquad IIR filter
configured as a notch filter. The poles and zeros lie on the same
radial line defined by ω = π/4, where the zeros are placed on
the unit circle and the poles at a distance ρ = 0.8. (Right) The
corresponding magnitude and phase response. A notch is clearly
visible at ω = π/4 with a very narrow bandwidth due to ρ = 0.8.

where b1 = −(ζejωz + ζe−jωz ) = −2ζ cos(ωz), b2 = ζ2, a1 =
−2ρ cos(ωp), and a2 = ρ2. In order to convert this filter into
a more suitable form where its coefficients can be adapted, two
constraints need to be subsequently introduced.

The first of these constraints as proposed in [10] is to make the
poles and zeros lie on the same radial line, defined by angle ω in
the complex plane (see Fig. 1), i.e. ωz = ωp = ω. These poles
and zeros must also lie completely within the unit circle, where the
zeros would be in between the poles and the unit circle in order to
define a notch filter. The intuition behind this is that placing a zero
near to the unit circle would attenuate all the frequency compo-
nents in the neighbourhood of the angular frequency, ω, defining
that particular radial line. Placing a pole on the same radial line
then creates a resonance at ω, with the bandwidth of the notch fil-
ter becoming narrower as ρ→ ζ.

The second constraint on the biquad filter is to let the zeros all
lie on the unit circle [11] so that ζ = 1. In this case the frequency
component at ω would be completely attenuated and the pole at the
same radial line would once again create a resonance at ω, with the
bandwidth of the notch filter becoming narrower as ρ→ 1 .

Imposing these constraints on the biquad filter of (3), results
in the constrained biquad filter:

H(z−1) =
(1− ejωz−1)(1− e−jωz−1)

(1− ρejωz−1)(1− ρe−jωz−1)

=
1− 2 cos(ω)z−1 + z−2

1− 2ρ cos(ω)z−1 + ρ2z−2

=
1− az−1 + z−2

1− ρaz−1 + ρ2z−2
(4)

where a ≜ 2 cos(ω) = 2 cos(2πf/fs) is the only parameter we
need to estimate (since it appears in both the numerator and de-
nominator) and is directly related to the centre frequency, f , of the
notch filter. Consequently, by adapting the a coefficient, the centre
frequency of the notch filter also changes resulting in an ANF. The
pole-zero plot and corresponding magnitude and phase response
of an example constrained biquad filter is shown in Fig. 1.

In order to estimate the frequency, fo, of the sinusoid in (1), we
need to find the parameter, a, such that when the ANF is applied
to the input (or measured) signal, y(n), the output signal power of
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Figure 2: Direct form II of the constrained biquad filter.

the filter is minimal in the mean-squared sense. This would imply
that the centre frequency of the ANF would have been updated to
be fo, thereby cancelling the high-energy sinusoid, resulting in a
minimum mean-square output signal power.

An efficient method to estimate a can be derived by consider-
ing the direct form II of the constrained biquad filter [12] as illus-
trated in Fig. 2. The implementation equations are given as

s(n) = y(n) + ρa(n− 1)s(n− 1)− ρ2s(n− 2) (5)
e(n) = s(n)− a(n− 1)s(n− 1) + s(n− 2) (6)

where y(n) is the input to the constrained biquad filter (the mea-
sured signal from (1)), e(n) is the output, and s(n) is introduced
as an auxiliary variable. In this form, the biquad filter is explicitly
split into two sections. The first is a two-pole resonance IIR filter
illustrated on the left side of Fig. 2 corresponding to the denom-
inator of (4) and whose difference equation is given by (5). The
second section is a finite impulse response (FIR) two-zero notch
filter illustrated on the right side of Fig. 2, corresponding to the
numerator of (4) and whose difference equation is given by (6).

We can now proceed to estimate a by minimizing the mean-
squared output signal power of the filter, i.e. minimizing the mean-
square of e(n). In [12], it was proposed to only update the FIR
section of the biquad filter, i.e. estimate the coefficient a in the
FIR section, and since this a occurs in both the numerator and
denominator in (4), this estimate can be simply copied to the IIR
section of the biquad filter. An LMS algorithm can then be used to
estimate a by making use of (6) as follows [3, 4]

â(n) = â(n− 1) + µ

(
− ∂e2(n)

∂a(n− 1)

)

= â(n− 1) + 2µs(n− 1)e(n) (7)

where µ is the step size parameter. As opposed to estimating a,
we could alternatively attempt to directly estimate ωo = 2πfo,
however this would result in a nonlinear update equation that will
not have the properties of an LMS algorithm, and hence we stick
to estimating a from which we can then obtain an estimate for fo.

The algorithm for computing frequency estimates using such
an LMS update is given in Algorithm 1 and we subsequently refer
to the resulting frequency tracker as LMS-ANF. In Algorithm 1,
N is the length of the signal, y(n), and due to the s(n − 2) term,
we simply start the for loop from n = 2 and initialize s(0) and
â(1), s(1). Since arccos(â(n)/2) does not exist for |â(n)| > 2,
we have additionally imposed a constraint on the values of â(n)
such that â(n) is re-initialized to zero when |â(n)| > 2, i.e. we
restart the algorithm3 with an initial frequency estimate at half of

3This is certainly not the only strategy to deal with out of range values

the Nyquist frequency. By defining the computational complexity
as the number of multiplications per recursion, from Algorithm 1,
we can deduce that the LMS-ANF has a computational complexity
of 11 multiplications per recursion. It should also be noted that in
addition to obtaining a sample-by-sample update of the estimated
frequency, we also obtain a sample-by-sample update of the out-
put (i.e. adaptive notch-filtered input signal), e(n), however we
are only concerned with the former as it pertains to the frequency
tracker.

As previously mentioned, by thinking of the biquad filter as
consisting of a two-pole IIR resonance filter, followed by a two-
zero FIR notch filter as depicted in Fig. 2, we can give the follow-
ing interpretation to the algorithm. The two-pole IIR resonance
filter amplifies the frequency component in y(n) corresponding to
the initial value of â(n−1) according to (5) so that the signal s(n)
would have a fairly dominant component4 at f̂o(n− 1). The two-
zero FIR notch filter then attempts to reduce the error, e(n) by can-
celling this same frequency component that was amplified in s(n)
as evident by (6). If the true sinusoidal component in y(n) was not
amplified in s(n), then the two-zero FIR notch filter would yield a
mean-square of e(n) that remains sufficiently large. Consequently
a step size according to (7) is taken to update â, which corresponds
to “trying” another frequency to be amplified and notched. This
procedure repeats until the frequency corresponding to the true si-
nusoidal component in y(n) is found, since applying a notch to
this component will minimize the mean-square of e(n).

Algorithm 1 LMS Update of the ANF (LMS-ANF)

Initialize â(1), s(0), s(1) = 0
Set µ, ρ

1: for n = 2 to N − 1 do
2: s(n) = y(n) + ρâ(n− 1)s(n− 1)− ρ2s(n− 2)
3: e(n) = s(n)− â(n− 1)s(n− 1) + s(n− 2)
4: â(n) = â(n− 1) + 2µs(n− 1)e(n)
5: if |â(n)| > 2 then
6: â(n) = 0
7: end if
8: f̂o(n) = (fs/2π) arccos(â(n)/2)
9: end for

3. KALMAN-BASED ADAPTIVE NOTCH FILTER
(KALMANF)

In this section, we derive an alternative algorithm for the estima-
tion of a in (4) using a Kalman filter. We will refer to this algorithm
as KalmANF and demonstrate that it is an example within the fam-
ily of normalized LMS algorithms that are based on the Kalman
filter [14]. Let us firstly recall the vector form of the state-space
model [23, 24]:

x(n) = Cx(n− 1) +w(n) (8)
z(n) = Hx(n) + v(n) (9)

where x(n) ∈ RL is the state vector at time n, C ∈ RL×L is
the state-transition matrix, w(n) ∈ RL is the process noise vector,

for â(n), but an investigation into this aspect of the ANF is out of the scope
of this work.

4This of course depends on the value of ρ chosen as well as the signal-
to-noise ratio of y(n).
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which is modelled as a zero-mean, Gaussian process with covari-
ance matrix Q ∈ RL×L, z(n) ∈ RM is the measurement vector,
H ∈ RM×L is the measurement matrix, and v(n) ∈ RM is the
measurement noise vector, also modelled as a zero-mean, Gaus-
sian process but with covariance matrix R ∈ RM×M .

For dynamical systems which can be described in the state-
space form of (8) and (9), the state-vector at time n can be esti-
mated using a Kalman filter. The Kalman filter consists of two
steps: (i) a prediction (or update) stage and, (ii) an estimation (or
measurement) stage, which are performed in a recursive manner,
and are given by the following equations [23, 24]

x̂(n|n− 1) = Cx̂(n− 1) (10)

P̂(n|n− 1) = CP̂(n− 1)CT +Q (11)

K(n) = P̂(n|n− 1)HT
(
HP̂(n|n− 1)HT +R

)−1

(12)

v(n) = z(n)−Hx̂(n|n− 1) (13)
x̂(n) = x̂(n|n− 1) +K(n)v(n) (14)

P̂(n) = [I−K(n)H] P̂(n|n− 1) (15)

where K(n) is the Kalman gain, the notation x̂(n|n− 1) denotes
a prediction of x(n) based on measurement samples up to time
n − 1, and the prediction error is defined as x(n) − x̂(n|n − 1)
with a covariance matrix, P(n), whose estimate is denoted as
P̂(n). The first two equations, (10) and (11), are the prediction
equations, which update the state and the covariance matrix of the
prediction error from measurement samples up to time n− 1. The
subsequent equations are the estimation equations. v(n) in (13)
is also referred to as the innovation signal, which is the error be-
tween the new measurement at time n and the prediction based
on measurement samples up to time n − 1, and is used to update
the state-vector estimate at time n in (14) along with the Kalman
gain, K(n), computed in (12). The prediction error covariance
matrix at time n is finally updated in (15), and the entire sequence
of equations is repeated for the next time index.

By following the strategy of estimating a in the FIR section of
the constrained biquad filter from Fig. 2 and copying the estimate
to the IIR section, we can use (5) and (6) to define a state-space
model corresponding to the form of (8) and (9) as follows:

[
a(n)
1

]

︸ ︷︷ ︸
x(n)

=

[
1 0
0 1

]

︸ ︷︷ ︸
C

[
a(n− 1)

1

]

︸ ︷︷ ︸
x(n−1)

+

[
w(n)
0

]

︸ ︷︷ ︸
w(n)

(16)

s(n)︸︷︷︸
z(n)

=
[
s(n− 1) −s(n− 2)

]
︸ ︷︷ ︸

H(n)

[
a(n)
1

]

︸ ︷︷ ︸
x(n)

+ e(n)︸︷︷︸
v(n)

(17)

Focusing firstly on (17) and comparing with (9), it is evident that
we have defined s(n) as our measurement, which is a scalar. Al-
though we do not explicitly measure s(n), it is a function of the
input signal, y(n), and therefore we can use (5) with a(n − 1) =
â(n − 1) to obtain a value for s(n). We can also observe that
the measurement matrix, H(n), is now time-varying and depends
on two previous measurement samples. The measurement noise
vector is also simply a scalar and is the error, e(n), we want to
minimize in the ANF context.

Finally we can observe that the state vector, x(n) is a function
of a(n), which is the parameter that we want to estimate. With the

measurement equation defined, the state equation of (16) follows
directly from (8), where C is simply an identity matrix and w(n)
has one non-zero value, w(n), since it is only a(n) that needs to
be updated.

We can simply proceed to use the equations (10) - (15) to ob-
tain an estimate for a(n). However, because of the low dimension-
ality of the state-space equations defined in (16) and (17), we can
also substitute them into (10) - (15) to obtain simpler and more
intuitive expressions to understand how a(n) is being estimated.

Since C is an identity matrix, (10) is simply

x̂(n|n− 1) =

[
â(n|n− 1)

1

]
=

[
â(n− 1)

1

]
(18)

We initialize the estimate of the covariance matrix of the pre-
diction error, P̂(n), and the covariance matrix of the process noise,
Q with only one non-zero entry so that (11) reduces to

P̂(n|n− 1) =

[
p̂(n|n− 1) 0

0 0

]
=

[
p̂(n− 1) + q 0

0 0

]
(19)

where q is the variance of w(n), which is a hyperparameter of the
proposed algorithm.

Since the measurement equation of (17) is scalar, the covari-
ance of the measurement noise boils down to the variance of e(n),
which we denote as r, another hyperparameter. Using the time-
varying measurement matrix, H(n) from (17) and P̂(n|n − 1)
from (19), the Kalman gain follows from (12) as

K(n) =
s(n− 1)

s2(n− 1) + r
p̂(n|n−1)

[
1
0

]
(20)

From (14) we then obtain the update equation for the state
vector. Since the second element in the state vector is always 1
and the Kalman gain is zero for this entry, we will in fact just have
a scalar update equation as follows:

â(n) = â(n− 1) +
s(n− 1)

s2(n− 1) + r
p̂(n|n−1)

e(n) (21)

where using (13), e(n) is given by

e(n) = s(n)− s(n− 1)â(n− 1) + s(n− 2) (22)

which is identical to (6) but with a(n− 1) = â(n− 1).
Finally from (15), the update of the first and only non-zero

element of the covariance matrix of the prediction error is

p̂(n) =

(
1− s2(n− 1)

s2(n− 1) + r
p̂(n|n−1)

)
p̂(n|n− 1) (23)

It can now be seen that (21) is indeed in the form of a normal-
ized LMS (NLMS) filter update [14, 15], with a time-varying step
size of 1/

[
s2(n− 1) + r/p̂(n|n− 1)

]
, where the term s2(n−1)

provides the normalization and r/p̂(n|n−1) acts as a time-varying
regularization parameter. As opposed to having to choose this reg-
ularization parameter in a heuristic manner [25], an optimal value
is now defined in the Kalman filter context as the ratio of the
variance of the measurement noise to the variance of the predic-
tion error obtained from measurements samples up to time n − 1
[14]. We also note that a similar, yet time-invariant expression for
the NLMS parameter was obtained in a Bayseian framework in
[26, 27].
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A summary of the KalmANF frequency tracker is given in Al-
gorithm 2. As with the LMS-ANF, due to the s(n − 2) term, we
simply start the for loop from n = 2 and initialize s(0), â(1), s(1),
and p̂(1). The constraints are also imposed on â(n) to ensure
arccos(â(n)/2) exists. We can also deduce that the KalmANF
has a computational complexity of 14 multiplications per recur-
sion (in line 7, only two multiplications are counted since k(n)
would have been computed in line 4), which is the same order of
magnitude as the LMS-ANF.

Algorithm 2 Kalman-based/NLMS update of the ANF (KalmANF)

Initialize s(0), s(1), â(1), p̂(1) = 0
Set r, q, ρ

1: for n = 2 to N − 1 do
2: p̂(n|n− 1) = p̂(n− 1) + q
3: s(n) = y(n) + ρâ(n− 1)s(n− 1)− ρ2s(n− 2)

4: k(n) = s(n−1)

s2(n−1)+ r
p̂(n|n−1)

5: e(n) = s(n)− â(n− 1)s(n− 1) + s(n− 2)
6: â(n) = â(n− 1) + k(n)e(n)

7: p̂(n) =

(
1− s2(n−1)

s2(n−1)+ r
p̂(n|n−1)

)
p̂(n|n− 1)

8: if |â(n)| > 2 then
9: â(n) = 0

10: end if
11: f̂o(n) = (fs/2π) arccos(â(n)/2)
12: end for

4. EVALUATION

We evaluate the performance of the KalmANF in relation to the
LMS-ANF using both simulated and realistic data. We firstly use
simulated data so that we can compare frequency estimates to a
ground truth, and consequently make observations on the general
performance of the KalmANF in relation to the LMS-ANF. We
then apply the algorithms to realistic acoustic data and compare
how well a dominant frequency component is tracked. For both the
LMS-ANF and the KalmANF, it was always the case that −2 ≤
â(n) ≤ 2 so that the constraint of â(n) = 0 when |â(n)| > 2 was
never executed. We do not consider an evaluation of the KalmANF
against other types of pitch/frequency trackers that are not based
upon the ANF as this is beyond the scope of this work. The code
used to generate all of the results that follow is available at [28].

4.1. Simulated Data

4.1.1. Instantaneous change in frequency

In this first simulation, we observe the performance of the KalmANF
and LMS-ANF for the situation where there is an instantaneous
change in frequency of the sinusoidal component of the input sig-
nal, so as to initially gauge how well the algorithms are suited for
rapidly changing sinusoidal components. We synthesized an input
signal of duration 4 s consisting of a sinusoid embedded in white
Gaussian noise at a sampling frequency of 8 kHz and with a signal
to noise ratio of 2 dB. For the first 2 s, the frequency of the sinu-
soid was 1500 Hz, after which the frequency was instantaneously
changed to 500 Hz for the remainder of the signal. The ampli-
tude of the sinusoid was 0.5, and its initial phase was set to zero.

0 0.5 1 1.5 2 2.5 3 3.5 4

−60

−40

−20

0
(a)

Time (s)

N
o
rm

-M
is

(d
B
)

LMS-ANF KalmANF

0 0.5 1 1.5 2 2.5 3 3.5 4

−40

−20

0
(b)

Time (s)

N
or
m
-M

is
(d
B
)

Figure 3: Averaged Norm-Mis from the LMS-ANF and KalmANF
across 100 different signal realizations consisting of a sinusoid
whose frequency instantaneously changes in frequency at 2 s and
white Gaussian noise at an SNR of 2 dB. (a) Using an ANF with
ρ = 0.95, (b) Using an ANF with ρ = 0.7. In both cases, µ =
1 · 10−3 for the LMS-ANF and q = 8 · 10−5, and r = 10 for the
KalmANF.

Therefore, at any point in time, this signal corresponded to the sig-
nal model of (1), where Ao(n) = 0.5, ϕo(n) = 0, and fo(n)
varied according to the aforementioned frequency of the sinusoid.

We applied both the LMS-ANF and KalmANF algorithms to
this input signal to estimate the frequency, f̂(n), of the sinusoid
over time. In order to quantify the performance of both algorithms,
we computed the normalized misalignment (error) between the es-
timated frequency and the true frequency as follows:

Norm-Mis(n) = 20 log10
|fo(n)− f̂o(n)|

fo(n)
(24)

We repeated this procedure for 100 different realizations of
white Gaussian noise and averaged the normalized misalignment
across the different realizations. Fig. 3 shows this averaged Norm-
Mis for two values of ρ. In Fig. 3 (a), ρ = 0.95 for a narrow
bandwidth notch filter, and in Fig. 3 (b), ρ = 0.7 for a wider
bandwidth notch filter. In both simulations, µ = 1 · 10−3 for the
LMS-ANF and q = 8 ·10−5, and r = 10 for the KalmANF. These
parameters were chosen such that the initial convergence rates for
ρ = 0.95 of both algorithms were approximately similar as shown
in Fig. 3 (a).

Despite the similar initial convergences rates, however, in Fig.
3 (a) we can firstly observe that the KalmANF converges to a lower
steady state Norm-Mis than the LMS-ANF both during the first 2
s and after the instantaneous change in the frequency of the input
signal. We can also observe that the KalmANF converges faster
than the LMS-ANF after this instantaneous change in frequency,
without any change to the aforementioned algorithm parameters.
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Figure 4: Mean of the steady state Norm-Mis for the LMS-ANF
and KalmANF (after averaging over 100 different realizations) as
a function of the input SNR. The signal was 4 s and consisted of a
sinusoid embedded in white Gaussian noise.

In Fig. 3 (b) where ρ = 0.7, the KalmANF now converges to
a similar steady state Norm-Mis as the LMS-ANF, but however
at a faster rate both during the first 2s and after the instantaneous
change in the frequency.

It should be noted that since we have initialized â = 0, the
initial frequency estimate is half of the Nyquist frequency (fs/4).
Hence the tracking of low frequencies at higher sampling frequen-
cies can result in longer convergence times, which would be par-
ticularly problematic for the LMS-ANF due to its fixed step size.
If there is some prior knowledge of the dominant frequency con-
tent of the signal however, the sampling frequency could be chosen
so that the initial frequency estimate is close to this dominant fre-
quency.

4.1.2. Influence of ρ and input SNR

In order to observe the influence of ρ and the input SNR on the
performance of the algorithms, in this simulation, we used a 4
s input signal consisting of a single sinusoidal component with
Ao(n) = 0.5, ϕo(n) = 0, and fo(n) = 868Hz embedded in
white Gaussian noise at fs = 8kHz. We ran the KalmANF and
the LMS-ANF for ρ = 0.6 and ρ = 0.95 for a range input
SNRs = {−5, 0, 5, 10, 15} dB. For each input SNR and ρ, we
ran the algorithms using 100 different realizations of white Gaus-
sian noise and averaged the Norm-Mis across the different real-
izations. We then computed the mean of the steady state Norm-
Mis using the last 2s of the averaged Norm-Mis across the dif-
ferent realizations. In other words, we computed the mean of a
converged region of the Norm-Mis such as that between 3 s and
4 s in Fig. 3 (a). For the LMS-ANF, µ = 1 · 10−3, and for
the KalmANF, r = 10, but q was varied such that for the differ-
ent values of ρ and all input SNRs, the convergence rates of both
the LMS-ANF and KalmANF were approximately the same. For
ρ = 0.95, q = {10, 4.5, 2.5, 1.9, 1.7} · 10−5, and for ρ = 0.6,
q = {4, 2.5, 2, 2, 2} · 10−5, where each value of q corresponds
to the particular input SNR in the range {−5, 0, 5, 10, 15} dB.
As can be seen from (21), the ratio r/p̂(n|n − 1) directly affects
the time-varying step size, and hence can be tuned to obtain a de-
sired convergence speed by varying r and/or q. In general, when

there is more uncertainty in the system model, such as in low SNR
conditions, q should be set to a larger value (as was done in this
simulation), which would consequently yield larger step sizes, al-
lowing the algorithm to accommodate for larger deviations from
the system model.

Fig. 4 shows the mean of the steady state Norm-Mis plotted
against the input SNR for the different algorithms and different
values of ρ. We can observe that for the larger value ρ = 0.95,
the KalmANF outperforms the LMS-ANF by achieving a lower
steady state Norm-Mis, and hence a more accurate frequency es-
timate, whereas for the smaller value of ρ = 0.6, both algorithms
achieve the same the steady state Norm-Mis. In general however,
for both algorithms, the results suggest that larger values of ρ are a
preferable choice as they result in a lower steady state Norm-Mis.
As expected, we can also observe that the performance of all algo-
rithms degrades as the SNR decreases, and is particularly poor for
the smaller values of ρ at very low input SNRs.

4.2. Real data

In this section, we evaluate the KalmANF using two realistic acous-
tic signals, both of which conform to the model in (1), but where
the signal represented by g(n) is different for each case.

4.2.1. Musician Wren

The first signal we consider is that of a musician wren (Cyphorhi-
nus arada), a bird in the family of brown passerine birds, known for
its melodious birdsong that spans a considerable frequency range.
Fig. 5 (a) shows the spectrogram of an excerpt of musician wren
recorded in Uiramutã, Brazil taken from www.xeno-canto.org5. As
can be observed, the birdsong is fairly sinusoidal and spans a range
of about 2 kHz, with substantial and almost instantaneous jumps in
frequency. The remaining component of the signal, g(n), in this
case is the noise of the outdoor environment, which is not fully
white or Gaussian, and in fact consists of impulsive-type sounds
presumably due to rainfall.

In Fig. 5 (b), the estimated frequency tracks at each sample
using the LMS-ANF and the KalmANF, both with ρ = 0.95 are
overlaid on the same spectrogram of 5 (a), so as to visualize how
well the frequency of the birdsong is being tracked. For the LMS-
ANF, µ = 0.3 and for the KalmANF, q = 8 · 10−3 and r = 1.
The LMS-ANF could not be tuned to match the convergence rate
of the KalmANF since larger values of µ resulted in an unstable
filter. This demonstrates that firstly, the KalmANF is able to con-
verge faster than the LMS-ANF. Secondly, it can also be observed
that the KalmANF is able to quickly adapt to the rapid changes in
frequency of the birdsong. In most cases, the KalmANF appears to
yield a more accurate frequency estimate as compared to the LMS-
ANF. In particular, around 2.3 s, it can be seen that the impulsive
background noise negatively impacts the frequency estimation of
the LMS-ANF, whereas the KalmANF estimate remains fairly sta-
ble by comparison. It is also noted that there were no sinusoidal
components to be tracked in the first 1.2s and between approxi-
mately 3.5s and 4.7s, and hence frequency estimates during these
times are meaningless. It nevertheless does provide some insight
into the convergence of the filters when there is no dominant sinu-
soidal component.

5This recording has a catalogue number XC 513058 and was recorded
by Gabriel Leite.
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Figure 5: (a) Spectrogram from an excerpt of a musician wren
(Cyphorhinus arada). (b) Overlaid frequency tracks, i.e. sample-
by-sample frequency estimates for the LMS-ANF and KalmANF
with ρ = 0.95, µ = 0.3, q = 8 · 10−3, r = 1. (c) Output signal
from the KalmANF.

Finally, to give a better impression of the performance of the
KalmANF, Fig. 5 (c) shows the spectrogram of the error signal
(output) of the KalmANF defined in (22). Upon comparison with
Fig. 5 (a), it can be seen that the sinusoidal component of the bird-
song has been significantly attenuated, implying that the frequency
of the birdsong has been accurately tracked.

4.2.2. Flute

Here we consider a short passage from a flute with both rapid and
slow frequency changes taken from freesound6. Fig. 6 (a) shows
the spectrogram of this signal (which was converted to a mono
signal and resampled to 16 kHz). There is a strong sinusoidal
component along with several harmonics. Hence the signal still
conforms to the model of (1) with a dominant sinusoidal compo-

6“Flute trill" by juskiddink (https://freesound.org/people/juskiddink/)
licensed under CCBY 4.0.
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Figure 6: (a) Spectrogram from a short flute passage. (b) Over-
laid frequency tracks for the LMS-ANF and KalmANF with rho =
0.93, µ = 5 · 10−3, q = 5 · 10−4, r = 10. (c) Output signal from
the KalmANF.

nent, but the remaining part of the signal, g(n), would now consist
of the harmonics and any background noise.

In Fig. 6 (b) the estimated frequency tracks at each sample
using the LMS-ANF and the KalmANF, both with ρ = 0.93 are
overlaid on the spectrogram of 6 (a). For the LMS-ANF, µ =
5 · 10−3 and for the KalmANF, q = 5 · 10−4 and r = 10. Just
as in the birdsong example, the LMS-ANF could not be tuned to
match the convergence rate of the KalmANF since larger values
of µ resulted in an unstable filter. Hence, the KalmANF has a
faster convergence rate than the LMS-ANF, and is able to quickly
adapt to the frequency changes with a fairly accurate frequency
track. Once the LMS-ANF has converged, it generally follows a
similar frequency track to that of the KalmANF, but with a much
larger variance around the fundamental frequency, particularly to-
ward the end of the signal. Similar to Fig. 5 (c), Fig. 6 (c) shows
the spectrogram of the error signal output of the KalmANF, where
we can observe a significant attenuation of the dominant sinusoidal
component.
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5. CONCLUSION

We have developed a fast frequency tracker that is based on up-
dating a single parameter of an adaptive notch filter (ANF) with
a Kalman filter (KalmANF). Whereas this parameter is conven-
tionally updated using a least-mean-square (LMS) algorithm, in
this work, we reformulate the ANF (which is a constrained bi-
quadratic filter) in terms of a state-space model, where the state
contains the parameter to be updated. By using a Kalman filter to
update the state, we have also demonstrated that such an update is
equivalent to a normalized LMS (NLMS) filter update where the
regularization parameter can be expressed as the ratio of the vari-
ance of the measurement noise to the variance of the prediction
error. Using both simulated and realistic data, it was shown that
in comparison to the ANF-based frequency tracker using an LMS
algorithm, the KalmANF resulted in a more accurate performance,
with a faster convergence rate, while maintaining a low computa-
tional complexity and the ability to be updated on a sample-by-
sample basis.
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ABSTRACT

Head-related transfer functions (HRTFs) describe filters that model
the scattering effect of the human body on sound waves. In their
discrete-time form, they are used in acoustic simulations for vir-
tual reality (VR) or augmented reality (AR), and since HRTFs are
listener-specific, the use of individualized HRTFs allows achieving
more realistic perceptual results. One way to produce individual-
ized HRTFs is by estimating the sound field around the subjects’
3D representations (meshes) via numerical simulations, which com-
pute discrete complex pressure values in the frequency domain
in regular frequency steps. Despite the advances in the area, the
computational resources required for this process are still consid-
erably high and increase with frequency. The goal of this paper
is to tackle the high computational cost associated with this task
by sampling the frequency domain using hybrid linear-logarithmic
frequency resolution. The results attained in simulations performed
using 23 real 3D meshes suggest that the proposed strategy is able
to reduce the computational cost while still providing remarkably
low spectral distortion, even in simulations that require as little as
11.2% of the original total processing time.

1. INTRODUCTION

The main goal of 3D acoustic simulations is to represent acoustic
sources and environments as naturally as possible to the listener.
To this end, human morphology must be taken into account since
it imposes specific spectral distortions on the incident sound, both
in magnitude and phase, that can be interpreted by the brain to, for
example, estimate the direction of arrival (DOA) and distance, or
identify the timbre of sound sources [1, 2].

For instance, the sound produced by a source positioned to the
left side of the listener hits the left ear first, and arrives delayed and
muffled (i.e. with attenuated high frequencies) at the right ear due
to the greater distance and the acoustic shading effect of the head,
respectively. These effects originate two among the spectral cues
that help us locate sound sources in space: the interaural time differ-
ence (ITD) and the interaural level difference (ILD), both frequency
dependent. Note that when a given source is equidistant from both
ears, e.g. exactly in front or behind the listener, ideally, the lis-
tener can only rely on (simultaneous) spectral distortions in level

∗ This work was funded by Volkswagen Foundation (VolkswagenS-
tiftung), Germany (grant no. 96 881).
Copyright: © 2023 Maurício do V. M. da Costa et al. This is an open-access article

distributed under the terms of the Creative Commons Attribution 4.0 International

License, which permits unrestricted use, distribution, adaptation, and reproduction in

any medium, provided the original author and source are credited.

to estimate its position. It has been shown that small movements
of the head have a great impact in helping estimate such spatial
positions and avoid front/back confusion, which highlights the rele-
vance of even subtle differences between the sounds captured by
the listener’s left and right ears [2].

Head-related transfer functions (HRTFs) describe the men-
tioned body’s acoustic effect over sound being emitted from any
direction in the 3D space until impinging the ear canal entrances or
the eardrums. Their digital versions provide an interface between
the virtual acoustic field and the listener, thus producing a pair of
signals (one for each ear) that will be converted back to the analog
domain and reproduced for the listener by means of some acoustic
transducer, such as a pair of headphones [2].

Although general-purpose HRTFs have been widely used due to
the difficulty of acquiring data from specific listeners in an everyday
situation quickly, reliably, and comfortably, individualized HRTFs
tend to produce more realistic acoustic simulations for virtual reality
(VR) or augmented reality (AR) [2, 3, 4]. For this reason, the
research community has been working for decades on ways to
personalize HRTFs, having as goals the increase in the accuracy
of the HRTFs produced and the ease of implementation of the
corresponding techniques [1, 5, 2].

Among the various existing techniques to accomplish this task,
one way to produce individualized HRTFs without the need for
any audio equipment or acoustically treated environment is by
numerically calculating the sound field around the subjects’ 3D
representation [2, 6, 7, 8]. In this approach, the discrete complex
pressure is estimated in the frequency domain within regular fre-
quency steps for a set of given positions in space. In terms of
equipment, this strategy only requires a device to capture the user’s
geometry and a computer to process the data.

Some important advances in this area allow for faster calcula-
tions, such as the widely adopted boundary element method (BEM)
accelerated with the fast-multipole method and coupled with the
collocation method [2, 6, 7]. Following this line, a recent strategy
proposed in [9] resorts to an automatic mesh-grading procedure
as a way to reduce the meshes, optimizing them in terms of com-
putational load. The mentioned approaches can be considered
numerical approximations, since they reduce the need for compu-
tational resources at the cost of introducing some (manageable)
spectral distortion.

Nevertheless, the computational cost required for simulating
(or approximating) HRTFs is still considerably high: computing
an HRTF for a single user might take several hours on a powerful
contemporary computer. Hence, this procedure is not applicable in
daily-life situations where only moderate computational resources
are available for the task, e.g. when using smartphones, tablets, or
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personal computers. For this reason, reducing the cost of numerical
simulations is still a goal to be pursued.

One aspect of numerical simulations that, to the best of the
authors’ knowledge, is not explored in the literature concerns the
dependence of computing time on frequency: a considerable part
of the processing is performed at the higher end of the frequency
spectrum. As will be shown in Section 3, when simulating HRTFs
in a frequency range up to 22.05 kHz (i.e. at a sampling rate
rs = 44.1 kHz), only roughly 10% of the total processing time is
spent to simulate the frequency spectrum up to 10 kHz, on aver-
age. Although some details in the range above 10 kHz can still
contribute to localization accuracy, human hearing presents a quasi-
logarithmic resolution in frequency, thus exhibiting poorer reso-
lution at high-frequencies; this suggests it may not be reasonable
to allocate 90% of the computational cost to the simulation of
the upper-frequency range. For instance, perceptual audio coders
have taken advantage of low human auditory resolution at high
frequencies to drastically compress audio files while still providing
transparent results, i.e. indistinguishable from the original uncom-
pressed files [10].

In [11], the authors also investigate the use of a non-linear
sampling approach, which follows the equivalent rectangular band-
width (ERB) scale, for smoothing purposes. Nevertheless, that
approach presents two main disadvantages compared to our pro-
posal, namely: (i) the incapability of reliably simulating/estimating
the phase, and (ii) the fact that it requires a higher computational
cost than our approach, for a comparable spectral distortion, due to
the unnecessarily high resolution used at low/mid frequencies.

In this context, the objective of this paper is to propose an alter-
native, non-linear approach to frequency sampling that could reduce
the cost of numerical simulations while still preserving the rele-
vant spectral details from a perceptual perspective, by performing a
perceptually justifiable numerical approximation.

The rest of the text is organized as follows: in Section 2, a
theoretical background of numerical simulation is disclosed, fol-
lowed by a description of the proposed hybrid-resolution method;
then, Section 3 presents the experiments conducted to investigate
the trade-off between reducing the simulation time and increase the
spectral distortion of HRTFs when using the proposed approach;
at last, in Section 4, the conclusions of this manuscript are drawn
along with a description of future work.

2. METHODOLOGY

2.1. Numerical Simulation of HRTFs

Computing individualized HRTFs via numerical simulation requires
a 3D geometrical representation (a ‘mesh’) of the subject, which
consists of a discrete and finite set of points in space forming
triangular faces.1 The simulation thus calculates the scattering
effect of the incoming sound wave over the body geometry and the
HRTFs are obtained as a set of complex pressure bins in frequency,
computed for specific pairs source/receiver locations in the 3D
space [2, 6, 7]. The sound sources are usually distributed on the
surface of a sphere centered at the origin of the Cartesian space,
within a grid that can, for instance, be uniform or distribute the
locations according to the human perceptual spatial resolution [2].

1Meshes are not necessarily described by triangles, but, in the case of
numerical simulations, since connecting three points is guaranteed to define
a flat surface, this choice offers the computational advantage of having a
unique normal vector.

The receiver positions are typically faces of the mesh that best
represent the occluded ear canal entrances or some point inside the
open ear canals, depending on what is to be modeled.

Considering that the mesh is positioned in such a way that the
midpoint between its left and right ear canal entrances coincides
with the origin of the 3D space and the head is in line with the x
axis [2], i.e. the receivers are approximately on the y axis, the (left,
right) HRTF pair can be described as

HL[x
∗, f, s] =

pL[x
∗, f, s]

p0[f ]
and

HR[x
∗, f, s] =

pR[x
∗, f, s]

p0[f ]
,

(1)

where pL and pR denote the sound pressure at the respective left
and right receiver points, x∗ denotes the sound-source location,2 f
denotes the frequency, and s indexes the s-th subject. Both pL and
pR are normalized w.r.t. the reference sound pressure p0, measured
at the origin in the absence of the head.

All current methods for numerical calculation of HRTFs are
based on solutions of the Helmholtz equation, which describes the
propagation of sound waves in the free field around the object of
interest [2]:

∇2p(x) + κ2p(x) = q(x),x ∈ Ωe, (2)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2
is the Laplacian operator in the

Cartesian 3D space; p(x) denotes the complex sound pressure
at the location x; κ = 2πf/c denotes the wave number, which
is calculated using the frequency f and speed of sound c; Ωe

denotes the exterior domain around the object described by the
mesh; and q(x) denotes the complex contribution of the sound
source in the acoustic field around the object. The simulation of
HRTFs is performed by solving this equation for frequencies in
the audible spectrum with regular frequency steps. In this context,
since the sampling procedure is performed in the frequency domain,
it would be inaccurate to adopt the term sampling period. Thus,
to avoid ambiguity in notation, we will denote the frequency step
mentioned as Fs, and the sampling rate related to the sampling of a
signal in the time domain as rs.

There exist different methods to solve this problem, as men-
tioned, the most prominent being: the finite-element method (FEM),
which solves the Helmholz equation considering the object or the
spatial domain around it as a volume; the finite-difference time-
domain method (FDTD), which follows a similar approach to the
FEM, but in the time domain; and the boundary-element method
(BEM), which uses a special set of test functions in the weak for-
mulation of the Helmholtz equation, namely the Green’s function,
and offers the advantage of only considering the surface of the
object. This solution allows for the use of speed-up strategies,
such as the fast-multi-pole method (FMM), the collocation with
constant elements, and the reciprocity approaches. In addition, the
resulting linear system of equations can then be solved using an
iterative equation solver [2]. A complete description of methods
for numerical calculation is out of the scope of this work (for more
information on this topic, see [2, 6, 7, 8, 12]). This paper will focus
on working with the BEM, which is the fastest and most commonly
used solver for this purpose.

2The source position can be described either directly in the Cartesian
3D space as a three-dimensional vector or as a distance in meters and a
direction, e.g. using azimuth and elevation angles.
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Since the simulation is performed for each frequency f indepen-
dently, the solution for a given set of regularly spaced frequencies
f ∈ F , where

F = {f | 0 ≤ f ≤ rs/2, fi+1 − fi = Fs}, (3)

can be paralleled and then processed to produce HRTFs for the
desired source positions x. Such independence is useful not only
for speeding up the process but also for allowing us to arbitrarily
chose which frequencies to compute the pressure with. This will
be exploited in our solution to mitigate the high computational cost
of numerical simulations using the BEM by estimating fewer fre-
quency bins at high frequencies and then interpolating the resulting
spectra to restore the regular frequency grid required to properly de-
scribe HRTFs and HRIRs. The next section presents the non-linear
sampling approach proposed.

2.2. Numerical Approximation of HRTFs: Hybrid Linear-
Logarithmic Sampling

On top of all the techniques already available to speed up the simu-
lation of HRTFs, we aim to further reduce its computational cost.
To this end, we will exploit the following particular observation:
the processing cost grows nearly exponentially with frequency. As
a result, a high percentage of the computing time is concentrated on
simulating very high frequencies, which contrasts with the decreas-
ing resolution of human hearing with frequency [10]. This suggests
that most of the computational burden required by the simulation
methods could be reduced without noticeable effects.

In line with this rationale, we propose a sampling approach that
yields a hybrid linear-logarithmic frequency resolution. The main
idea is to divide the frequency spectrum into two bands around a
given crossover frequency fc, keeping for simulations the usual
fixed frequency steps Fs in the lower band and adopting in the upper
band a logarithmic frequency spacing, specified by a number B of
bins/octave. More rigorously, the set of frequencies to be simulated
can be defined as F̂ = {Flin,Flog}, where

Flin = {f | 0 ≤ f ≤ fc, fi+1 − fi = Fs} and

Flog = {f | f = fmax2
−l/B , 0 ≤ l ≤ B log2 (fmax/fc)}.

(4)

The maximum frequency fmax to be simulated is defined by fmax =
rs/2 and the quantity log2 (fmax/fc) indicates the number of oc-
taves Nocts of the superior spectrum. This ensures that fmax will be
simulated and the remaining frequencies will be sampled decreas-
ing exponentially from fmax to fc. The proposed HRTF is then first
simulated using this non-linear frequency sampling, producing

ĤL(x
∗, f̂ , s) =

pL(x
∗, f̂ , s)

p0[f̂ ]
and

ĤR(x
∗, f̂ , s) =

pR(x
∗, f̂ , s)

p0[f̂ ]
,

(5)

where f̂ ∈ F̂ .
Naturally, adopting the logarithmic scale only for high frequen-

cies avoids applying an unnecessarily high resolution for the lower
part of the spectrum, which would increase the computational cost
without even being beneficial in any case, since we assume the
spectrum is already perfectly represented by a sufficiently small
Fs. In general, due to the free choice of B, the lowest frequency

sampled in Flog may not coincide with the highest frequency sam-
pled in Flin, which is not a problem. In addition, as a guideline, we
can use Fs as a lower bound (equivalent to a maximum resolution)
for the descending sampling procedure in Flog; as a consequence,
linear sampling can end up being extended beyond fc. In fact, the
strategy proposed in this paper could have been implemented dif-
ferently, e.g. with the user setting only Fs and B, and allowing for
the transition to happen when the resolutions meet; nevertheless,
we found it useful to allow the user to set fc, guaranteeing that a
desired frequency band is simulated in predefined fixed frequency
steps, independently from the choice of B. This will be especially
important for the phase estimation, as will be discussed later in this
section.

An example of the proposed sampling approach can be seen in
Figure 1, which illustrates an HRTF simulated with the original reg-
ular sampling (Fs = 150Hz) compared with the proposed hybrid
sampling (fc = 2.76 kHz, Fs = 150Hz, and B = 9 bins/octave).
Since the distance between samples after fc is progressively higher,
at some point, the log resolution seems to be insufficient to properly
describe the original curve, starting to produce aliasing. This can
be clearly verified at very high frequencies (around 18 kHz) where
peaks and valleys occur between the non-linearly spaced samples.
The question is how much these spectral details matter perceptually.
This will be explored in more detail later.

Figure 1: Example of an HRTF simulated with the original linear
sampling compared with the hybrid sampling proposed.

Figure 2 illustrates an example of the computing time spent for
each frequency bin in a real simulation using: the original regular
frequency distribution (Fs = 150Hz); and the proposed approach
with fc = 5.51 kHz, Fs = 150Hz, and two different resolutions,
for comparison (B = 6 and B = 12 bins/octave).

Figure 2: Computing time varying with frequency. Original lin-
ear sampling (steps of 150Hz), compared to the hybrid sampling
approach (6 and 12 bins/oct).
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As can be seen in this example, which depicts a single simula-
tion, there exists some fluctuation in processing time, even within
the same frequency bins. This is expected, since computers per-
form several tasks in parallel, including calculating several different
frequency bins sharing the same computational resources. Never-
theless, the same tendency of increasingly high computational cost
with frequency is observed, regardless of the approach followed.
However, since the proposed frequency distributions contain sparser
bins at high frequencies, a reduction in the total computation time
is expected.

To better compare the computing time for those simulations, it
is worth plotting its accumulated value against frequency, as done
in Figure 3, using the original linear sampling approach as a ref-
erence, with its total cost accounting for 100% of the time spent.
The tendency of the accumulated computing time to grow exponen-
tially (linearly in the logarithmic scale) towards high frequencies
is evident; it also becomes clear that the resolution B used in the
upper-frequency band changes the slope of the linear growth in the
log scale. In this example, the HRTFs computed using the hybrid
approach withB = 6 andB = 12 bins/octave cost, in total, around
12% and 20% of the linear approach, respectively.

Figure 3: Relative accumulated computing time varying with fre-
quency. Original linear sampling (Fs = 150Hz), compared to the
hybrid sampling approach (6 and 12 bins/oct).

It stands to logic that, on average, there should be an upper
bound and a lower bound for the total computing time: it should
never be higher than the reference, regardless of the choice of B
and fc, since Fs determines the maximum resolution possible, and
Fs is also used in the reference; and it should also never be lower
than the accumulated computation time at frequency fc.

2.2.1. Converting irregularly- to regularly-sampled HRTFs

Certainly, some practical problems arise from using an arbitrary
non-linear frequency resolution. It is required for an HRTF to have
a complex set of samples in frequency evenly distributed throughout
the whole frequency spectrum, allowing for the desired filtering
procedure in which the HRTFs are intended to be used.

To this end, a simple linear interpolation procedure applied to
the magnitude of the simulated spectrum ||Ĥ(x, f̂ , s)|| provides
the regular frequency scale required, producing the magnitude
spectrum ||H’(x, f, s)||. Since the HRTFs are used in the digital
domain, they will be henceforth denoted H’[x, k, s], where k ∈
K ≜ {0, 1, 2, ...,K − 1} is the frequency index in the discrete
frequency domain. Note that this interpolation is not able to restore
or estimate parts of the spectra where information has been lost

due to undersampling.3 More sophisticated interpolation schemes
might be explored in the future.

While the linear interpolation of magnitudes predicts reliable
new samples, the periodicity of the phase makes estimating it be-
tween progressively more spaced samples a non-trivial problem.
After trying different approaches, e.g. iteratively estimate the phase
and correct its value using the unwrap procedure4 on a frequency-
bin basis, the best results were achieved by using the average group
delay d(H’) below fc to linearly extrapolate the unwrapped phase.
The average group delay is defined by

d(H’) =
1

kc

∑

0≤k<kc

∠H’[k + 1]− ∠H’[k], (6)

where kc = ⌊fc/Fs⌋ (⌊.⌋ denoting the floor function) is the index
of the digital frequency related to fc, and variables x and s have
been omitted to simplify the notation.

Figure 4, illustrates the unwrapped phase of the same HRTFs
shown in Figure 1. It can be observed that the higher the fc, the
lower the deviation in phase. However, this mismatch at high
frequencies should have very little, if any, perceptual impact on the
performance of the resulting HRTFs, especially since the phase at
high frequencies is coherent with the average-group delay of the
lower end of the spectrum.

Figure 4: Unwrapped phase of an HRTF: original regular sampling
approach (Fc = 150Hz); and the proposed hybrid approach (Fc =
150Hz, B = 9 bins/octave, and fc set to 11.03, 5.51, 2.76 kHz).

Since the pressure estimated at the ear canals is normalized
by the pressure at the origin p0, as mentioned in the previous
section, the phase can assume negative and positive values. When it
comes to generating HRIRs from the complex pressure simulated, a
common procedure is to add a delay in such a way that the resulting
filters become causal.

HRIRs of the same subject of the HRTF shown in Figure 1
can be seen in Figure 5, for different directions in the horizon-
tal plane and different values of fc; it was added a delay relative
to the distance of 60 cm at speed-of-sound c = 334m/s, i.e. ap-
proximately 1.8ms. It can be observed that the impulse responses
exhibit gradually higher energy concentration as fc decreases, due
to the increased frequency range whose phase gets linearized. As
for the HRTF, an example of the spectra in the median plane is

3i.e., when the frequency spacing between the samples is below the
Nyquist sampling frequency required for a lossless description of the sam-
pled signal.

4Phase unwrapping algorithms aim to recover the true unwrapped phase
signal by identifying and correcting phase discontinuities that occur in a
phase signal wrapped between 0 and 2π.
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shown in Figure 6 for the original simulation and an approxima-
tion using our proposal (Fc = 150Hz, B = 12 bins/octave, and
fc = 5.51 kHz). Especially within the frequency range relevant for
spatial cues (3-15 kHz), spectral detail is very well preserved.

Original 9 bins/oct. (1 oct.)

9 bins/oct. (2 octs.) 9 bins/oct. (3 octs.)

Figure 5: Example of HRIRs of a subject (left ear) throughout
the horizontal plane: original simulation (Fc = 150Hz) and three
examples of the proposed method (Fc = 150Hz,B = 9 bins/octave,
and fc = {11.03, 5.51, 2.76} kHz), respectively. Positive values
are represented in blue, and negative values, in red.

Original 12 bins/oct. (2 octs.)

Figure 6: HRTFs (left ear) throughout the median plane simulated
with the original approach (Fc = 150Hz) and with the proposed
method (Fc = 150Hz, B = 12 bins/octave, and fc = 5.51 kHz).

One thing to consider though is that, at high frequencies, wave-
lengths are comparable to the dimensions of the human ear, thus the
incoming waves interact with the pinna in such a way as to produce
steep peaks and notches that might be relevant to some degree (pri-
marily up to 16 kHz [13, 2]) to produce spectral cues. For instance,
the perception of elevation is highly dependent on those spectral
cues, since the sound hits both ears virtually with no difference in
time. Such characteristics of HRTFs help define important subject-
dependent features that must be represented with some accuracy
in the HRTFs to yield realistic results; a poor frequency resolution
might underrepresent these spectral details.

Several experiments related to spectral smoothing have been
conducted to determine to what degree HRTFs can be simplified
before this can be noticed by listeners [14, 11, 15]. Thus, spectral
smoothing might provide some indirect information with respect
to the perceptual domain. For instance, using a fractional-octave
smoothing window in the log spectrum can provide a realistic

expectation of how much detail can be perceived in terms of spectral
distortion, since the resolution of human hearing tends to follow an
approximately logarithmic distribution. In Figure 7, one can see the
same spectra illustrated in Figure 1, estimated for three different
fc, and smoothed using a third-octave rectangular window. As the
resulting magnitudes are very similar, it is expected that the HRTFs
sound very similar, if not indistinguishable.

Figure 7: Magnitude spectra of an HRTF smoothed using a
third-octave filter: original regular sampling approach (Fc =
150Hz); and the proposed hybrid approach (Fc = 150Hz, B =
9 bins/octave, and fc = {11.03, 5.51, 2.76} kHz).

Since spectral smoothing is a common post-processing proce-
dure to remove measurement noise in HRTFs, this could also be
included in the proposed approach, thus providing spectral curves
that would smoothly follow the original simulated HRTFs. For
example, a Hamming window with constant selectivity, or quality
Q, could be used as a smoothing filter in the frequency domain,
providing a smoothed curve more faithful to the original spectra the
higher the resolution B compared to Q. In addition, the smoothing
procedure would ensure smoother transitions between HRTFs of
different directions, which is relevant whenever sound sources are
not static.

In the case of the proposed approach, smoothing can be in-
terpreted as a statistical estimation of the local energy in each
frequency region, whose width varies geometrically in frequency.
Such an estimate will be more precise the higher the resolution B.

3. EXPERIMENTS

The experiments performed in this paper consist of an acoustic anal-
ysis conducted on real 3D meshes acquired from 23 volunteers, over
which different combinations of the parameters available for the
simulations (the resolution parameters Fs and B, and the crossover
point fc) are tested. The spectral distortion and the total computing
time are then presented for each case.

3.1. Spectral Difference Error and Computation Time Assess-
ment

In order to compare the different versions of HRTFs, the Spectral
Difference Error (SDE) is used. It can be computed for a specific
frequency bin k by averaging the results over theD source positions
xd and the S subjects s as

SDE[k] =

√√√√ 1

DS

D∑

d=1

S∑

s=1

(
20 log10

||H’[xd, k, s]||
||H[xd, k, s]||

)2

, (7)
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where ||.|| denotes the magnitude of the complex values. In turn,
the overall SDE can be computed as

SDE =

√√√√ 1

DKS

D∑

d=1

K−1∑

k=0

S∑

s=1

(
20 log10

||H’[xd, k, s]||
||H[xd, k, s]||

)2

.

(8)
To produce the different simulations varying the available pa-

rameters, instead of simulating Ĥ for every single case, a pre-
liminary study showed that estimating Ĥ from H via interpola-
tions would be sufficiently accurate. Similarly, for the analysis of
the computing time, a reference average time was calculated for
each frequency bin using all available original simulations, with
Fs = 150Hz. Then, estimating the cost in f̂ ∈ F̂ via interpola-
tion over the average times in f ∈ F of the original simulations
resulted in the percentage of the new average computing time w.r.t
the reference, which allowed us to avoid possible fluctuations in
computing time between different versions of the same HRTFs.

3.2. Participants

In total, 23 volunteers were recruited at the University of Osnabrück
and compensated with 15 AC after participation. They were, on
average, M = 25.61 years old (SD= 4.77); 43.5% were female, and
56.5% were male; and all of them reported having normal hearing.

3.3. Ethical Approval

The experiments were all performed using 3D scans of voluntaries
in accordance with the Declaration of Helsinki, with ethical ap-
proval obtained from Osnabrück University Ethics Committee (AZ.:
4/71043.5). In the process, the anonymity of participants and the
confidentiality of their data were ensured. Participants were in-
formed about the objectives and the procedure of the study as well
as about their right to withdraw from the study at any time without
adducing reasons or experiencing any negative consequences. All
participants provided informed consent before participation in the
study, which will also include future listening tests.

3.4. Acquisition and Preparation of the 3D Meshes

A 3D scan of the head and torso of each participant was obtained
with the POP 3D scanner from Revopoint5 with a resolution of
0.3mm. The same procedure conducted in [16] was followed: The
test subjects were asked to wear a nylon hair net to facilitate the
scanning procedure since the hair is not modeled; then, point clouds
were created and converted into 3D meshes; the scanning procedure
lasted about 20min and the results were verified visually to ensure
the ears were captured without any artifacts and no major problems
happened in the overall shape of the head and torso. Small artifacts
caused by hair and clothes were neglected in this initial phase and
dealt with later.

The meshes were then carefully treated for the numerical cal-
culations in Blender.6 First, artifacts and details related to hair and
clothes in the meshes were smoothed out using editing tools in
Blender. Such regions were transformed into flatter/smoother sur-
faces, contributing to saving computational resources by lowering

5Available from http://www.revopoint3d.com (last viewed:
March 17, 2023).

6Available from http://www.blender.org (last viewed: March
17, 2023).

the number of points in the mesh. The automatic mesh-grading
procedure described in [9] was then used with the objective of
optimizing the meshes in terms of computational burden. This
procedure consists of assigning different resolutions to different
regions of the mesh, based on both the degree of curvature and the
distance from the ear canal. To determine the minimum and the
maximum distances between points in the mesh, different values
were tried, starting from 0.7mm and 10mm, respectively. The
minimum distance was set to 1.25 mm, and the maximum to 18.75
mm, these being the largest distances that did not cause significant
spectral distortion (SDE[k] < 0.5 dB below 16 kHz).

3.5. Simulation

After the pre-processing stage, numerical calculations were per-
formed with the Mesh2HRTF [6, 7] library, an open-source code
that simulates HRTFs and is integrated with Blender. The imple-
mentation of the proposed method was also entirely based on this
library. The simulations were run for both ears using faces at the
ear canal (which was occluded) as vibrating elements, with the
frequency spectrum sampled every 150Hz and within the range
0-22.05 kHz. The results were then sampled for 1550 spatial posi-
tions distributed on the surface of a sphere with a radius of 1.2 m
centered on the participant’s head.

In the experiments conducted, a relatively wide range of the ad-
justable variables was spanned. As before, the original simulations
used the frequency resolution of Fs = 150Hz, which provides
good quality sampling and can easily produce both 48 kHz and
44.1 kHz HRTF files. Simulations run to compare different values
of Fs produced negligible differences (below 0.1 dB for the whole
frequency spectrum) between the spectra. Although lowering Fs

would make the proportional computation time saved dramatically
higher (to our advantage), such a comparison would be unfair since
a higher regular resolution is not necessary.

The values assigned to the parameters were then Fs = 150Hz,
B = {1, 3, 6, 9, 12, 15, 18} bins/octave; with fc varying in octaves,
related to Nocts = {1, 2, 3, 4, 5, 6} octaves. As mentioned earlier,
certain combinations of B and Nocts can cause the linear sampling
to be extended beyond the crossover point to prevent the logarithmic
resolution from exceeding the regular resolution defined by Fs. This
will be clearly shown in the results reported in the next subsection.

3.6. Results

The results obtained with this variety of configurations are summa-
rized in Table 1, in which the computation times are shown, and in
Table 2, where the SDEs are presented.7

As can be observed in Table 1, the proposed hybrid-resolution
approach is capable of saving large amounts of processing time.
For instance, using B = 6 and only two octaves (fc = 5.51 kHz)
logarithmically sampled, the total computational cost is expected
to be, on average, only 12.9% of the cost of the original version.

Figure 8 illustrates the curves of the average accumulated com-
puting times for the different versions of the proposed method in
relation to the original one, thus showing lower proportional val-
ues the greater the savings in computing time, over frequency. B
varies within the range {1− 18} for Nocts = 2 octaves down from
the maximum frequency 22.05 kHz and Nocts = 6 octaves, which
effectively sets the minimum fc. As mentioned above, setting a

7Not all results are presented in the table, as to avoid repeating the rela-
tive total computation time of configurations with extended linear sampling.
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Table 1: Relative total computing time (%) for simulations using
different hybrid lin-log resolutions (Fs = 150 Hz, B bins/octave)
and varying the crossover point frequency fc in octaves descending
from the maximum frequency available (22.05 kHz). For a given
choice of fc, repeated values are omitted. Low distortion (SDE<
1.5 dB @0-15 kHz.) results are presented in boldface.

Hybrid resolution: Fs = 150Hz, B [bins/oct.]
Nocts 1 b/o 3 b/o 6 b/o 9 b/o 12 b/o 15 b/o 18 b/o
1 oct. 15.3% 17.2% 20.3% 23.4% 26.6% 29.7% 33.0%
2 octs. 6.9% 9.2% 12.9% 16.7% 20.5% 24.3% 28.2%
3 octs. 4.9% 7.4% 11.5% 15.6% 19.8% 23.9% 28.0%
4 octs. 4.2% 6.9% 11.2% 15.5% 19.8% - -
5 octs. 3.9% 6.7% 11.2% - - - -
6 octs. 3.8% - - - - - -

crossover point determines the linear behavior of the curves, whose
inclination is controlled by B. When using minimum fc (Figure 8
right), though, since the more linear parts of the curves start in
different parts of the spectrum, they tend to share a common incli-
nation, although a less linear behavior can be observed, especially
at low frequencies.

Figure 8: Accumulated relative computing time for B within the
range 1−18 bins/octave, usingNocts = 2 octaves andNocts = 6 oc-
taves (minimum fc) down from the maximum frequency 22.05 kHz.

It is worth highlighting that, despite the great savings achieved
with the proposed method, the growth rates of the computing time
in frequency are still geometric (as illustrated in Figure 3), meaning
that high frequencies still cost relatively much more than low fre-
quencies. Since the average curve of the regular sampling approach
tends to grow with a higher inclination, the relative saving rates
are specific to the maximum frequency of the spectrum to be simu-
lated. Naturally, the lower the maximum frequency, the closer the
relative costs get, since the logarithmic resolution range becomes
reduced and does not reach those regions of the spectrum where
the frequency bins are more widely spaced. By way of comparison:
if HRTFs were only simulated up to 16kHz, the full-range relative
cost of 12.9% mentioned above would grow to ≈ 20% when using
Nocts = 2 and B = 6 (see Figure 8).

Table 2 shows, for each choice of B, the SDE for the minimum
fc possible, which provides the minimum computational burden,
but also the maximum spectral distortion. For the previous ex-
ample using B = 6, the maximum SDE calculated was 1.7 dB,
spending 11.2% of the original computing time. Comparing the
smoothed versions of the original and the proposed HRTFs using
a third-octave smoothing window, the differences are even lower,

as expected. For this case, the SDEs (the ‘s’ subscript denoting
the smoothing procedure) was lowered to only 0.9 dB. For high
values of B, such as 18 bins/octave, the SDEs was as low as 0.3 dB,
spending 28.0% of the original computing time.

Table 2: Spectral difference error (SDE), in dB, for simulations us-
ing different hybrid lin-log resolutions (Fs = 150 Hz,B bins/octave).
Values reported for the interpolated HRTFs (SDE) and their
smoothed versions (SDEs). The minimum fc was used, as to provide
the maximum SDE values.

B [bins/octave] 1 3 6 9 12 15 18
SDE [dB] 4.2 2.5 1.7 1.4 1.2 1.0 0.9
SDEs [dB] 3.5 1.6 0.9 0.6 0.5 0.4 0.3

Figure 9: SDE[k] and SDEs[k] (spectra smoothed with a third-
octave filter) for different resolutions.

In order to analyze the spectral differences in more detail,
SDE[k] illustrates the distortion throughout the frequency spectrum,
as can be seen in Figure 9 (top), where once again the minimum fc

is used to better illustrate the distortion occurred in the whole fre-
quency spectrum. The distortion produced is primarily concentrated
at high frequencies, as expected, because the sampling resolution is
lowered with frequency. Even without considering the perceptual
dimension, the distortion observed was considerably low for high
values ofB, peaking at around 3 dB at the very top of the frequency
spectrum.

As can be expected, increasing the resolution B provides rip-
ples with lower peaks in the SDE curves, and thus more transparent
results. This can be seen in Figure 9 (bottom), where the SDEs

is shown for each configuration. Considering these curves, using
B > 6 bins/octave creates SDEs below 1.5 dB, which we anticipate
will provide perceptual transparency for all curves at least in the fre-
quency range below 15 kHz. Some preliminary listening tests have
shown that the just noticeable difference (JND) might lay between
using B = 3 and B = 6 bins/octave. More rigorous listening tests
using signal detection theory are planned to be carried out in the
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future to assess the transparency of the HRTFs simulated with our
method.

4. CONCLUSIONS

This paper presented a novel hybrid linear-logarithmic resolution
approach for the numerical approximation of HRTFs. The pro-
posed method requires remarkably less processing time than the
regular sampling resolution usually employed. Experiments using
3D scans of 23 volunteers were conducted to compare comput-
ing time and spectral distortion for a wide range of resolutions.
Preliminary experiments suggest that perceptual transparency may
be achieved whilst saving around 89% of the processing time tra-
ditionally required. This solution is presented as a step towards
everyday applications, lowering the computational power required
for numerical simulations of HRTFs.

Since the original numerical simulations also present some
spectral distortion in comparison to acoustic measurements, one
concern to consider is the overall validity of the HRTFs obtained
via the proposed numerical approximation, which further distorts
the HRTFs to some degree. In future work, a subjective assessment
will be conducted with the same volunteers from whom the 3D
models were made to determine whether the subjects can notice a
difference between simulations using their individualized HRTFs
simulated with the traditional regular frequency resolution and
using the proposed approach. This will involve different acoustic
scenarios, sound sources with various characteristics, and dynamic
changes in sound source position, thus covering many potential
uses of the HRTFs. In addition, a more in-depth analysis will be
carried out to determine the impact of the proposed procedure on
localization accuracy and the spatial distribution of the spectral
difference. Besides, it will be explored the use of upsampling
procedures that could correct or restore spectral detail lost when
simulating HRTFs using low spectral resolution.
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ABSTRACT

This paper introduces a new open-source Python library for the
modeling and simulation of wave digital filter (WDF) circuits. The
library, called pwydf, allows users to easily create and analyze
WDF circuit models in a high-level, object-oriented manner. The
library includes a variety of built-in components, such as voltage
sources, capacitors, diodes etc., as well as the ability to create cus-
tom components and circuits. Additionally, pywdf includes a va-
riety of analysis tools, such as frequency response and transient
analysis, to aid in the design and optimization of WDF circuits.
We demonstrate the library’s efficacy in replicating the nonlinear
behavior of an analog diode clipper circuit, and in creating an all-
pass filter that cannot be realized in the analog world. The library
is well-documented and includes several examples to help users
get started. Overall, pywdf is a powerful tool for anyone work-
ing with WDF circuits, and we hope it can be of great use to re-
searchers and engineers in the field.

1. INTRODUCTION

Wave digital filters were initially developed by Alfred Fettweis
in the ‘70s and ‘80s in order to digitize ladder and lattice cir-
cuits [1–3]. They have gained popularity in recent years as interest
has grown in virtual analog (VA) modeling of audio and music ap-
plications [4,5]. Many analog audio effect circuits are exceedingly
rare and/or expensive for the majority of music makers, so making
these effects more accessible by faithfully recreating them in the
digital domain has become an important goal of audio engineers
and developers. [6, 7].

Wave digital modeling is a form of white box VA modeling
that takes into account the entirety of a circuit’s internal structure.
A wave digital model of a circuit is composed by replicating each
of the circuit’s elements one by one, and connecting them with
"adaptors", which inform what type of topology is configured [8].
Series and parallel adaptors of course connect elements in series
and parallel and are the most common wave digital adaptors, while
polarity inverters can be considered two-port adaptors, andR-type
adaptors are used for more complicated topologies [9].

The elements and adaptors are arranged in an SPQR tree, with
one element at the root and its children elements organized below
it [10, 11]. This is done by representing the reference circuit as a
graph, in which nodes are circuit nodes and edges are circuit ports.

Copyright: © 2023 Gustav Anthon, Xavier Lizarraga-Seijas and Frederic Font. This

is an open-access article distributed under the terms of the Creative Commons Attri-

bution 4.0 International License, which permits unrestricted use, distribution, adap-

tation, and reproduction in any medium, provided the original author and source are

credited.

Then a graph decomposition algorithm is performed to yield the
SPQR tree. Waves propagate throughout the tree from one wave
digital element to the next to simulate the analog circuit.

Circuit elements are discretized locally and are therefore very
modular as compared to traditional techniques of physical mod-
eling entire circuits. This allows users to swap out components
or change parameters without the need to recompute the entire
system’s transfer function. This also enables users to reuse ele-
ment models in multiple circuits, needing only to change param-
eter values, or occasionally, methods of discretization for stateful
components. WDFs work not with Kirchoff variables like voltage
and current, but rather wave variables, namely ‘incident’ and ‘re-
flected’ waves at each circuit element’s port. All WDF elements
accept an incident wave, and propagate a reflected wave as their
output1. The main work of deriving wave digital models of cir-
cuit elements involves computing the reflected wave based on the
incoming incident wave.

In this paper we introduce a new open-source Python library
for modeling and simulating WDF circuits called pywdf. Sec-
tion 2 provides an overview of related work. Section 3 details the
structure of the library and describes basic functionalities. Section
4 offers examples of circuits built with this library.

2. RELATED WORK

Several libraries for implementing wave digital filters tailored
to audio circuits exist, notably including: Faust framework
wdmodels [12], and C++ libraries chowdsp_wdf [13] and
RT-WDF [14]. These libraries are implemented such that the cir-
cuits can be reliably run and tested in real time. This however
necessitates that a low level language, such as C++, or very spe-
cific knowledge about Faust programming is used to implement
the models. The learning curve of C++ is significantly steeper
than that of higher level and less performant languages, which
makes the barrier of entry quite high for researchers and engineers
to begin experimenting with wave digital filters. This is the cen-
tral motivation for developing this library; there is not currently a
library for modeling wave digital filters in Python, where the pro-
cess of prototyping and programming is much less difficult. As
real time processing of audio in Python results in higher latency,
the library is best suited for prototyping, though real time is still
possible thanks to frameworks like pyaudio2.

Python is also a programming language that is typically

1Some wave digital adaptors accept multiple incident waves and prop-
agate multiple reflected waves, such as R-type adaptors

2https://people.csail.mit.edu/hubert/pyaudio/
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baseWDF

-a : �oat
-b : �oat
-R

P
 : �oat

+connect_to_parent(p: baseWDF) : None
+accept_incident_wave(a : �oat) : None
+impedance_change() : None
+reset() : None
+propagate_re�ected_wave() : �oat

rootWDF

-next : baseWDF

RTypeAdaptor

rootWDF

-up_port_idx : int
-n_ports : int
-down_ports : list
-S_matrix : np.array
-a_vals : np.array
-b_vals : np.array

+r_type_scatter() : None
+calc_impedance() : None
+get_port_impedances() : None
+set_S_Matrix(m: np.array) : None
+get_port_idx(x : int) : int

Diode
-Is : �oat
-Vt : �oat

+set_diode_params() : None
+omega4(x : �oat) : �oat

IdealVoltageSource

-Is : �oat

+set_voltage(Vs : �oat) 

DiodePair

RootRTypeAdaptor

+compute() : None

Resistor

+set_resistance(R : �oat)

Capacitor

-C : �oat
+set_capacitance(C : �oat)

Inductor

-L : �oat

+set_inductance(L : �oat)

ResistiveVoltageSource

-Vs : �oat

+set_voltage(Vs : �oat)

SeriesAdaptor

-p1 : baseWDF
-p2 : baseWDF
-p1_re�ect : �oat

-p1 : baseWDF
-p2 : baseWDF
-p1_re�ect : �oat

ParallelAdaptor

Figure 1: pywdf circuit elements UML class diagram

used for research and prototyping as frameworks like numpy3,
scipy4, and matplotlib 5 allow easy access for plotting and
visualizing the behavior of a system. This process is significantly
easier than building and rendering a C++ plugin, opening a DAW
session, and configuring the correct channel strip settings to as-
certain the same information about the system. Python has also
become one of the more popular environments for experimenting
with Machine Learning (ML). Recent works such as [15, 16] have
united the world of wave digital filters and machine learning, so
we believe a WDF library implemented in Python will further fa-
cilitate research and development at the intersection of these two
subjects.

3. STRUCTURE

The pywdf library6 is built following the object oriented paradigm
used in the C++ chowdsp_wdf library7. The base class from
which all wave digital elements and adaptors inherit basic func-
tionalities is called baseWDF. This class initializes variables like
incident and reflected waves, parent elements, and contains func-
tions to probe and calculate the port resistance at each element
and connect elements to one another according to the composition
of the SPQR-tree representing the circuit. Basic wave digital ele-
ments in the repository include resistors, ideal and resistive voltage
sources, capacitors and inductors, 3-port series and parallel adap-
tors and more. Also included is the the diode and diode pair, the
nonlinear behavior of which we model using the reflected wave
equation derived by Werner et al. in [17]:

3https://numpy.org/
4https://scipy.org/
5https://matplotlib.org/
6https://github.com/gusanthon/pywdf
7https://github.com/Chowdhury-DSP/chowdsp_wdf

b = a− 2λVT

[
W
(
RpIs
VT

e
λa
VT

)
+W

(
−RpIs

VT
e
− λa

VT

)]
(1)

Where a is the diode pair’s incident wave, λ is signum(a)
(defined in equation 2), Vt is thermal voltage,W is the LambertW
function,Rp is port resistance, and Is is the reverse bias saturation
current.

signum(x) =





−1 , x < 0

0 , x = 0

+1 , x > 0

(2)

The thermal voltage is typically about 25.85 mV at room tem-
perature, but depends on the number of antiparallel diodes used in
series, giving us the ability to modify the number of diodes used
in the circuit. While the reverse bias saturation current varies from
diode to diode, we use an Is value of 2.52e-9 which is standard for
silicon diodes such as the common 1N4148. In practice, we em-
ploy the fast approximation of the Lambert W function published
by D’Angelo et al. in [18].

Also included are R-type adaptors, which allow for implemen-
tations of circuits whose topologies cannot be broken down into
strictly series or parallel, such as the bridged T circuit. Addition-
ally, they can be used to implement models of operational ampli-
fiers. We include R-type adaptors that are unadaptable and can
only be used at the root of a connection tree, as well as adaptable
ones that can be used more flexibly. The outputs of R-type adaptors
are computed with scattering matrices, which can be found using
methods from Modified Nodal Analysis [19]. The full structure of
the library’s circuit elements is depicted by the Unified Modeling
Language (UML) class diagram in figure 1, and shows how and
from where each WDF element inherits its variables and methods.

There also exists a Github repository with a Python script to
generate a scattering matrix for a chowdsp_wdf circuit given a
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circuit’s netlist 8. This repository also contains a fork that allows
users to generate a scattering matrix9 compatible with pywdf cir-
cuits.

Lastly we have created a Circuit class from which any
wave digital circuit built using this library can inherit basic func-
tionalities. These functions are useful for research and analysis
and include:

• process_sample() : a function that contains a generic
method to process a single sample of a wave digital circuit

• process_signal() : uses process_sample to pro-
cess entire signals with a circuit

• get_impulse_response() : uses
process_signal() to process a Dirac delta func-
tion and returns the output

• plot_freqz() : uses get_impulse_response()
and takes the Fast Fourier Transform (FFT) to plot the sys-
tem’s magnitude and phase responses

• plot_freqz_list() : allows user to visualize how the
system’s frequency response changes as a parameter is var-
ied. Figure 9 was generated with this function

4. EXAMPLES

In this section we will describe some of the examples offered by
the library such as the Diode Clipper and a Passive All Pass Filter.
Although the library includes additional circuits such as the RCA
Mark II Sound Effects Filter [6] and the Bassman Tone Stack [20,
21], among others.

4.1. Diode Clipper Evaluation

This library was initially developed to thoroughly examine how
effectively wave digital filters can replicate the nonlinear behavior
of an analog diode clipper [22] . We do so by examining frequency
response comparisons, AC transient analysis, and harmonic series
analysis. The Diode Clipper WDF model was constructed by con-
verting the circuit to an SPQR tree as shown in 3. We then instan-
tiate these components in a DiodeClipper class __init__
function, as shown in listing 1. The parameters used to instanti-
ate these components such as the resistance and capacitance are
calculated according to the cutoff value provided by the user.

Listing 1: Instantiating WDF elements of diode clipper

1 self.R1 = Resistor(self.R)
2 self.Vs = ResistiveVoltageSource()
3

4 self.S1 = SeriesAdaptor(self.Vs, self.R1)
5 self.C1 = Capacitor(self.C, self.fs)
6

7 self.P1 = ParallelAdaptor(self.S1, self.C1)
8 self.Dp = DiodePair(self.P1, 2.52e-9,

n_diodes=n_diodes)

8https://github.com/jatinchowdhury18/R-Solver
9https://github.com/gusanthon/R-Solver

Figure 2: Diode clipper circuit.

Figure 3: Diode clipper SPQR tree.

4.1.1. Frequency Response Comparison

We compare the magnitude and phase responses generated by the
pywdf circuit model to those of a SPICE10 circuit model, with the
frequency cutoff at the following values:

Fc = {70, 150, 250, 500, 1000, 2000, 4000, 8000, 16000}[Hz.]
(3)

At each of the following sample rates:

Fs = {44100, 48000, 88200, 96000}[Hz.] (4)

Figure 4: Spice vs pywdf frequency response, with 44.1kHz sam-
ple rate and cutoff frequency at 1kHz

10http://bwrcs.eecs.berkeley.edu/Classes/IcBook/
SPICE/
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Figure 4 shows this frequency response comparison with a
sample rate of 44.1 kHz and a cutoff parameter of 1 kHz. We
observe only slight deviations as the WDF model’s frequency ap-
proaches Nyquist - where its behavior is technically undefined. We
also compute error metrics between the two models using Mean
Square Error (MSE)11 and Error-to-Signal ratio (ESR).

MSE =
1

N

N∑

i=1

(xi − yi)2 (5)

ESR =

∑∞
n=−∞ |yp[n]− ŷp[n]|

2

∑∞
n=−∞ |yp[n]|

2 (6)

The MSE and ESR results averaged across all parameter
changes for each sample rate are listed in table 1.

Magnitude [dB] Phase [rad]

Sample Rate [Hz] MSE ESR MSE ESR

44100 7.215 1.703 0.001 0.019
48000 6.837 1.324 0.015 0.015
88200 7.035 0.416 0.003 0.003
96000 6.660 0.344 0.003 0.003

Table 1: Averaged MSE and ESR of magnitude and phase across
all parameter changes by sample rate

4.1.2. AC Transient Analysis

A diode clipper typically includes an input gain stage, to raise the
level of the input signal and consequently cause it to be clipped
even harder. We examine how sinusoidal inputs respond to rais-
ing the input gain parameter and show how the signal becomes a
square wave in Figure 5. One can observe that even at negative
input gain values the signal is being saturated, which implies that
the diodes contribute nonlinearities even when the input signal is
not crossing the clipping voltage. Table 2 shows the amount of
total harmonic distortion and noise (THD+N) introduced at differ-
ent input gain levels, which also indicates that negative and small
input gain values result in additional saturation to the input.

Figure 5: AC transient analysis varying input gains.

11https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.mean_squared_error.html

Input gain [dBFS] THD+N [%]
-20 0.017
-15 0.017
-10 0.029
-5 0.437
0 6.897
5 15.519
10 21.859
15 26.425
20 29.611
25 31.978
30 33.559
35 35.055
40 37.115

Table 2: THD+N% introduced at each input gain value with 44.1
khz sample rate and cutoff frequency at 1 khz

4.1.3. Harmonic Series Analysis

We also perform a swept sine analysis as first described by Fa-
rina in [23], which involves feeding an exponentially swept sine
wave across all frequencies below Nyquist into a nonlinear system,
and convolving the output with an inverse filter of the input sweep
to create a multidimensional impulse response (IR). Because it is
a nonlinear system, the diode clipper adds additional frequencies
(harmonics) to its input. The multidimensional IR represents the
impulse response of each of the harmonics introduced by the sys-
tem. The multidimensional IR of the diode clipper is shown in 6,
with each vertical line corresponding to the IR of each harmonic.
We can isolate each individual IR from the multidimensional IR
and take its FFT to visualize each harmonic’s magnitude response,
as shown in figure 7.12 It is interesting to note that the 0th har-
monic has very low magnitude below 20 Hz, which is likely due to
the bandwidth of the sweep tone being limited between 20 Hz and
20 kHz. It is also interesting to note that the bandwidth of each
successive harmonic decreases, and is essentially high-passed fur-
ther and further.

Figure 6: Diode Clipper multidimensional impulse response.

To assess the contribution of each harmonic in terms of the
signal, we reused the idea of the Signal-to-Noise Ratio (SNR) in
this scenario. It drove us to define the Harmonic-to-Signal Ratio
(HSR), that allows us to compare the magnitude level of the 0th-
harmonic (the desired signal) to each higher harmonic.

12Responses were normalized 0 dB
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Figure 7: Magnitude response of each harmonic.

# Harmonic HSR [dB]
0 0.0
1 34.63
2 60.51
3 73.69
4 81.27
5 91.58
6 101.77
7 108.91
8 115.14

Table 3: Harmonic-to-Signal Ratio (HSR) for the first 8 harmon-
ics.

HSRdBi = 2(20 log10(Hi)− (20 log10(H0))) (7)

HSR is defined in Equation 7 13. The measurements of each
harmonic’s HSR can be seen in Table 3. The HSR of the 0th har-
monic (fundamental) is of course 0 dB as it is being compared to
itself. Each successive harmonic’s HSR is greater than its previ-
ous, as the difference between the harmonic and the fundamental
increases as the harmonic increases.

4.2. All Pass Filter

[24] describes a new resistor-capacitor (RC) circuit realization of
a first-order all-pass filter (APF). The implementation is very par-
ticular because the APF scheme is composed of a single grounded
capacitor, and three resistors, one of which is negative. Negative
resistance means acceptance and it is of course not possible in the
real world, but is an interesting experiment when simulating cir-
cuits digitally. This demonstrates that the digital domain allows us
to modify the behavior of analog circuits, for example when each

13https://wikimedia.org/api/
rest_v1/media/math/render/svg/
ed42497b9008934f5bcbab43fc64c4d815b142ee

of the resistors are positive the circuit behaves as a high shelving
filter.

APF is an important filter function for analog processing de-
sign because it provides phase shifting whereas the magnitude is
constant at all frequencies, keeping the amplitude of the input con-
stant over the frequency bandwidth of interest. APFs can be used
to correct undesired phase change as a result of a processing signal
such as the high-pass filtering in a loudspeaker crossover [25].

Figure 8: APF circuit.

This model was first implemented in SPICE and then we built
the netlist of the R-type adaptor with the approach based on a
graph decomposition of the reference circuit [10, 11]. Later we
used R-Solver to compute the scattering matrix that allows us to
calculate the impedance of the R-type adaptor, which was com-
puted without an adapted port. Listing 2 shows the instantiation of
each wave digital component in the APF class __init__ func-
tion.

Figure 9 depicts the frequency response for a list of cutoffs,
that was generated using the plot_freqz_list() command.
We can observe how the magnitude is unaltered while the phase
is more affected by the circuit with a 180° delay in the frequency
components below the cutoff frequency. The phase of the first-
order APF varies from 0 at ω = 0 to -π at ω =∞ and the pole ωp
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and zero ωz frequencies are calculated as [24] indicates,

ωp = ωz =
1

CR
(8)

where C is the capacitance and R the resistance value. Equa-
tion 8 enabled us to implement the set_cutoff method to mod-
ulate the cutoff in our APF-WDF, which may be useful to help
fix unwanted phase shifting. It also can be used to implement a
phasing/flanging effect for music production applications, which
could be achieved by modulating the cutoff frequency with an
LCOscillator, also included in this library.

Listing 2: Instantiating WDF elements of APF

1 # Port B
2 self.R1 = Resistor(self.R1_value)
3

4 # Port C
5 self.R2 = Resistor(self.R2_value)
6

7 # Port D
8 self.R3 = Resistor(self.R3_value)
9

10 # Port E
11 self.C1 = Capacitor(self.C1_value, self.fs)
12

13 # define R-TypeAdaptor
14 self.R_adaptor = PolarityInverter(
15 RTypeAdaptor([self.R1, self.R2, self.R3,

self.C1], self.impedance_calc, 0)
16 )
17

18 self.Vin = IdealVoltageSource(self.
R_adaptor)

This APF configuration is unique in that it cannot be real-
ized in the analog domain, because negative resistance cannot be
achieved. We hope that pywdf can further allow users to experi-
ment with physically impossible circuits in the digital domain, ei-
ther by aiming to replicate known filter behaviors, or by tweaking
existing circuits in ways that otherwise could not be done.

Figure 9: Cutoffs in the APF-WDF implementation.

5. CONCLUSIONS AND FUTURE WORK

This paper presents pywdf, an open-source Python library to pro-
totype and evaluate WDFs. The library is available under an
MIT license on Github and it provides examples of implementa-
tion and usage for different circuits. Currently, the library models
each electrical component, such as Resistor, Capacitor, Inductor,
Switch, Diode Pair, Adaptors and Sources. We have shown its
ease of use in prototyping and analyzing digitally modeled analog
circuits, as well as its efficacy in replicating their behavior. Over-
all, we believe pywdf to be a powerful resource with a low barrier
of entry to begin experimenting with virtual analog modeling.

Future work for this project can involve developing additional
circuit elements and models. For example, existing literature dis-
cusses nullors, which are helpful in modeling ideal operational am-
plifiers and transistors [26]. This would allow for much greater
flexibility in building circuits with the library. We also hope to
add support for differentiable wave digital filters, and improved
integration with solving R-type adaptors’ scattering matrices.

Further, while we have presently implemented a tolerance pa-
rameter for the Capacitor model, we would like to add this to more
circuit elements to get more realistic modelling, and include anal-
ysis options on tolerance behavior such as is described in [27].

Additionally, stateful components like capacitors and induc-
tors are only currently implemented as discretized by the bilinear
transform. It would be helpful to add support for additional con-
formal maps such as the forwards and backwards Euler transforms
and others, which are included as parameters for stateful compo-
nents in chowdsp_wdf.
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ABSTRACT

Dynamic Stochastic Synthesis (DSS) is a direct digital synthesis
method invented by composer Iannis Xenakis and notably em-
ployed in his 1991 composition GENDY3. In its original con-
ception, DSS generates periodic waves by linear interpolation be-
tween a set of breakpoints in amplitude–time space. The break-
points change position each period, displaced by random walks via
high-level parameters that induce various behaviors and timbres
along the pitch–noise continuum. The following paper proposes
Dynamic Stochastic Wavetable Synthesis as a modification and
generalization of DSS that enables its application to table-lookup
oscillators, allowing arbitrary sample data to become the basis of a
DSS process. We describe the considerations affecting the devel-
opment of such an algorithm and offer a real-time implementation
informed by the analysis.

1. INTRODUCTION

Iannis Xenakis proposed Dynamic Stochastic Synthesis (DSS) as a
time-domain method of producing “complex sonorities” with “nu-
merous and complicated” transients [1]. In DSS, the cyclical por-
tion of a periodic wave (wave cycle) is defined by a number of
breakpoints in amplitude–time space. Waves are produced by lin-
ear interpolation between adjacent breakpoints. The breakpoints
shift positions each period, continuously affecting the pitch, am-
plitude, and timbre of the synthetic tone produced and giving rise
to its “dynamic” character (Fig. 1).

The “stochastic” element refers to the displacement of the
breakpoints in both dimensions by random walks. Various prob-
ability distributions (Cauchy, logistic, etc.) can be applied, each
affecting the movement of the breakpoints in its distinctive way
[2]. Xenakis also specified high-level parameters to constrain the
displacement: the random walk step size governs its magnitude,
and elastic barriers reflect excessive values back within a speci-
fied range. These parameters influence the degree of similarity
between successive wave cycles. If only slight variation is permit-
ted, tones of stable pitch and timbre are produced; conversely, a
parameter state that allows profound dissimilarities between wave
cycles causes the output to tend towards noise. Additionally, the
number of breakpoints used correlates with spectral brightness.

The original DSS software GENDY dates from the late 1980s
and operated in a non-realtime capacity. Since then, several re-
searchers have implemented DSS with experimental alterations

Copyright: © 2023 Raphael Radna. This is an open-access article distributed un-
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Figure 1: Two contiguous DSS wave cycles. The second is a vari-
ation of the first, produced by stochastic displacement of its four
breakpoints. The period of the second cycle is shorter, indicating
an increase in pitch.

that seek to enhance its sound or functionality in some way, in-
cluding interactive operation and analysis [3], time-variant param-
eter automation [4], wave-cycle sequencing strategies [5], touch-
sensitive and gestural interfaces [6], and applications of physical
models to the algorithm [7, 8]. Our own previous DSS-related
research culminated in the Xenos plug-in synthesizer, which intro-
duced pitch quantization to DSS [9].

While these contributions have all helped to extend and sus-
tain interest in DSS, none have addressed the inherent limitation
of its basis in breakpoint interpolation synthesis. One possibility
in this direction is the application of DSS to standard wavetable
oscillators. Although DSS does not read a lookup table directly,
it realizes equivalent sample data at runtime through breakpoint
interpolation; this process bears similarity to dynamic wavetable
techniques, such as scanned synthesis [10, 11]. Dynamic Stochas-
tic Wavetable Synthesis (DSWS) thus uses the procedures of DSS
to apply its characteristic, stochastic pitch and timbre evolution to
arbitrary sample data, instead of generating abstract waves from
linear ramps. In this way, DSWS reimagines DSS as an audio pro-
cessor rather than a synthesizer, increasing the timbral range of the
technique, enabling general DSS-based modulation, and facilitat-
ing interpolation between arbitrary timbres and DSS.

2. DYNAMIC STOCHASTIC WAVETABLE SYNTHESIS

The DSWS prototype described in this paper is implemented in
Max/MSP using the GenExpr metalanguage for audio program-
ming. The code is open source and available for download from
https://github.com/raphaelradna/dsws.

2.1. Wavetable Segmentation

While DSS begins with the definition of breakpoints for linear in-
terpolation, DSWS begins by segmenting a wavetable into a num-
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ber of regions whose pitches and amplitudes will be individually
manipulated. For simplicity and efficiency, we have chosen to di-
vide the wavetable into an arbitrary number of segments of equal
size. Our implementation allows for as few as one segment, in
which case the entire wavetable is affected uniformly, or as many
as 256. The number of segments is variable at runtime. As in DSS,
a greater number of segments results in a brighter timbre (Fig. 2).
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Figure 2: The spectral centroid increases with the number of
wavetable segments. Measurements were taken using a sinusoidal
wavetable and with otherwise constant parameters: a steady pitch
of A1 (55 Hz) and maximum amplitude fluctuation.

2.2. Table Lookup, Modification, and Output

DSWS has at its core a wavetable oscillator that derives sample
values by reading through a lookup table at a variable frequency
[12]. It imposes DSS-like behavior on a wavetable of N samples
by dividing it into M segments and applying individual, random,
pitch and amplitude deviations to each segment. For each sample
in the input wavetable x[n], where 0 ≤ n < N , the index m of its
containing segment is the greatest integer less than M multiplied
by ϕ, its phase within the wavetable:

m = ⌊Mϕ⌋ , (1)

where the phase ϕ in range 0 ≤ ϕ < 1 is given by

ϕ =
n

N
. (2)

The deviations are regenerated each period and stored in series P
and A, respectively, each of length M . The pitch deviation P [m]
of the segment containing x[n] modulates the base oscillator pitch
p. These values, initially expressed as floating-point MIDI notes,
are summed, converted into a frequency in Hz, and divided by the
sampling rate fs to produce a phase increment φ for table lookup:

φ =
440 · 2

p+P [m]−69
12

fs
. (3)

The effective frequency therefore changes with each segment
as the table is read and fluctuates around p. By contrast, the per-
segment amplitude deviation is added to the wavetable data. To
avoid introducing discontinuities into the wave cycle, an individual
amplitude deviation a is derived for each input sample x[n] by
linear interpolation between the amplitude deviation A[m] of its
containing segment and that of the subsequent segment A[k]:

a = (1− µ)A[m] + µA[k] , (4)

with the index k of the subsequent segment given by

k =

{
m+ 1, if m < M − 1

0, if m ≥M − 1
, (5)

and the interpolation parameter µ attained by

µ =Mϕ−m. (6)

Finally, a (4) is added to x[n] to produce output sample y[n]. To
prevent clipping, any y[n] greater than 1 or less than−1 is reduced
or increased, respectively, by the amount d that it lies out of range:

y[n] =





1− d, if x[n] + a > 1

−1 + d, if x[n] + a < −1
x[n] + a, if − 1 ≤ x[n] + a ≤ 1

, (7)

where
d = |x[n] + a| − 1 . (8)

DSWS can thus be conceptualized in part as a segmented, stochas-
tic wavefolder (Fig. 3) [13].
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Figure 3: Asymmetrical amplitude folding of a sinusoidal
wavetable resulting from a DSWS process with (a) two segments,
(b) four segments, and (c) sixteen segments.

2.3. Deviation Generation and Iteration

The per-segment pitch and amplitude deviations are produced by
random walks that are iterated every wave cycle. New values are
generated in the range [−1, 1] according to some probability distri-
bution (we use uniform randomness for demonstration purposes)
and added to the previous deviations to produce new ones. Two
parameters influence this process: the step size scales the random
value, constraining its magnitude and thus limiting the difference
between deviations across cycles, and the barrier position defines
the random walk space, i.e., the minimum and maximum possible
deviation values. The sum of the previous deviation and new ran-
dom value can in general fall outside of the range defined by the
barriers; following Xenakis’s design, any such sums are reflected
back into range in the manner of (7) and (8).

Because the random value can be either positive or negative,
the deviation can either increase or decrease from one wave cycle
to the next, regardless of the step size. The barrier position param-
eter limits the range of the random walks symmetrically around
a single value; the amplitude walks center around zero, while the
pitch walks center around p, the base oscillator pitch. As a result,
reducing both barrier position parameters to zero reproduces the
input wavetable at a constant pitch. The parameters of the pitch
random walk are specified in equal-tempered semitones, and those
of the amplitude random walk are specified as proportions of the
full amplitude range.

2.4. Single-Segment Pitch Fluctuation

Manipulating individual sections of a wavetable in the manner of
DSWS introduces knees in the output wave at the segment bound-
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Figure 4: Effects of DSWS pitch fluctuation on the waveform and spectrum in (a), (b) standard and (c), (d) single-segment modes. The
deformations visible in waveform (a) are caused by eight extreme pitch deviations per wave cycle. These scatter partials throughout
spectrum (b), including by aliasing. Because the frequency of waveform (c) modulates only once per cycle, its sinusoidal shape is preserved,
producing spectrum (d), which shows less energy in the high-frequency range despite otherwise identical parameters: a center pitch of C5
(523.25 Hz), pitch barrier range of ± two octaves, pitch step size of six semitones, and no amplitude fluctuation.

aries, causing high-frequency distortion. While the amplitude fluc-
tuation writes these directly into the sample data, the pitch fluctua-
tion also causes them implicitly by modifying the phase increment
for each segment, potentially tens or hundreds of times per cycle.
As a result, pitch fluctuation is not generally timbre-neutral, but
also affects the spectrum of the resulting tone.

To better isolate perceived pitch and timbre transformations,
we can treat the entire wavetable as a single segment for the pur-
pose of pitch fluctuation, regardless of the number of segments
used for amplitude fluctuation. In this case, the pitch fluctuation
occurs once per cycle, i.e., at oscillator frequency in Hz. Since
this rate typically still falls within the microsound timescale, rapid
pitch modulation remains perceptible while timbral distortions are
reduced (Fig. 4). This method produces more volatile pitch move-
ment for the same step size and barrier position parameters, be-
cause the frequency of the wave cycle depends on a single pitch
deviation instead of the average of several. It also contradicts DSS,
which stipulates an equal number of pitch and amplitude fluctua-
tions per cycle, but may be subjectively preferable in its adapta-
tion to wavetable synthesis due to its ability to preserve the shape,
and therefore timbre, of a particular wavetable. We thus propose
single-segment pitch fluctuation as the default behavior of DSWS.

3. DISCUSSION

This section elaborates on our DSWS prototype, providing insight
into certain design choices and their ramifications, and suggesting
possible alternatives or areas for further development.

3.1. Wavetable Selection and Sound Quality

Sine, triangle, square, and sawtooth wavetables are included in
our DSWS implementation. The classical waveforms were pro-
duced by additive synthesis using 64 harmonics, which, at a sam-
pling rate of 44.1 kHz, prevents aliasing for fundamental frequen-

cies up to approximately 344.5 Hz. Further antialiasing measures
were not taken, as the linear interpolation of DSWS, like that of
DSS, ultimately produces its own aliasing artifacts [2]. A more
complete implementation could apply additional solutions for an-
tialiased wavetable synthesis, such as those described in [14], and
offer band-limited interpolation algorithms for producing the per-
sample amplitude deviations [15].

Our implementation can also generate noise wavetables us-
ing uniform randomness, load external single-cycle sample data in
.wav format, or use an empty wavetable. Since using a wavetable
with all values zeroed produces linear ramps between amplitude
deviations, we can say that DSS is a special case of DSWS.

3.2. Wavetable Segmentation Method

Although we divide the wavetable into equal parts, other segmen-
tation methods could be applied and affect the results in distinct
ways. A piecewise linear approximation algorithm, for example,
could fit the segment boundaries to places of pronounced change in
the slope of the sample data (Fig. 5). Furthermore, a method that
optimizes the fit within a specified error tolerance, as in [16], could
determine the ideal number of segments and their boundaries for
arbitrary wavetables. Further investigation is needed to assess the
significance of the wavetable segmentation method in DSWS.

3.3. Optimization Considerations

The DSWS prototype reads the sample data from a source wave-
table, transforms them, and writes the results into a second wave-
table, which is read at the oscillator output. Although every wave
cycle is regenerated from the source data in this manner, continuity
between them is maintained because the deviations are influenced
by their own previous values. Our implementation uses a second
wavetable primarily for the purpose of visualization; an alterna-
tive and possibly more efficient design would calculate the values
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(a)

(b)

Figure 5: Segmentation of a sinusoidal wavetable into seven parts
using (a) equal distribution and (b) piecewise linear fit via global
optimization of the least squares method [17].

continuously and write them directly to the output buffer, without
otherwise storing them.

The per-segment pitch and amplitude deviation data defining
the transformation have the same memory footprint as the ampli-
tude–time breakpoints of traditional DSS. In a polyphonic imple-
mentation using this method, each voice would have unique arrays
of deviations but read a single source wavetable, avoiding expen-
sive array-copy operations. Because the barrier position param-
eters control the random walk space, i.e., the degree of pitch or
amplitude deviation from the source, this approach also affords in-
terpolation between the original wavetable and its transformation.

3.4. Limitations

A complete reproduction of all DSS features is beyond the scope of
this work. Therefore, certain components of the mature form of the
technique, namely second-order random walks and variable prob-
ability distributions, have not been implemented. This decreases
the number of parameters, which simplifies the prototype, but also
reduces its sound design potential.

Additionally, because the per-segment pitch fluctuations affect
table read frequency and are not written explicitly into the sample
data, the built-in waveform display object in Max/MSP does not
represent the horizontal distortions they produce. These are visu-
alized, however, in the oscilloscope-style display.

4. CONCLUSION AND FUTURE WORK

We have described DSWS, an experimental synthesis method ex-
ploring the application of Iannis Xenakis’s DSS algorithm to table-
lookup oscillators. We also presented a prototype demonstrating
its basic principles. The technique could be developed further,
e.g., by integrating additional probability distributions, segmenta-
tion methods, and interpolation algorithms; or by combining with
sophisticated wavetable techniques, such as wavetable crossfading
and multiple-wavetable synthesis [18]. Furthermore, by expanding
DSS into a sample-processing paradigm, DSWS suggests imple-
mentation as a filter that applies an iterative window of stochastic
pitch and amplitude distortions to streaming audio input.
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ABSTRACT

This “Late Breaking Results” paper presents an ongoing project
aiming at providing an accessible and easy-to-use platform for
high sampling rate real-time audio Digital Signal Processing
(DSP). The current version can operate in the megahertz range and
we aim to achieve sampling rates as high as 20 MHz in the near fu-
ture. It relies on the Syfala compiler which can be used to program
Field Programmable Gate Array (FPGA) platforms at a high level
using the FAUST programming language. In our system, the audio
DAC is directly implemented on the FPGA chip, providing excep-
tional performances in terms of audio latency as well. After giving
an overview of the state of the art of this field, we describe the way
this tool works and we present ongoing and future developments.

1. INTRODUCTION

Sampling rate selection in the context of real-time audio Digital
Signal Processing (DSP) is impacted by a wide range of factors.
Beside psychoacoustic considerations (i.e., Nyquist frequency, hu-
man hearing range, etc.), aliasing, hardware, and computational
power all play an important role. While 48 kHz is fairly standard
as it puts the Nyquist frequency (24 kHz) well above the human
hearing range, it is fairly common nowadays to see professional
audio systems running at 96, 192, 384, and even 768 (in some rare
cases) kHz, minimizing aliasing and audio latency (to the detri-
ment of computational power).

Until recently, the use of sampling rates in the megahertz range
for real-time applications was mostly reserved to researchers with
very specific needs. At this rate, real-time constraints are such that
standard processor architectures which are traditionally used for
audio DSP (i.e., CPUs, DSPs, and microcontrollers) can’t really
keep up. That’s why ASICs1 and FPGAs2 are used when such
performances are needed. On this kind of platform, the speed at
which an algorithm can be run is mostly limited by the maximum
clock tolerated by the system and the “length” of the corresponding
electronic circuit (i.e., the time it takes to go from point A to point
B in the algorithm).

In the music technology industry, FPGAs have been used for
high sampling rate applications in a few rare products. A good ex-
ample is the Novation Summit3 which is a “hybrid” analog/digital

1Application-Specific Integrated Circuit.
2Field-Programmable Gate Array.
3https://novationmusic.com/en/synths/summit – All

URLs provided in this paper have been verified on April 23d, 2023.
Copyright: © 2023 Romain Michon et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

synthesizer where basic digital oscillators (e.g., sine, etc.) are im-
plemented on an FPGA and computed at 24 MHz. They “market”
this as “digital approximating analog,” which is certainly appeal-
ing in the analog synth community.

Beyond simple waveform oscillators, implementing more
complex audio DSP algorithms on an FPGA is a notoriously hard
task. The use of Hardware Description Languages (HDLs) such
as Verilog or VHDL combined with fixed point arithmetic makes
the programming of this kind of platform completely out of reach
to most audio DSP programmers. While some high-level environ-
ments are available such as Simulink4 or Vivado Block Design,5

they’re almost all based on the combination of pre-“compiled”
(“synthesized”6 using FPGA terminology) objects, significantly
limiting the scope of what can be implemented.

We recently released Syfala7 [1], the first “audio DSP to FPGA
compiler” relying on the FAUST programming language8 [2]. This
open source tool allows us to fully program a series of Digilent
development boards (i.e., Zybo Z7-10/20 and Genesys) based on
Xilinx/AMD FPGAs to carry out real-time audio signal process-
ing tasks. In this context, we explored a wide range of target ap-
plications leveraging the unique performances of FPGAs for audio
DSP: ultra-low latency processing [1, 3], spatial audio [4], etc.

While FPGAs can easily keep up with very high audio sam-
pling rates (in the megahertz range, as mentioned above), the
fastest audio codec9 chips available on the market such the Analog
Devices ADAU1787 don’t go beyond 768kHz. There are two po-
tential solutions to this problem: (i) using general-purpose Analog
to Digital/Digital to Analog Converters (ADC/DAC), etc., (ii) im-
plementing audio ADC/DACs directly on the FPGA. Both meth-
ods require the use of additional circuitry to implement reconstruc-
tion filters, carry out impedance matching, etc. The main disad-
vantage of (i) is that interfacing an external chip operating in the
megahertz range with an FPGA through its GPIOs can be chal-
lenging for prototyping if the circuit is not properly shielded. On
the other hand, (ii) offers an extremely robust and reliable solution
since everything happens directly on the FPGA. If the sampling
rate is high enough, there’s no need for complex reconstruction fil-
ters and a simple RC lowpass filter consisting of a resistor and a
capacitor (providing a very slow roll-off) is sufficient for this task.

4https://www.mathworks.com/discovery/
fpga-programming.html

5https://www.xilinx.com/products/design-tools/
vivado.html

6In the context of FPGAs, the word “synthesized” is the equivalent to
“compiled” on other platforms.

7https://github.com/inria-emeraude/syfala
8https://faust.grame.fr
9Throughout this paper, “audio codec” will refer to a hardware compo-

nent implementing an audio ADC/DAC (not an audio compression algo-
rithm).
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In this “late breaking result” paper, we present the current sta-
tus of an ongoing project aiming at providing built-in audio AD-
C/DAC support as part of the Syfala tool-chain without using any
additional complex hardware. Our goal is to offer the same level
of performances as commercial audio codecs while allowing for
sampling rates in the megahertz range. This will potentially open
the way to a broad range of new developments towards improv-
ing virtual analog systems, considering audio DSP from a more
continuous standpoint, reducing aliasing and artifacts, etc.

First, we give a brief overview of the state of the art of the
field of ADC and DAC design as well as of existing works around
implementing ADCs and DACs on FPGAs. Then we demonstrate
how we implemented a second order delta-sigma (∆Σ) DAC in
our Syfala tool-chain and we present its performances. We finally
discuss the prospect and potential challenges of implementing a
higher order ∆Σ DAC as well as an ADC on an FPGA. We also
briefly talk about some possible difficulties related to running au-
dio DSP algorithms in real-time at a high sampling rate.

2. BACKGROUND

2.1. ∆Σ ADCs and DACs

∆Σ modulation [5] is by far the most commonly used technique
for implementing audio ADC and DAC nowadays [?]. Most au-
dio codec chips available on the market rely on this method. A
first order ∆Σ DAC is based on an integrator, a 1-bit DAC, and
a comparator (see Figure 1). It converts a digital signal (i.e., a
stream of samples) into a stream of pulses (bits) generated at a
high frequency. The more pulses, the higher the analog voltage
at the output of the DAC. The audio sampling rate, the clock of
the DAC, and the order of the ∆Σ modulator are interconnected
parameters which all influence the resulting Signal to Noise Ra-
tio (SNR) [6]. A higher order ∆Σ modulator allows for a lower
OverSampling Ratio (OSR) [6]. The OSR directly determines the
SNR of the system. For example, if a first order ∆Σ modulator
is used with an OSR of 32, then the SNR will be around 40 dB.
With an OSR of 32, for an audio sampling rate of 48 kHz, the
clock of the ∆Σ modulator has to be 1.536 MHz. On the other
hand, if a fifth order ∆Σ (which is the standard used for audio
codec chips) modulator is used with the same configuration, then
the SNR will increase to 124 dB. Note that there exists many dif-
ferent ∆Σ modulator topology when going beyond second order
presenting different advantages and tradeoffs in terms of numeri-
cal stability [6]. These SNR figures are independent from the bit
depth of incoming samples which can also be a source of quantiza-
tion noise. Hence, if 16 bits audio samples are provided to a fifth
order ∆Σ DAC with an OSR of 32, the resulting SNR should be
around 98 dB.

To summarize, a higher order ∆Σ modulator can help increas-
ing the audio sampling rate of the system while preserving a rea-
sonable SNR. Also, the higher the clock of the ∆Σ modulator, the
better the performances of the system in all respects.

Once the stream of pulses is generated, it must of course be
filtered (lowpass) to reconstruct the analog signal. Using a high
audio sampling rate can help decrease the complexity of the filter
needed for this task. The lower the order of the reconstruction fil-
ter, the more progressive its roll-off. Hence, the -6 dB per octave
provided by a simple first order RC filter (which can be imple-
mented with just a resistor and a capacitor) is enough if the audio
sampling rate is in the megahertz range.

∆Σ ADC work in a similar way but are usually slightly more
challenging to implement as they imply the use of a hardware com-
parator which is not necessarily built-in/directly available on FP-
GAs [7].

u(n)

-
z

z−1
1 bit DAC

v(n)

z−1

Figure 1: First order ∆Σ DAC where u(n) is the digital signal
input and v(n) is a stream of pulses.

2.2. ∆Σ ADCs and DACs on FPGAs

FPGAs are a convenient platform for implementing ∆Σ DACs
and ADCs (if the FPGA provides differentiated general purpose
inputs). Indeed, running a ∆Σ modulator at a very high speed
(more than 100 MHz) and connecting its output to a General Pur-
pose Input/Output (GPIO) is trivial. In fact, coding a first order
∆Σ DAC is often a basic exercise/example when learning FPGA
programming.10 Implementing a second order ∆Σ DAC is not
that much more complicated and examples of such projects can
be easily found on the web.11 Things get significantly more com-
plex when considering third order and beyond because of stabil-
ity issues. Hence, while constructing a third, forth, or fifth order
∆Σ DAC is fairly straightforward, formatting coefficients and pre-
venting numerical/rounding errors is potentially very challenging.
Various tools such as the Matlab delta-sigma toolbox12 can help
with that. Additionally, various papers on on this topic have been
written over the years [8, 9, 10, 11].

∆Σ ADCs face more or less the same challenges as their DAC
counterparts. As mentioned previously, implementing a ∆Σ ADC
on an FPGA is significantly simpler if the chip provides differen-
tial inputs as those can potentially be used to implement the re-
quired differentiator at the beginning of the algorithm [6]. If the
FPGA chip doesn’t provide differential inputs, then a hardware
differentiator should be used, making the design significantly more
complex and hence “defeating the purpose” of using an FPGA for
this task.

3. IMPLEMENTATION IN THE CONTEXT OF SYFALA

Syfala [1] allows us to run FAUST programs on Xilinx FPGAs-
based boards such as the Digilent Zybo Z7 or Genesys without
having to write a single line of hardware description language code
(which is normally used to program FPGAs).

The standard version of the Syfala compiler can target vari-
ous audio codec chips including the one built-in on the Digilent
FPGA Zybo (see Figure 2) and Genesys boards. We implemented
a custom first and second order ∆Σ DAC integrating to the Syfala

10https://www.fpga4fun.com/PWM_DAC_2.html
11https://github.com/hamsternz/second_order_

sigma_delta_DAC
12https://www.mathworks.com/matlabcentral/

fileexchange/19-delta-sigma-toolbox
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tool-chain and that can be used as an alternative for audio codecs.
Hence, if the -sd option is used when calling the Syfala compiler,
the audio output of the system is implemented through a second
order ∆Σ DAC. The current version is multichannel which means
that a new ∆Σ DAC is instantiated for each output of the FAUST
DSP program and associated to a GPIO on the board.

Figure 2: The Digilent Zybo Z7 FPGA board used for this project.

When the -sd option is used, the audio sampling rate of the
system is automatically switched to 5 MHz. The master clock of
the FPGA is 125 MHz yielding an OSR of 25 and hence providing
a SNR of about 70 dB. At such a high sampling rate, using a one
pole RC filter as described in §2.1 is acceptable and is enough to
minimize aliasing. Hence, each DAC GPIO must be connected to
such a filter. For a cut-off frequency of 20 kHz, a 880 Ω resistor
and a 0.01 µF capacitor can be used. A 10 µF capacitor should
also be put in series to get rid of DC. Different values for the sam-
pling rate can be specified too using the appropriate Syfala option
(--sample-rate), bearing in mind that diminishing its value
increases the SNR and vice versa.

Master Clock
(125 MHz)

Downsample Clock
(5 MHz) Audio DSP

Control DSP DDR

∆Σ DAC

GPIO

Analog LowpassAudio Out

FPGA

CPU

Figure 3: Implementation overview of the system. Clock signals
are depicted with dotted arrows.

As the ∆Σ DAC is seamlessly integrated to the Syfala tool-
chain (see Figure 3), all the other functionalities of this environ-

ment remain active/available (i.e., use of DDR for long delays,
control computations happening on the ARM processor which is
part of the board, etc.).

4. HIGH SAMPLING RATE AUDIO DSP

Running audio DSP algorithms in real-time at a high audio sam-
pling rate can present various challenges which are often related to
precision/numerical errors. This of course can greatly vary from
one algorithm to another, but obviously running more samples
through a filter or computing a wave-table oscillator index using
a phasor based on a delta increment can all be significantly im-
pacted by this. A good example of that is the default sine wave
oscillator in FAUST which is based on a wave table (represented
here by the sin function) and whose implementation takes the
following form:

phasor(freq) = (+(freq/ma.SR) ~ ma.frac);
osc(freq) = sin(phasor(freq)*2*ma.PI);

The ~ in phasor represents a recursive signal and ma.frac
yields the fractional part of a decimal number. In that case,
freq/ma.SR is not precise enough at 5 MHz to provide an accu-
rate frequency. This is just a simple example to demonstrate that
high audio sampling rate can be really enabling on one side but
can also creates many issues on the other.

5. FUTURE WORK

The ultimate goal for this project is to eventually integrate a 5th
order ∆Σ DAC as well as ADC to the Syfala tool-chain.

As mentioned in §2.2, implementing a 5th order ∆Σ DAC on
an FPGA is not trivial because of the potential instability of this
kind of algorithms due to numerical/rounding errors. This problem
is reinforced by the fact that these errors tend to get worse as the
clock of the ∆Σ modulator increases.

VHDL-based solutions do exist though [11] and we plan to ex-
ploit them to potentially reach this goal. Alternatively, we’re also
particularly interested in investigating the potential use of FAUST
for writing these algorithms and comparing their performances
with their VHDL counterparts. The FAUST version would miti-
gate numerical errors because of the use of floating points whereas
the VHDL version would probably be more efficient from a com-
putational standpoint but more prompt to rounding errors. It would
also be interesting to investigate the use of FloPoCo13 [12] (which
is a tool for generating arithmetic cores on FPGAs) in this context.

Along the same lines, we hope to be able to provide a ∆Σ
ADC in Syfala using similar approaches to that described in [7].
This should be possible on the boards supported by Syfala which
all have differential general purpose inputs. As for the DAC, it will
be interesting to compare a FAUST implementation to a VHDL
one.

6. CONCLUSIONS

The domain of high sampling rate real-time audio DSP is widely
unexplored because it has been out of reach for a very long time.
Many algorithms would benefit from running at a higher sampling
rate, mitigating artifacts and potentially opening new possibilities
such as improving virtual analog systems, considering audio DSP

13https://www.flopoco.org/

DAFx.3

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

349



Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

from a more continuous standpoint, etc. The system that we pre-
sented in this paper and that we’re currently developing provides
an accessible and easy-to-use platform for this kind of applications
without making compromises in terms of performances, quality,
etc. Beyond this, it might also allows us to simplify the overall
design of Syfala by completely getting rid of audio codecs and
providing even better latency performances.
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ABSTRACT

In this paper, we propose an approach to real-time singing voice
conversion and outline its development as a plug-in suitable for
streaming use in a digital audio workstation. In order to simul-
taneously ensure pitch preservation and reduce the computational
complexity of the overall system, we adopt a source-filter method-
ology and consider a vocoder-free paradigm for modeling the con-
version task. In this case, the source is extracted and altered using
more traditional DSP techniques, while the filter is determined us-
ing a deep neural network. The latter can be trained in an end-to-
end fashion and additionally uses adversarial training to improve
system fidelity. Careful design allows the system to scale naturally
to sampling rates higher than the neural filter model sampling rate,
outputting full-band signals while avoiding the need for resam-
pling. Accordingly, the resulting system, when operating at 44.1
kHz, incurs under 60 ms of latency and operates 20 times faster
than real-time on a standard laptop CPU.

1. INTRODUCTION

Singing voice conversion (SVC) is an audio style transfer appli-
cation which converts the voice of a sung performance to that of
another without changing its underlying content or melody [1]. It
can be used for expressive and creative voice manipulations that go
beyond conventional effects. Relative to voice conversion applied
to speech, SVC has stronger demands on accurate pitch preserva-
tion as humans are sensitive to pitch instabilities in singing [2].

SVC has been dominated by deep learning approaches of late.
With some exceptions, methods attempt to predict converted acous-
tic features, and use vocoders to synthesize waveforms from said
features [3]. The end-to-end adversarial SVC (EA-SVC) method
inverts a learned latent representation with a MelGAN [4] gener-
ator, using adversarial training to improve signal plausibility [5].
DiffSVC uses a diffusion model to improve acoustic feature mod-
eling [6]. As state-of-the-art neural vocoders often lack sufficient
pitch stability, FastSVC [1] conditions waveform generation on a
harmonic excitation signal. Most approaches focus on fidelity im-
provements, with less attention placed on their deployability as
real-time streaming plug-ins that operate seamlessly in conven-
tional audio workflows.

In our own previous works, we have considered different fea-
ture representations and end-to-end training mechanisms [2, 3].
Most recently [7], we explored a vocoder-free alternative [8] that
was implemented in an end-to-end context using a variation of a
WORLD feature representation [9]. In this case, we achieved SVC
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Figure 1: Proposed RT-SVC system block diagram.

by processing the input signal rather than synthesizing a new one
based on it, effectively guaranteeing its relative pitch contour.

In this work, we propose a real-time SVC (RT-SVC) approach
and implement it as a real-time plug-in. Drawing from [7], we
model SVC using a source-filter method, combining pitch-shifting
techniques with a lightweight, low-latency neural filter model. We
highlight design choices to balance fidelity and performance, and
means of scaling our methods to different sampling rates. Our
paper is organized as follows: Section 2 describes the proposed
method, Section 3 discusses its realization as a real-time plug-in,
Section 4 reports experimental findings, and Section 5 draws con-
clusions.

2. PROPOSED METHOD

2.1. System overview

We consider source and target vocalists S and T , respectively. Our
aim is to determine a suitable waveform xS→T capturing the per-
formance (content) of an input source waveform xS , while as-
suming the character of T (style). The conversion task involves
two transformations on xS , as illustrated conceptually in Figure
1. The first stage pitch shifts the input by a constant factor, such
that the resulting xS,PS is reflective of the register of the vocalist
T . The second stage applies linear time-varying (LTV) filtering
to the pitch-shifted result so that the timbre of the result conceiv-
ably matches that of the vocalist T . This is modeled using a deep
learning model trained in an end-to-end manner over a dataset of
recordings of the vocalist T . As stated, the problem naturally lends
itself to a source-filter approach.

While many SVC approaches depend on neural vocoders to
synthesize new waveforms from inferred representations, we ap-
proach the task by processing the input signal. In the context of a
real-time system, this offers several advantages, including:

• Pitch preservation: Parametric/neural vocoders are prone to
pitch errors, and cannot ensure relative pitch input contour
preservation in their outputs. Meanwhile, we preserve pitch
exactly, barring absolute shifts which we can reliably apply.

• Reduced complexity: Removing the need for a vocoder re-
duces computational footprint and latency in our system.
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Figure 2: Fully differentiable end-to-end neural filter model block diagram.

• Extension to arbitrary sampling rates: We can extend our
method to sampling rates beyond that used in training, pro-
ducing wide-band outputs while only needing to model the
SVC effect over a perceptually relevant sub-band [10].

• Voice interpolation: We can interpolate between source and
modeled timbres via a convex combination of acoustic fea-
tures, with perfect recovery of the source timbre if desired.

2.2. Vocoder-free design with WORLD log Mel spectrograms

DefiningF andF−1 as the forward and inverse short-time Fourier
transforms (STFT), respectively, we describe our approach as a
spectral process. At a nominal sampling rate fs,0 = 22.05 kHz,
we use hop and frame lengths of H = 256 and N = 1024 sam-
ples, respectively. A signal x has the source-filter decomposition

x = F−1 [F(e)⊙F(h)] (1)

where e and h denote the time-varying source (i.e. excitation) and
filter function of x, respectively. Proper estimation of the spec-
tral envelope |F(h)|2 leads to extraction of a predominantly flat
excitation spectrum. To this end, we leverage the CheapTrick al-
gorithm from WORLD analysis [9], which estimates spectral en-

velopes sp =
∣∣∣F(ĥ)

∣∣∣
2

via a fundamental frequency (f0) depen-
dent smoothing of signal power spectra.

We seek to determine F(eS→T ) and F(hS→T ) given xS ,
from which we can compute xS→T according to equation (1). To
model the excitation spectrum, we apply a pitch shift to xS to
register match it against the target vocalist, resulting in xS,PS,0.
Robust formant preservation during pitch shifting is a system re-
quirement, and we propose a generic means for providing this
for any pitch shifting process through formant-preserving post-
filtering. Leveraging CheapTrick again, we derive the spectrum
of what would be the post-filtered, pitch-shifted signal xS,PS as

F(xS,PS) =

√
spS

spS,PS,0
⊙F(xS,PS,0) (2)

where spS and spS,PS,0 are estimates of the spectral envelopes of
xS and xS,PS,0, respectively.

To reduce the dimensionality of features ultimately predicted
by our deep learning model, we use a compressed representation
called the WORLD log Mel spectrogram [7], given by

X = log10(M
√
sp+ ϵ) (3)

where M is the Mel basis matrix used to compute anM -band Mel
spectrogram from an N -point STFT, and ϵ = 10−5 is used for nu-
merical stability. It is similar to the generalized Mel cepstrum [3],
except that it makes for a more obvious differentiable implementa-
tion to support end-to-end training. We use M = 80 in this work.
A decompressed approximation of X is then

sp† =
[
M†

0(10
X − ϵ)

]2
(4)

where M†
0 = max(M†, 0) and M† denotes the pseudo-inverse of

M. Given sp†S derived from the source WORLD log Mel spectro-
gram XS , the estimated excitation spectrum is given by

F(êS→T ) =

√
1

sp†S
⊙F(xS,PS) (5)

We task a deep learning model (discussed in Section 2.3) to
provide estimates for X̂S→T , resulting in F(ĥS→T ) = ŝp†S→T

via equation 4. Combining into equations (1) and (5), the con-
verted waveform is estimated as

x̂S→T = F−1

[
κ⊙

√
ŝp†S→T

sp†S
⊙
√

spS
spxS,PS,0

⊙F(xS,PS,0)

]

(6)
where κ is a normalization term computed empirically at each time
step to ensure that the modified spectrum L1 norm matches that of
F(xS). Equation 6 contains four distinct parts: 1) pitch shift-
ing, 2) formant-preserving post-filtering, 3) timbral modification,
and 4) normalization. The resulting ratio-based LTV filter is non-
negative by design, mitigating potential phase coherence issues.

2.3. Neural filter model

The goal of the neural filter model, outlined in Figure 2, is pri-
marily to infer WORLD log Mel spectrograms X̂S→T to match
the timbre of the target singer while maintaining the content of
the source. The LTV filtering outlined in Section 2.2 can be made
fully differentiable given access to the various spectral envelopes
and waveforms as input, so it is implemented as part of our model
in order to enable its end-to-end training [11], yielding x̂S→T .

To perform SVC for any source S, we must create a singer-
independent encoding for xS . Our encoder extracts source loud-
ness LS deterministically, using the frame-level root-mean-square
(RMS) converted to decibels during training (with system hop and
frame lengths). We also use the tonality-gated f0 contour FS ex-
tracted using DIO [9] within WORLD analysis during training. At
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inference time, the pitch feature is offset based on the pitch shift
that we apply, yielding the target pitch contour FS→T . Lastly,
to capture linguistic content, we extract a phonetic posteriorgram
PS [5] from a phoneme classifier. We found it instructive to pre-
emphasize the input prior to passing it to the phoneme classifier
using a finite impulse response filter of the form

y[t] = k0x[t]− k1x[t− 1] (7)

with k0 = 1.0 and k1 = 0.97. The classifier then passes 40 Mel
frequency cepstral coefficients (MFCCs) extracted from the pre-
emphasized signal through a unidirectional recurrent architecture
consisting of two long short-term memory (LSTM) layers with 256
units, and a final dense layer yielding a 61-dimensional output vec-
tor of phoneme class probabilities at each time step. The network
is trained on the TIMIT dataset [12].

The decoder builds upon a lightweight, real-time variant of
the architecture in [11], where each multi-layer perceptron (MLP)
head uses a single dense layer with 256 units, layer normalization
and ReLU nonlinearity. As the initial architecture only considered
frequency and loudness features, we add an additional head for
PS . In doing so, we effectively model the way in which the tim-
bre of a phonetic sequence of a target vocalist is varied based on
changes in delivery (e.g. when belting a high note loudly). The
inputs and outputs of each encoding head are combined and fed
through a single 256-unit LSTM layer, followed by a dense layer
which outputs a WORLD log Mel spectrogram. The end-to-end
audio processor contained within the model filters input audio us-
ing the decompressed spectral envelopes, resulting in the model
output waveform.

2.4. Training objective

The neural filter model is trained as an autoencoder, and therefore,
we have xS = xS,PS,0 = xS,PS = xT = xS→T , XS = XT =
XS→T , FS = FT = FS→T , etc. during training. In this sense,
the model is trained end-to-end, but admittedly, is never exposed
to pitch-shifted audio (or any of its associated audio artifacts), as
the training objective is merely one of self-reconstruction.

Model training minimizes a combination of conventional neg-
ative log likelihood loss terms ensuring good average fidelity and
adversarial loss terms promoting plausible system outputs as deter-
mined by a discriminator network [4]. To this end, we considered
the time-domain multi-scale discriminator architecture in [4] and a
single-scale version of the spectral domain architecture as in [13].
Also similar to [13], we actually observed better performance us-
ing a spectral domain discriminator for the task. Given a suitably
trained and frozen (phonetic) encoder, the full objective function
for the neural filter model is

L = LMSE + LMSL + µLG (8)

whereLMSE is the mean squared error (MSE) defined on WORLD
Mel spectrograms (i.e. the decoder outputs), LMSL is the end-
to-end multi-spectrogram loss (MSL) [11], LG is the end-to-end
adversarial generator hinge loss, and µ is a hyperparameter set to
0.5 in this work. As in [14], we noticed that the usual deep fea-
ture matching loss associated with [4] tended to slow down con-
vergence, and that LMSE + LMSL was sufficient for stabilizing
adversarial training. The discriminator is trained to minimize its
corresponding end-to-end discriminator hinge loss.

3. REAL-TIME PLUG-IN IMPLEMENTATION

We have implemented our system as a real-time plug-in in C++.
Here, we outline practical considerations for such a realization.

3.1. Streaming feature extraction

We approximate the frame-based loudness feature used during train-
ing, computing RMS in a zero-latency fashion via a 1-pole infinite
impulse response (IIR) filter with a time constant equal to the sys-
tem stride. We replace DIO with our proprietary low-latency pitch
detection algorithm, and use our implementation of the Lent algo-
rithm [15] as a real-time pitch shifter. Loudness and pitch features
are sampled according to the system stride so that they are aligned
to their frame-based counterparts. Lastly, we refactor the Cheap-
Trick C++ implementation [9] to handle buffered audio streams.

3.2. Extension to higher sampling rates

We design the plug-in to extend processing to a sampling rate
fs = G · fs,0 (G ≥ 1) without the need for resampling. We
consider how our feature representations vary as a function of G,
and devise schemes to roughly neutralize this effect, so as not to
create a large input feature mismatch from training. Our pitch de-
tection/shifting algorithms and the loudness and pitch feature com-
putations in Section 3.1 are sample-rate agnostic by construction.
STFT frame and hop lengths scale with G (while ensuring N to
be an even power of 2), and as most fast Fourier transform (FFT)
implementations are unnormalized, we carefully scale power and
magnitude spectra (as used in CheapTrick or to generate MFCCs)
by 1/G2 and 1/G, respectively. We construct Mel bases and
pseudo-inverse matrices at fs while maintaining their respective
lower and upper frequency bounds at fs,0. We roughly preserve
the response of the pre-emphasis filter in equation (7) using gener-
alized filter coefficients k0 = G, k1 = G− 1+ k1,0, k1,0 = 0.97.

Lastly, we found that we only need to model SVC up to around
10 kHz (arguably lower) to yield a convincing effect, and that we
can safely extend the LTV filter gain derived near this boundary
to frequencies above it. This effectively amounts to injecting a
properly scaled version ofF(xS,PS) at frequencies above 10 kHz.
This way, we produce wide-band SVC results, even though our
network is only trained to model a smaller bandwidth arguably
considered too narrow for music production purposes.

3.3. Model export

According to its gains in [16], we use TFLite as a real-time deep
learning inference engine. To do so, we recreate encoder/decoder
architectures in TensorFlow, explicitly defining a single time step
of acoustic features as model input/output. We add LSTM state
vectors as additional inputs/outputs so that we can propagate them
between time steps and reset them as needed in the plugin. Lastly,
we convert the resulting TensorFlow model to the TFLite format.

3.4. Plug-in performance

We incur about 45 ms of latency due to windowing in CheapTrick
and the forward/inverse STFTs, and less than 15 ms of residual
latency due to pitch detection/shifting, resulting in a total plug-in
latency of just under 60 ms. The plug-in runs 20 times faster than
real-time on a standard laptop CPU and can be launched from a
conventional digital audio workstation.
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Table 1: Quantitative and qualitative model comparisons.

Model L1 # Params. Pitch shifter MOS

Offline [7] 0.042 25.3M Lent 3.99
Phase Vocoder 4.52

RT-SVC 0.135 2.19M Lent 3.37
Phase Vocoder 3.89

RT-SVCGAN 0.225 2.19M Lent 3.69
Phase Vocoder 4.20

4. EXPERIMENTAL RESULTS

We exemplify our methods using an internal collection of voice
data. The dataset features recordings from 15 different singers,
with approximately 2 hours of data for each singer. We consider
3 SVC models for each vocalist: our offline model used in [7], as
well as RT-SVC models trained with and without adversarial loss
terms (RT-SVC and RT-SVCGAN , respectively). All systems are
trained at 22.05 kHz, using 2-second audio clips and a batch size
of 4. We use the Adam optimizer with a learning rate of 10−4

and train for 500,000 training steps. When leveraging adversarial
training, we train the generator for 50,000 steps before training
the discriminator. For subjective listening, we refer readers to our
demo website at https://sites.google.com/izotope.com/rtsvc-demo.

Table 1 reports L1 reconstruction error of log Mel spectro-
grams computed between inferred waveforms and their targets and
mean opinion scores (MOS) collected from participants within our
organization, across models trained on one of said singers. For the
latter, participants were asked to rate examples from 0 to 100, and
responses were rescaled to the conventional 1 to 5 scale. Overall,
11 people with proficient listening and varied musical experience
evaluated our models. Indeed, our offline model outperforms RT-
SVC models in terms of fidelity quantitatively and qualitatively. It
tends to reconstruct prolonged vowels more consistently, and gen-
erally exhibits less leakage of the input speaker identity. For added
perspective, we note that regardless of the neural filter model, the
use of our proprietary high-latency phase vocoder pitch shifting
algorithm can noticeably and universally affect fidelity as well,
experiencing fewer audio artifacts across consonants and vowels
relative to our Lent implementation. Nonetheless, our real-time
model is over 10 times smaller, and when paired with the Lent
pitch shifter, is amenable to streaming applications. Lastly, while
RT-SVCGAN achieves worse average L1 performance than RT-
SVC, it produces more plausible outputs, as per its higher MOS
score (see supplemental figures on our website for details).

5. CONCLUSIONS

We proposed an approach for real-time SVC and implemented it as
a streaming plug-in. The method combines pitch shifting of the in-
put signal and timbral transformation provided by a deep learning
model. The novelty of the method is that it acts directly on the in-
put signal instead of synthesizing a new waveform, reducing com-
plexity and preserving the pitch of the original signal. As such,
the model can extend to sampling rates beyond the nominal rate
used by its deep learning model component. In future work, we
are interested in improving excitation signal modeling, and specif-
ically, to see if it is possible to inject the pitch shifting algorithm
"in-the-loop" during training to improve fidelity. We would also
like to improve acoustic feature/filter modeling for the real-time
case, potentially leveraging recent advances on integrating stream-
ing convolutional layers and related architectures [17].
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ABSTRACT

Recent advances in data-driven expressive performance rendering
have enabled automatic models to reproduce the characteristics
and the variability of human performances of musical composi-
tions. However, these models need to be trained with aligned pairs
of scores and performances and they rely notably on score-specific
markings, which limits their scope of application. This work tack-
les the piano performance rendering task in a low-informed setting
by only considering the score note information and without aligned
data. The proposed model relies on an adversarial training where
the basic score notes properties are modified in order to reproduce
the expressive qualities contained in a dataset of real performances.
First results for unaligned score-to-performance rendering are pre-
sented through a conducted listening test. While the interpretation
quality is not on par with highly-supervised methods and human
renditions, our method shows promising results for transferring re-
alistic expressivity into scores.

1. INTRODUCTION

Performance rendering is the task of imbuing a music score with
expressive features as if a musician performed the score in a way
to bring out emotional qualities. To get an expressive rendition of
the music, performers have the liberty to shape sound parameters
that are not explicitly described by the written score [1]: for piano
pieces, musicians make an interpretation of the score by mainly
reshaping the timing, articulation and nuance of the notes. An
automated system that can reproduce such a complex and artistic
behavior can find its usage in assisting composers for obtaining
musical renditions of their pieces.

Previous works for the task used data-driven methods to pre-
dict performance features that enhance the score note indications
[2, 3, 1, 4]. More recently, Variational Auto-Encoders (VAE) con-
ditioned on score features have proven to be successful at model-
ing the diversity in performance expressivity, as several renditions
of the same piece are conceivable [5, 6, 7, 8]. The performance
features are defined as the difference in timing, articulation, and
velocity of the played notes compared to the exact rendition of the
score [9]. However, obtaining such features requires the collec-
tion of Musical Instrument Digital Interface (MIDI) performances
with their associated digital scores and to align them at note-level
[10, 11]. These required matching and alignment steps limit the
amount of data available for training [12] and the application of
the models to piano music, where performance MIDI data can be

Copyright: © 2023 Lenny Renault et al. This is an open-access article distributed
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collected more easily [13]. Also, most of these works are highly-
informed as they take different markings in the digital scores into
account for guiding the expressive rendering, such as rests, beat
information, hand part, position in the measure, key and time sig-
natures, articulation and ornament markings, slurs or beams. This
reliance on markings specific to the sheet music format hinders
the usage of these models in modern music production frame-
works (DAW, sequencers) where MIDI data are directly manip-
ulated without using such markings.

Concurrently, Generative Adversarial Networks (GAN) have
been successfully applied for various tasks transferring data from
one domain to another without aligned pairs, such as image-to-
image translation [14], audio timbre matching [15] or music genre
transfer [16]. In the light of such results, this work attempts to ad-
dress expressive performance rendering as a domain transfer task,
by transforming MIDI scores into human-like performances with-
out supervision on the performance features and reliance on score
markings. To this end, an adversarial approach is employed to map
the outputs of a low-informed performance rendering model to the
distribution of human performances, without providing matching
pairs of scores and performances. Trained on publicly available
datasets, the proposed method and its experiments are presented
here, including an early subjective evaluation.

The experiments show promising results for the method as it
can infer expressive qualities into scores, although not with the
same amount of naturalness as in performances rendered by real
pianists and by a highly-informed supervised baseline. Accompa-
nying this paper, audio samples are provided online 1.

2. PROPOSED APPROACH

The proposed approach, illustrated in Figure 1, is composed of
a performance rendering model G that takes a score X as input
and produces an expressive interpretation X̃ . The rendered per-
formances are fed into a discriminator D, among performances Y
from a dataset of recorded human performances. The performance
rendering model and the discriminator have opposed objectives,
as the discriminator D aims to differentiate the real performances
from the ones rendered by the model G, while the latter tries to
produce performances indistinguishable from the real ones.

2.1. Data formatting

Both the scores X and real performances Y are encoded as se-
quences of N notes with the minimal amount of features needed
for describing them:

X = {xn}n≤N = {pn, on, dn, vn}n≤N . (1)

1http://renault.gitlab-pages.ircam.fr/dafx23
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Figure 1: Training pipeline for the proposed model: the mix func-
tion modifies the score X with features output by the performance
rendering model G (in green), in order to deceive the discrimina-
tors Dk (in orange). During training, the unaligned score X and
performance Y are drawn at random from their respective sets.

The notes are ordered by their absolute onset time: for the n-th
note, pn is its normalized MIDI pitch, on its delta-time with the
previous note onset, or relative inter-onset-interval (IOI), capped
at 4s, dn its duration in absolute time and vn its normalized MIDI
velocity.

2.2. Performance rendering model

The performance rendering model G predicts modifying features
∆X = G(X) from the score note features in order to modify them
into performance-like note features X̃ through the mix function:

X̃ = mix(X,G(X))

= {pn, on + δon, dn × δdn, vn × δvn}n≤N ,
(2)

with δon the micro-onset timing, δdn the articulation and δvn the
expressive velocity of the n-th score note.

These modifying features are obtained by first processing the
note-wise score features with a convolutional Score Encoder. Then,
the same hierarchical modeling from [5] is applied: the note-wise
features are merged into chord-wise features, which enables a more
coherent modeling of the full sequence. This note-to-chord oper-
ation, or N2C, is performed by average pooling the features of
simultaneous notes into a common chord-wise feature. The in-
verse operation C2N can later convert chord-wise features into
note-wise features by duplicating the chord feature for each of its
notes. On the contrary of hierarchical strategies employed in other
works [7, 8], the note-to-chord alignment matrix required forN2C
and C2N can be directly extracted from our low-informed MIDI

data representation, using the sequence of relative IOI {on}n≤N .
Further implementation details on the N2C and C2N operations
can be found in [5].

Before returning to the note-granularity, the chord-wise fea-
tures are further processed by a Chord Decoder, which is a Convo-
lutional Recurrent Neural Network (CRNN) with a bidirectional
Gated Recurrent Unit (GRU) layer. Finally, fine-grained adjust-
ments at note-level are made with the Note Decoder and a skip
connection from the note-wise score encoding. The final micro-
onset timing δon is obtained through a linear activation function,
while the articulation δdn and the expressive velocity δvn are mapped
to [0.25, 4] with a scaled sigmoid function.

2.3. Discriminator

Taking inspiration from speech processing using discriminators
with a multi-scale architecture [17], we use k = 3 discriminators
Dk with identical architectures, mirrored from the performance
rendering model, with the exceptions of the N2C and C2N oper-
ations, as chords in real performances are not as easily defined as in
scores. Each discriminator is fed with a downsampled sequence of
(real or rendered) performance notes by average pooling with sizes
{1, 3, 9}. Discriminators with longer pool sizes look at features at
higher levels in the performances and thus, can help transferring
such knowledge and long-term coherence to the performance ren-
dering model G. To stabilize the GAN training, gaussian noise is
added to the inputs of the discriminators, as in [16].

2.4. Loss functions

The least-square variant of the GAN objective (LSGAN) is used
to train the discriminators and the performance rendering model.
Their respective loss functions LDk and LG,gan are defined as:

LDk = E
Y ∼pperf

[∥Dk(Y )− 1∥2] + E
X∼pscore

[∥Dk(G(X))∥2] ,

LG,gan = E
X∼pscore


 ∑

k=1,2,3

∥Dk(G(X))− 1∥2


 .

(3)

We have observed that the instability of the vanilla adversar-
ial training may lead the performance rendering model to displace
the notes in extreme values, causing the original piece to be unrec-
ognizable. To ensure that the performances remain fairly close to
their scores, an additional regularization term Lscore is added:

Lscore(X) = λscore

∥∥∥G(X)−X
X

∥∥∥
2
, (4)

with λscore a fixed vector weighting how much each performance
component (timing, articulation, velocity) can deviate from the
score indication. Here, λscore = {1, 1, 0.1}.

The total loss for the performance rendering model G is:

LG(X) = λganLG,gan(X) + Lscore(X), (5)

with λgan the balance between the GAN objective and the score
regularization loss. This balance is decisive for the final behavior
of G since the two loss components have opposite influences on
its training: Lscore refrains G from modifying the scores while
LG,gan encourages exploring different interpretations in order to
deceive the discriminator. In our experiments, λgan = 2.

DAFx.2

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

356



Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

Figure 2: Box-plot of the Mean Opinion Score (MOS) of the dif-
ferent performance rendering methods (overall and piece-wise).
The thickened bars indicate the median values while the white tri-
angles indicates the mean values. The composers are Bach (Ba),
Beethoven (Be), Chopin (Ch), Liszt (Li) and Schubert (Sc).

3. EXPERIMENTS

3.1. Score and performance datasets

The proposed approach was trained and evaluated using the scores
from the ASAP dataset [12] and all performances from the MAE-
STRO dataset (v3.0.0) [13], which are both publicly available. The
human performances from MAESTRO were recorded in MIDI for-
mat using Yamaha Disklaviers. The ASAP dataset has notably
matched a set of these performances with their original scores
at note-level, and has thus been used to some extent in previ-
ous performance rendering works [5]. However, since the pro-
posed method does not require aligned scores and performance,
the entirety of both datasets can be used, which amounts for 962
training performances, 137 validation performances, 107 training
scores, 15 validation scores and 35 test scores (following the train-
validation-test split of [18]).

The velocity indications were kept from the ASAP scores in
MIDI format, which can either be constant throughout the piece or
mapped from the score nuances and markings using simple rules.
The scores and performances are split into segments of 128 con-
secutive notes, with random pitch shifting during training by ±7
semi-tones, as in [6]. Validation data is used to monitor and avoid
potential over-fitting of the performance rendering model by repro-
ducing the training performances from their corresponding scores.

3.2. Early subjective evaluation

A listening test has been conducted to evaluate the interpretation
quality of the performances rendered by our model. 7 scores from
the ASAP test subset were selected, covering 5 different com-
posers. 4 performances were generated by different methods for
each score: a corresponding human performance from the MAE-

STRO dataset (Human), the direct export of the MIDI score (Dead-
pan), a rendition by our approach (Proposed) and a rendition from
the graph-based variant of VirtuosoNet [8], a highly-informed
model using score markings in MusicXML format and is trained
with an private dataset of 226 scores matched and aligned with
MAESTRO performances, which is larger than ASAP. The first
20s of each performance were synthesized using the Arturia Piano
V3 software 2, a physical-based piano synthesizer. 19 professional
audio and piano players were asked to rate the naturalness of the
presented performances, using a 5-point Likert scale (from 1 - Bad,
to 5 - Excellent). Each trial randomly presented 3 different perfor-
mances from each method. Results are reported in Figure 2.

The Holm-Bonferroni corrected two-sided Mann-Whitney U
tests indicate a statistical difference at α = 0.05 between the Hu-
man rendition and each other methods, and between VirtuosoNet
and Deadpan. The overall results show that the proposed approach
does enhance the scores with expressive features in comparison to
the raw rendition of the piece, but still not with the same amount
of naturalness as actual pianists and the highly-informed Virtu-
osoNet. This was to be expected as our proposed unsupervised
training task without score markings is harder than the training
objectives of VirtuosoNet, for about the same quantity of train-
ing data. By examining the ratings piece-wise, one can notice the
poorer renditions of the proposed method for slower tracks (Schu-
bert’s 13th Sonata and Beethoven’s 18th Sonata). This may sug-
gest that the model has a mode collapse on faster paced music and
that it applies similar modifying features on every tracks, which
renders inappropriate performances for slower musical pieces.

4. FUTURE WORK

As suggested by the subjective evaluation, the model lacks in un-
derstanding the musical content of a score and can apply inappro-
priate performance features. Also, on the contrary of the most
recent supervised performance rendering methods [8, 5, 6], the
model does not allow for external controls (tempo, articulation,
nuance) on the rendering process. Both issues can be addressed by
organizing the performances into sub-domains with either domain
labels (such as composer or genre) or with extracted performance
features (note density, statistics on durations and velocities)[19].

Moreover, the present work only focuses on classical piano
music to be comparable with previous supervised approaches, but
without reliance on training pairs, the approach can be extended to
render symbolic performances for other genres and instruments.

Finally, GAN enable unsupervised cross-modal domain trans-
fer where the target domain can be in a different modality from the
source domain. By including a differentiable sound synthesizer
[20] after the performance rendering model and using a audio-
based performance discriminator, the model could potentially ren-
der scores with expressive features by learning from performances
in the audio domain instead of MIDI.

5. CONCLUSIONS

This work presents a performance rendering model for convert-
ing piano scores into expressive performances, without supervised
training on performance features nor relying on sheet music mark-
ings. Using a performance discriminator, the model reshapes the

2https://www.arturia.com/products/
software-instruments/piano-v/overview
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basic score note properties into a sequence of expressive notes.
Trained on publicly available datasets of scores and performances,
the approach shows expressive qualities in the performance rendi-
tions compared to the plain score, although not with the same qual-
ity as a fully supervised approach, according to a conducted listen-
ing test. Still, by removing the reliance on training with paired
data and on score markings, the approach can be further used in
broader settings with music in different modalities and genres.
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ABSTRACT

Controllable timbre synthesis has been a subject of research
for several decades, and deep neural networks have been the most
successful in this area. Deep generative models such as Variational
Autoencoders (VAEs) have the ability to generate a high-level rep-
resentation of audio while providing a structured latent space. De-
spite their advantages, the interpretability of these latent spaces in
terms of human perception is often limited. To address this limi-
tation and enhance the control over timbre generation, we propose
a regularized VAE-based latent space that incorporates timbre de-
scriptors. Moreover, we suggest a more concise representation of
sound by utilizing its harmonic content, in order to minimize the
dimensionality of the latent space.

1. INTRODUCTION

The emergence of deep generative models has contributed to the
development of natural and expressive music synthesizers [1, 2].
One type of generative model, Variational Autoencoders (VAEs),
can create a compact representation based on the distribution of
the input data and this representation forms a latent space [3]. In
this space, samples that are similar to each other are positioned
closer. However, this proximity may not always align with human
perception of similarity. Explainable artificial intelligence (XAI)
has been employed in the past to regularize the latent space of gen-
erative models [4, 5]. A regularized space can offer interpretability
of the latent space and control of the synthesis process to generate
sound with desired characteristics.

In the context of music, the perception of different instruments
can be characterized by a multidimensional space called timbre
space. Timbre space is created by asking listeners to rate the dis-
similarity between different instruments [6, 7]. In order to utilize
this information effectively, a recent approach in sound synthesis
has been proposed to incorporate timbre space into the regulariza-
tion of VAEs [8]. This enables the model to generate sounds based
on specific instrument timbres. While utilizing a timbre space has
various advantages for generative models, creating a timbre space
is not always feasible. The addition of a new instrument would
necessitate new listening tests and analyses.

Timbre descriptors are mathematical or statistical functions
designed to capture various aspects of human perception of sound.
They were originally designed by studying the listening tests and
using the information obtained to associate mathematical formu-
las with timbre space. Several research studies have found that
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spectral centroid and attack time are the key audio features that are
crucial for describing the timbre of musical instruments [9]. Our
goal in this study is to utilize the timbre descriptors, particularly
the spectral centroid and attack time, to construct a latent space
that aligns with human perception. To maximize the compression
of the latent space, we developed a novel input representation with
lower dimensionality than spectrograms that focuses on the har-
monic content of the instruments. The rest of the manuscript is
divided as follows. Section 2 provides a literature review on the
regularization of VAEs for sound synthesis. Details on the pro-
posed representation along with VAEs and timbre descriptors are
described in Section 3. Finally, Section 4 provides information on
the experimental setup and Section 5 demonstrates the results.

2. RELATED WORK

Recent research has demonstrated the capability of unsupervised
models to acquire invertible audio representations through the use
of autoencoders [10]. However, autoencoders have certain limita-
tions that prevent them from creating a coherent and comprehensi-
ble latent space, which, in turn, limits their ability to produce au-
dio with specific characteristics. Variational autoencoders (VAEs)
overcome this limitation by incorporating a Gaussian distribution
into the latent space, which encourages local smoothness and pro-
vides interpretability of the latent variables [11]. In numerous ap-
plications, however, this approach may not be sufficient.

To achieve additional disentanglement of the latent space, var-
ious approaches have been proposed. Autocoder [12] is a sim-
plified VAE trained on audio samples with specific attributes. The
main objective of the Autocoder is to produce outputs that fit within
the distribution of the training data. Luo et al. [13] proposed a
network with two encoders and one decoder to address the disen-
tanglement of pitch and timbre in audio signals. The first encoder
learns the pitch and the second learns the timbre, while the decoder
reconstructs the original audio signal from the concatenation of the
learned pitch and timbre representations. The network can be con-
ditioned on the two categorical variables separately because pitch
and timbre are independent of each other. Both of these studies
used mel-spectrograms as the input data representation for their
models.

An alternative method for creating a latent space that focuses
on specific attributes was deployed in [14]. Instead of relying
solely on the original input data, this method incorporates an addi-
tional representation for chords to help shape the latent space. The
model was trained on 32 one-hot vectors of MIDI pitches that rep-
resented the rhythm for an analogy-making task. The VAE used
Gated Recurrent Units (GRUs) conditioned on chromagrams that
represented chords. The attributes of the latent space were implic-
itly formed by incorporating information about melody and chords
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in the loss function. However, other models took a different ap-
proach and explicitly designed the latent space by enforcing spe-
cific attributes to represent distinct characteristics of the sound. In
[4] the latent space consists of 256 dimensions, where the first four
dimensions are specifically associated with rhythmic complexity,
note range, note density, and average interval jump. The regu-
larization is incorporated into the VAE as a loss function to the
training objective. To achieve this, a musical metric value is com-
puted for each item in a mini-batch for each attribute. The distance
between each item’s metric value and all other items’ metric val-
ues is then calculated, resulting in a distance matrix. The distance
matrix is used for the computation of the mean square error.

Our method follows an approach that is heavily influenced
by [8]. Esling et al. introduced an additional regularization loss
to form a latent space based on human perception. The latent
attributes were generated to satisfy the perceptual similarity rat-
ings of listeners. The architecture of their network consists of a
VAE that includes three dense layers and produces a latent space
of 64 dimensions. The neural network architecture successfully
captured a continuous and generalized timbre representation for a
wide range of musical instruments. In our work, we aim for a regu-
larized latent space that aligns with human perception using audio
descriptors that are capable to represent timbre.

3. PROPOSED FRAMEWORK

3.1. Variational Autoencoders

Variational Autoencoders (VAEs) [3] are deep generative models
with the ability to map high-dimensional observed data x ∈ Rd

(such as audio samples or spectrograms) to a latent space z ∈ Re

with d > e. VAEs consist of an encoder and a decoder net-
work. The latent variable is created by the encoder that uses a
distribution qθ(z|x) to approximate pθ(z|x). The decoder then
attempts to reconstruct the input data by approximating the dis-
tribution pθ(x|z). The encoder and decoder are trained together
to parametrize θ . To elaborate further, the encoder generates the
mean µM and the covariance σM to represent the Gaussian dis-
tribution function N(z;µM , σ

2
MI) in a latent space of M dimen-

sions. The main goal of the network is to maximize the evidence
lower bound by minimizing the Kullback-Leibler (KL) divergence
between the distribution function q(z|x) and the prior distribution
function p(z). The loss function of VAEs is represented in Eq. 1.

E[log p(x|z)]−KL(q(z|x) ∥ p(z)) ≤ log p(x) (1)

The initial component of the equation evaluates the degree of
similarity between the original data and the reconstructed data.
The second component assesses the dissimilarity between the ap-
proximated posterior distribution q(z|x) and the prior distribution
p(z). By including the KL divergence term, the learned poste-
rior distribution is pushed towards the prior distribution, thereby
promoting the regularization of the learned latent space represen-
tation.

3.2. Proposed Representation

In this study, we introduce a novel audio representation for cap-
turing monophonic and harmonic sounds of musical instruments
based on acoustic features. The aim of this approach is to gener-
ate a concise representation that can enhance the efficacy of deep

neural networks. In order to achieve this goal, we are based on the
observation that monophonic, and harmonic sounds can be rep-
resented by their fundamental frequency, the first seven harmon-
ics, and the energy of the higher bands. A method for synthesiz-
ing from a representation like the one described can be accom-
plished by employing a sinusoidal model, similar to the approach
described in the work of [15].

In this work, we estimate the fundamental frequency using a
pre-trained model of CREPE [16], and then we calculate the loga-
rithm of the amplitudes of the first seven harmonics. The harmon-
ics can be estimated as the integer multiples of the fundamental
frequency:

fn = nf0 (2)

where the variable n denotes the specific harmonic number for
each frame i of the sound, where n ∈ [1, 7]. The first seven har-
monics are selected as they are deemed to contain the most per-
ceptually significant aspects of a note, thereby providing essential
information on the spectral shape of the acoustic signal. The re-
maining spectral information is represented by the energy of the
higher bands. The higher spectral content is divided into 4 bands
using the Equal Rectangular Bandwidth (ERB) [17].

3.3. Timbre Descriptors

Timbre constitutes the quality of sound that is conceptually sepa-
rated from pitch or loudness. It refers to the unique hearing "color"
provided by each instrument or voice. Timbre descriptors are used
to quantify and describe the timbre of a sound. The association
between timbre descriptors and the perception of sound is strong.
Certain timbre descriptors are correlated with specific percepts of
sound, such as brightness, dullness, spectral tilt, and tonality [9].
However, many studies have shown that timbre can accurately be
described only with spectral centroid and attack time [18].

3.3.1. Spectral centroid

The spectral centroid is a measure of the center of mass of the
spectrum of a sound. It is calculated by weighting each frequency
in the spectrum by its magnitude and averaging the result as it is
demonstrated in Eq. 3.

centroid =

∑b2
k=b1

fkM(fk)
∑b2

k=b1
M(fk)

(3)

where b1 and b2 are the band edges, fk is the frequency in the
bin k, and M(f) is the magnitude of the frequency in the spectrum.
The spectral centroid is a useful measure of the timbre of a sound,
as it provides information about the distribution of energy across
different frequencies in the sound. It is often used to describe the
brightness or dullness of a sound [19]. Sounds with a high spectral
centroid tend to be brighter and more focused, while sounds with
a low spectral centroid tend to be duller and more diffuse.

3.3.2. Attack time

Attack time is a parameter that determines how quickly the ampli-
tude of a sound increases from zero to its maximum level. Attack
time is an important factor in shaping the envelope of a sound and
has a significant impact on its timbre [20]. The computation of
attack time has been under investigation for many years. The most
common methods include a fixed threshold. Thresholds can vary
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and effective ones can be from 10% to 90% of the maximum value
of the energy envelope [21] or from 20% to 80% of the maximum
value of the envelope [22]. In this work, we measure attack time
as a fixed threshold between 10% to 90%.

4. EXPERIMENTAL SETUP

4.1. Dataset

The NSynth dataset 1, containing a wide range of monophonic
notes from various instruments, was utilized in the experiments.
The dataset was filtered to include only samples that were har-
monic, without variations in fundamental frequency or amplitude.
The resulting subsample was composed of 101,911 training sam-
ples and 1,324 testing samples of various instruments, including
guitar, bass, brass, keyboard, flute, organ, reed, and string, with
a pitch range of 80Hz-2100Hz. The audio samples were prepro-
cessed to create a representation that comprises the fundamental
frequency, the logarithm of the amplitude of the first 7 harmon-
ics, and 4 ERBs in overlapping segments of audio signals with a
window of 690 and a hop size of 172.

4.2. Hyperparameters

The encoder is composed of two 2D convolutional layers with 32
filters, a kernel size of 3, a stride of 2, and the same padding. Two
dense layers calculate the mean and variance of the Gaussian dis-
tribution. Sampling from the distribution creates a latent space
with 14 dimensions. The decoder follows a mirrored architec-
ture of the encoder generating the proposed representation. The
ReLU is used as an activation function for the convolutional layers
while the softmax function is applied to the output layer to form
the generated normalized representation. The network is trained
using the ADAM optimizer with an initial learning rate of 0.001
in batches of size 128. The loss function includes a binary cross-
entropy reconstruction loss, a regularization loss consisting of a
KL-divergence term, and a mean absolute error of the spectral cen-
troid and attack time. The model was trained using the TensorFlow
library2 on a Tesla P100 GPU.

4.3. Evaluation

For the evaluation of the reconstruction capacity of the VAE, we
used the Mean Squared Error (MSE) and the Structural SIMilar-
ity (SSIM) index between the original and generated audio rep-
resentation based on the harmonic content. The latent space was
visualized by projecting the high-dimensional features into a two-
dimensional space. For the dimensionality reduction, we used the
Stochastic Neighbor Embedding (t-SNE) algorithm [23] with PCA
initialization and perplexity of 50.

5. RESULTS AND CONCLUSION

Table 1 presents the reconstruction error for the model with and
without the regularization of the timbre descriptors. The results
showed that convolutional VAEs are able to adequately reconstruct
the proposed representation. However, the additional regulariza-
tion decreased the quality of the generated samples but it pro-
vided a clear representation of the latent space. Fig. 1 displays

1https://magenta.tensorflow.org/datasets/nsynth
2https://www.tensorflow.org/

the 14-dimensional regularized latent space projected into a 2-
dimensional space. It is evident from the figure that different in-
strument categories occupy distinct positions in the space, indicat-
ing that the model is capable of distinguishing between instrument
timbre. However, some instrument categories may be broad and
have multiple variations, resulting in clusters in different regions
of the space. The obtained results demonstrate that using timbre
descriptors to regularize VAEs can lead to a high-level latent rep-
resentation that is interpretable. This research work illustrates an
early investigation of the merging of timbre descriptors with deep
generative models.

Table 1: Reconstruction error

Model MSE SSIM
Without timbre descriptors 0.0432 0.9515

With timbre descriptors 0.0518 0.9414

Figure 1: 2D projection of the regularized latent space
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ABSTRACT

We explore two approaches to creatively altering vocal timbre us-
ing Differentiable Digital Signal Processing (DDSP). The first ap-
proach is inspired by classic cross-synthesis techniques. A pre-
trained DDSP decoder predicts a filter for a noise source and a
harmonic distribution, based on pitch and loudness information
extracted from the vocal input. Before synthesis, the harmonic
distribution is modified by interpolating between the predicted dis-
tribution and the harmonics of the input. We provide a real-time
implementation of this approach in the form of a Neutone model.

In the second approach, autoencoder models are trained on
datasets consisting of both vocal and instrument training data. To
apply the effect, the trained autoencoder attempts to reconstruct the
vocal input. We find that there is a desirable “sweet spot” during
training, where the model has learned to reconstruct the phonetic
content of the input vocals, but is still affected by the timbre of the
instrument mixed into the training data. After further training, that
effect disappears.

A perceptual evaluation compares the two approaches. We
find that the autoencoder in the second approach is able to recon-
struct intelligible lyrical content without any explicit phonetic in-
formation provided during training.

1. INTRODUCTION

Neural singing voice synthesis has made great progress over recent
years. Many efforts are focused on generating natural-sounding
voices. The fame of the classic “vocoder” sound however, popu-
larized by artists like Daft Punk or Kraftwerk shows the desire for
creative timbre manipulation of vocals, where naturalness is not a
desired characteristic.

Differentiable Digital Signal Processing (DDSP) [1] proposes
an end-to-end learning approach for neural audio synthesis. In-
stead of generating signals sample-by-sample in the time domain,
or time-varying spectra in the frequency domain, DDSP offers a
library of synthesizer components implemented entirely within a
framework supporting auto-differentiation. In the case of timbre
transfer, an autoencoder model is trained to reconstruct a mono-
phonic sound source based on into pitch and loudness information
by generating time-varying control parameters for the synthesiz-
ers. The loss is calculated by comparing the spectrogram of the
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generated audio from the synthesizers to that of the original au-
dio on multiple timescales. The auto-differentiable implementa-
tion allows the gradient of the loss to backpropagate through the
synthesizers to update the model weights of the autoencoder.

The synthesizers are based on the spectral modeling synthesis
(SMS) [2] framework. The harmonic components of the sound are
generated by a sum of K sinusoids. The decoder predicts K time-
varying amplitudes Ak(n), referred to as the harmonic distribu-
tion, since the sinusoids are defined to oscillate at integer multiples
of the (also time-varying) fundamental frequency f0(n) extracted
by the encoder. Thus, the output of the harmonic component xh
can be formulated as

xh(n) = a(n)

K∑

k=1

Ak(n) · sin(ϕk(n)) , (1)

where a(n) is a global amplitude, also predicted by the decoder,
and ϕk(n) = 2π

∑n
m=0 kf0(m) is the instantaneous phase of the

k-th harmonic.

Additionally, the decoder predicts the time-varying magnitude
responses of a finite impulse response (FIR) filter. The non-harmonic
components of the sounds are generated by processing white noise
through these FIRs.

Recent approaches extended the DDSP components and source
waveforms. Masuda [3] proposed a novel approach to synthe-
sizer sound matching by implementing a basic subtractive synthe-
sizer using differentiable DSP modules. Shan [4] introduced Dif-
ferentiable Wavetable Synthesis (DWTS), a technique for neural
audio synthesis that learns a dictionary of one-period waveforms
through end-to-end training. Lee [5] formulated recursive differen-
tiable artificial reverberation components, allowing loss gradients
to be back-propagated end-to-end, and implemented these mod-
els with finite impulse response (FIR) approximations. Finally,
Wu [6] proposed a new vocoder called SawSing for singing voice,
which synthesizes the harmonic part of singing voices by filtering
a sawtooth source signal with a linear time-variant finite impulse
response filter whose coefficients are estimated from the input mel-
spectrogram by a neural network.

Despite these achievements, the use of the classical DDSP for
a vocal input with intelligible lyrics has not been explored or ex-
ploited, except in [7]. In this paper, we propose two methods of
adapting DDSP to create vocal effects. We provide a real-time im-
plementation and report perceptual experiments to evaluate our ap-
proaches. The structure of this short paper follows our approaches
and experiments.
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2. VOCAL EFFECTS WITH DDSP

Our first approach focuses on altering the predicted synthesizer
parameters in a vocoding-inspired manner and will be referred to
as the vocoding approach. The other makes use of a latent en-
coding of timbre information and will be referred to as the latent
approach.

2.1. Vocoding Approach

The vocoding approach uses a model trained for timbre transfer.
A decoder solely conditioned on pitch and loudness features is
trained on audio recordings of a specific instrument, e.g. a trum-
pet. After training has completed, extracting pitch and loudness
from any input audio can be used to generate the same melody line
in the sound of a trumpet by using the trained decoder to predict
corresponding synthesizer controls.

To create the effect of a “talking trumpet” from vocal input, we
extract pitch and loudness information from the input. Before the
synthesis step however, the harmonic distribution Ak is replaced
by an altered distribution Aout

k by interpolating between the pre-
dicted distribution and the harmonics Ain

k of the input.
To generateAout

k , a user-supplied interpolation factor p ∈ [0, 1]
is introduced. The modified distribution can then be calculated as

Aout
k =

{
(1− p)Ak +Ain

k kf0 <
fs
2

0 else
, (2)

taking care not to include oscillators at frequencies exceeding the
Nyquist limit of fs/2. Note that for p = 0, Aout

k = Ak. In this
way, we can create a hybrid harmonic distribution containing both
aspects of the timbre of the instrument the decoder was trained on,
and the spectral contour of the phonetic content of the vocal input.

A real-time implementation of this approach is made available
as a Neutone model at https://github.com/dsuedholt/
ddsp_xsynth.

2.2. Latent Approach

In the latent approach, the encoder generates a vector z in addi-
tion to pitch and loudness information. We use an encoder pro-
vided in the DDSP library that calculates mel-frequency cepstral
coefficients (MFCCs) of the input audio at every time step, and
processes them through a recurrent layer before projecting them to
the latent space.

In this approach, no modifications are applied to the decoder
output. Instead, the effect is generated through selection of the
training datasets. As explored previously [7] and confirmed through
preliminary experiments, simply training a VAE on recordings of a
singing voice can be sufficient to obtain a model capable of recon-
structing a vocal input from a different singing voice in the style
of the training data with intelligible lyrics.

The idea behind this approach is to add in other monophonic
instruments, such as a trumpet or a synthesizer, to the training data,
to influence the timbre of the reconstructed vocals in musically
interesting ways.

During the experiments, it became clear that if the model is
trained until the training loss converges, a decoder with a suffi-
cient number of parameters learns to distinguish between vocal
input and the additional instrument, and is able to reconstruct both
accurately. This results in a model that is effectively just perform-
ing voice transfer.

Figure 1: The training process of a latent encoding model on a
combined dataset of vocal performances and brass instruments.
Early during training, it cannot reconstruct intelligible lyrics yet.
Then it transitions into the “sweet spot” where lyrical content is
preserved, but the timbre is affected by the additional instrument.
After further training, that effect disappears, and the model per-
forms regular voice transfer.

However, there appears a “sweet spot” early on in training,
where the model is already able to reproduce the lyrical content
of the input, but has not yet learned to fully distinguish between
the different input sources. At this point, the timbre of the recon-
structed vocals is affected noticeably by the additional instrument.
This is illustrated in Figure 1.

3. EXPERIMENTS

A dataset of vocal performances was created from the Children’s
Song Dataset (CSD) [8] and the MUSDB18 dataset [9]; instru-
ment datasets were created by combining respective instrument
recordings taken from the University of Rochester Multi-Modal
Music Performance dataset (URMP) [10]. Additionally, a synthe-
sizer performance was obtained by processing randomized MIDI
at varying velocities and pitches through a software synthesizer.

Sound examples demonstrating the effect of the vocoding ap-
proach at various values for p, as well as the "sweet spot" effect
of the latent approach, are available at https://dsuedholt.
github.io/ddsp-vocal-effects.

We performed a perceptual evaluation to compare the two ap-
proaches. We trained and used the following four models:

VC-Synth: Timbre transfer model trained on the synth dataset,
vocoding approach, p = 0.7

VC-Brass: Timbre transfer model trained on the brass dataset,
vocoding approach, p = 0.7

Z-Vocals: Latent encoding voice transfer model trained on a sin-
gle singer from the CSD dataset

Z-Mixed: Latent encoding model trained on a mixed dataset from
the MUSDB18 medley vocals (multiple singers) and the
synth dataset

Two vocal samples, one performed by a male, one by a female
singer, were processed by all four models. 15 participants rated the
output in a multi-stimulus test under the following three aspects:
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1. Perceived audio quality
2. Intelligibility of the lyrics
3. How musically interesting the effect is

The results of the subjective evaluation are shown in Figure 2.
The clearest result can be found in the rating of the lyrical

intelligibility aspect on the female input sample, where the latent
encoding models clearly outperform the vocoding models. The
same trend, although to a lesser degree, is shown in the evaluation
of the male input sample. This seems to confirm that the MFCC +
RNN encoder is already capable of reproducing intelligible lyrics
without any explicit phonetic information.

None of the models are rated particularly favorably under the
aspect of perceived audio quality, although the latent encoding
models perform slightly better than the vocoding models. This
could potentially be improved by working sampling rates greater
than 16 kHz.

The highly subjective rating according to “musical interest”
shows the highest variance of the ratings, although a slight trend
favoring the latent encoding models seems to exist.

4. CONCLUSION

We presented two methods of creating vocal effects that show how
the model training and the synthesis stage of the DDSP pipeline
can be manipulated for creative effect. We demonstrated that no
conditioning on explicit phonetic information is needed to pre-
serve lyrical intelligibility while altering the timbre of the vocal in-
put. These results pave the way towards synthetic "talking" instru-
ments, as well as better understanding of the DDSP training mech-
anisms and strategies. Still, implementing a unified voice synthesis
framework such as NANSY++ [11] remains a future challenge for
our field in general.
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Figure 2: Results of the perceptual evaluation. All individual ratings are displayed as a scatter plot. A box plot marks the median rating
with a horizontal line. The box itself extends from the first to the third quartile of the ratings.
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ABSTRACT

In this study, we investigate the feasibility of utilizing state-
of-the-art perceptual image metrics for evaluating audio signals by
representing them as spectrograms. The encouraging outcome of
the proposed approach is based on the similarity between the neu-
ral mechanisms in the auditory and visual pathways. Furthermore,
we customise one of the metrics which has a psychoacoustically
plausible architecture to account for the peculiarities of sound sig-
nals. We evaluate the effectiveness of our proposed metric and sev-
eral baseline metrics using a music dataset, with promising results
in terms of the correlation between the metrics and the perceived
quality of audio as rated by human evaluators.

1. INTRODUCTION

Perceptual assessment of the quality of audio signals has been
explored to varying degrees for different kinds of audio content.
Whilst there exist several tools to understand speech quality [1],
the evaluation of music is rarely explored and comes in the form
of software hidden behind commercial licences [2]. More gener-
ally, practitioners rely either on traditional physical measures of
the audio signal, e.g., signal-to-noise ratio (SNR), or more recent
deep learning-based metrics that involve noninterpretable models
to capture statistics of the degradation [3]. The picture is quite dif-
ferent in the visual modality, where many more perceptual models
have been developed over the years for these purposes – and well-
curated datasets are readily available [4, 5].

It is well-known that the auditory and visual processing path-
ways share similar attributes. For example, divisive normalisation,
a form of local gain control, is a well explored phenomenon that
is encountered when studying neurons in the brain [6, 7]. Specifi-
cally in vision, divisive normalisation has been shown to factorise
the probability density function of natural images [8]. In audio the
same phenomenon has been shown to minimise the dependencies
between between natural sound stimuli responses to filters of cer-
tain frequencies [7]. Other behaviours such as signal adaptation
can also be observed in both modalities [9]. Many of these ideas
form the basis of the design of image quality metrics, but, as they
are also observed in auditory statistics or psychophysical tests, we
argue they should be included in the design of audio quality met-
rics.

Copyright: © 2023 Tashi Namgyal et al. This is an open-access article distributed
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The algorithmic parallelism and interaction between neural
pathways implies that audio signals can alter the perception of vi-
sual stimuli [10], and examples of this (audio-to-vision) correla-
tion are present even in pop music [11]. Here we take the opposite
(vision-to-audio) approach: what you hear is what you see.

We draw inspiration from state-of-the-art image quality met-
rics to bridge the gap with their audio counterparts, which are not
so successful at predicting perceived quality, for example, when
evaluating neural audio synthesis [12]. Although raw audio takes a
very different form to images, well-studied transformations can be
used to align the two modalities. For example, spectrograms rep-
resent audio signals using image-like 2D matrices, where each col-
umn represents a time window and each row is a frequency band.
As such, spectrograms encode the audio signal similar to wavelet
decompositions that are often used in image metrics [8, 13]. We
can then use these representations to exploit the literature on im-
age quality metrics (IQMs) to estimate audio quality. Importantly,
whilst the structure and semantics of spectrograms are different to
images, the underlying principles are similar, e.g. the importance
of amplitude (brightness) and local differences (contrast).

The paper is organised as follows: firstly, we show that popu-
lar IQMs can outperform metrics specifically designed for audio.
Secondly we show that fine-tuning a traditional IQM based on di-
visive normalisation, which is also seen in auditory processing, can
further improve results. We also provide the intuition behind what
this tuned metric is capturing about the properties of audio.

2. QUALITY METRICS

Quality metrics aim to replicate the distance between two exam-
ples perceived by a human. This usually involves projecting the
raw data to a perceptually meaningful space and computing a dis-
tance, or computing and comparing statistical descriptors of the
examples. Below we will detail a number of audio and image qual-
ity metrics used throughout the paper.

2.1. Image Quality Metrics

Traditional IQMs fall into two categories; structural similarity,
comparing descriptions of image statistics, and visibility of errors,
which aims to measure how visible the distortions are to humans.
Multi-Scale Structural SIMilarity (MS-SSIM) [14] is based on the
former and compares three descriptors (luminance, contrast and
structure) at various scales. Normalised Laplacian Pyramid Dis-
tance (NLPD) [15], based on the visibility of errors, is inspired by
the biological processing in the visual system. Coincidentally, this
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Figure 1: Architecture for one stage k of the Normalised Lapla-
cian Pyramid model, where x(k) is the input at stage k, L(ω) is a
convolution with a low-pass filter, [2 ↓] is a downsample of factor
two, [2 ↑] is an upsample of factor two, x(k+1) is the input image
at stage (k + 1), P (k)(ω) is s scale-specific filter for normalising
the image with respect to the local amplitude, σ(k) is scale-specific
constant and y(k) is the output at scale k. Figure taken from [15].

processing is also present in the auditory system and we will use
this to fine-tune NLPD to audio (sec. 3).

2.2. Audio Quality Metrics

Audio quality metrics have typically been designed for evaluating
audio coding and source separation artifacts [16]. Here, we com-
pare three recent metrics. Fréchet Audio Distance (FAD) [17] is a
reference-free metric for evaluating generated audio based on the
Fréchet Inception Distance (FID) commonly used in images [18].
FAD uses embeddings from the VGGish model [19] to measure
the distance between previously learned clean studio quality mu-
sic and a given audio clip. Virtual Speech Quality Objective Lis-
tener (ViSQOL) [20] is a full-reference metric based on the Neural
Similarity Measure (NSIM) [21] between spectrograms. NSIM is
similar to SSIM, using the luminance and structure terms but drop-
ping the contrast term. Additionally it uses a support vector regres-
sion model to map the NSIM scores more closely to Mean Opinion
Scores. The discriminator output of a Generative Adversarial Net-
work (GAN) can also be used to predict perceptual ratings [3].

3. NORMALISED LAPLACIAN PYRAMID DISTANCE

NLPD is our example case for adapting existing image metrics
to audio. The Laplacian Pyramid is well known in image cod-
ing [22]. The signal is encoded by applying a low-pass filter and
then subtracting this from the original image multiple times at var-
ious scales, creating low entropy versions of the signal. The Nor-
malised Laplacian Pyramid (NLP) extends this with a local nor-
malisation on the output of each pyramid level [15]. These two
steps are similar to the early stages of the visual and auditory sys-
tems where linear filtering and local normalisation are present [7,
13, 9]. The distance in this new domain is referred to as NLPD [15,
23], correlates well with human perception, and reduces redun-
dancy in agreement with the efficient coding hypothesis [8].

An overview of the architecture is detailed in Fig. 1. Given
two images, x1 and x2, we compute the outputs y(k)1 and y(k)2 at
every stage of the pyramid k, and sum the differences:

NLPD(x1, x2) =
1

N

N∑

k=1

1√
N

(k)
s

||y(k)1 − y(k)2 ||2 (1)

where N is the number of stages in the pyramid, and N (k)
s is the

number of coefficients at stage k.

4. EXPERIMENTS

4.1. Data

We use the Perceived Music Quality Dataset from [3]. It consists
of 4-second audio clips across 13 genres, with 5 songs per genre
and 3 clips per song, totalling 195 reference clips. These reference
clips are degraded in four ways: waveshape distortion, low pass
filtering, limiting and additive noise, resulting in 975 clips. We
divide this into an 80-20 train-test split, in which the test set con-
tains all 3 clips for the last song in each genre. Each clip has an
associated perceptual quality rating on a scale from 1 to 5 These
ratings were gathered using Amazon Mechanical Turk using a no-
reference paradigm. Each clip was rated by at least 5 participants
and the median value was taken.

For the SSIM, NLPD, and Mean Square Error (MSE) metrics
the audio clips are downmixed into mono and converted into mel
spectrograms. The audio is downsampled from 48kHz to 16050Hz
with 512 mel-bands, a window size of 2048, and a hop-length of
64, resulting in spectrograms of size 512×1024. For NLPD we use
6 pyramidal layers, with inputs being halved in size for each layer
down to 16 × 32. The SSIM ratings are calculated using Pytorch
MS-SSIM1. For ViSQOL and FAD, the clips are downmixed into
mono and converted from 32-bit to 16-bit WAV files. Ratings are
calculated using the ViSQOL2 and FAD3 packages.

Table 1: Spearman correlation between human ratings and var-
ious metrics. NLPD [15] and (MS-)SSIM [14] are image qual-
ity metrics, whilst ViSQOL [20], FAD [17] and GAN [3] are au-
dio quality metrics. We report the correlation for each degrada-
tion type separately as well as for all degradations simultaneously.
GAN results are taken from the respective paper [3].

Metric Waveshape Lowpass Limiter Noise All

MSE 0.469 -0.049 0.378 0.641 0.483
NLPD 0.468 0.012 0.339 0.681 0.633
SSIM -0.450 -0.175 -0.356 -0.629 -0.656
MS-SSIM -0.468 -0.045 -0.323 -0.654 -0.648
ViSQOL -0.142 0.191 -0.316 -0.629 -0.232
FAD 0.386 -0.083 0.316 0.550 0.593
GAN* 0.349 0.222 0.120 0.359 0.426

4.2. NLPD Optimisation

To fine-tune NLPD to audio we optimise the filters P (k)(ω) and
the constant σ(k) in the divisive normalisation stages. There are
two possible methods; statistically [15] or perceptually [13]. We
use 5x5 filters in both cases.

Optimising statistically consists of calculating average pixel
values of the band-passed spectrograms z separately for each layer
k. The divisive normalisation filters are learned as weights pj that
transform the weighted sum of pixel values in the neighbourhood

1https://github.com/VainF/pytorch-msssim
2https://github.com/google/visqol
3–/google-research/google-research/tree/master/frechet_audio_distance

2

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

368



surrounding each pixel to approximate the centre pixel, j:

f
(k)
C (zNi) = σ(k) +

∑

j∈Ni

p
(k)
j

∣∣∣z(k)j

∣∣∣ (2)

where Ni defines the neighbourhood (filter size) to be considered.
The constant σ(k) is the mean absolute value of z for each layer:

σ(k) =
1

N
(k)
s

N
(k)
s∑

i=1

∣∣∣z(k)i

∣∣∣ (3)

where Ns is the number of coefficients at stage k, i.e. dimensions
of z. The weights are optimised with Eq. 4. We optimise over
the reference spectrograms contained in the training set only, using
ADAM optimiser, learning rate 0.01, batch size of 1 for 10 epochs.

p̂(k) = argmin
p

N
(k)
s∑

i=1

(∣∣∣z(k)i

∣∣∣− fC
(
z
(k)
Ni

))2
(4)

Optimising perceptually consists of maximising the Pearson’s cor-
relation between the NLPD and the human ratings of each refer-
ence audio clip and a degraded version of the clip. The filters are
initialised to be the image NLPD values, and σ(k) is initialised
with Eq .3. We use ADAM optimiser to maximise the Pearson
correlation with a learning rate of 0.001 for 100 epochs, where
each batch only contains one degradation. We use Pearson as the
training objective instead of Spearman’s, assuming approximately
linear rankings, as the sorting operation has undefined gradients.

Table 2: Spearman correlations for variations of the NLPD. Orig-
inal: filters fit statistically to natural images [15]. No DN: NLP
with no divisive normalisation stage. P (ω) = 1: divisive normal-
isation filters are all ones. Statistical: filters optimised to predict
the center pixel given its neighbours. Perceptual: model optimised
to maximise correlation with human ratings.

Metric Waveshape Lowpass Limiter Noise All

Original 0.468 0.012 0.339 0.681 0.633
No DN 0.412 -0.052 0.336 0.670 0.617
P (ω) = 1 0.457 -0.022 0.380 0.669 0.629
Statistical 0.432 -0.033 0.356 0.660 0.619
Perceptual 0.430 0.035 0.347 0.637 0.643

5. RESULTS AND DISCUSSION

5.1. Main findings

Table 1 shows correlations between humans and perceptual qual-
ity metrics. Surprisingly, IQMs perform better than AQMs for all
degradations other than the low pass filter. However, the limiter
and low pass filter had much weaker p-values so these correla-
tions could be due to chance. We think this is partly because the
amount of degradation applied in those cases was not high enough
compared to the waveshaping and noise degradations. This is in-
dicated by the degraded audio being judged as better quality than
the reference in some pairs.

Table 2 shows results for adapting NLPD to audio using five
different divisive normalisation strategies: 1. using filters from
NLPD optimised statistically on natural images (as in Table 1), 2.

with no divisive normalisation, 3. setting the filters in the divisive
normalisation to one (for equal contribution of all the neighbours),
4. fitting the model statistically on spectrograms (where no per-
ceptual information is used), and 5. maximising the correlation be-
tween spectrograms and the opinion of humans. The perceptually
trained divisive normalisation has the highest correlation when all
degradations are tested simultaneously, and other strategies trained
on spectrograms increase correlation for the low pass and limiter
degradations. For waveshape and noise, the forms of divisive nor-
malisation using spectrograms decrease the correlation compared
to training on natural images. The relationship between the degra-
dations tested and the form of divisive normalisation used could be
further explored as this process may effectively be reducing certain
degradations, i.e. enhancing the signal.

Fig. 2 shows the learned divisive normalisation filters at dif-
ferent layers of the NLPD for 3 optimisation strategies. For the
first four layers, the statistical spectrogram model focuses almost
exclusively within the central frequency band, particularly at the
time steps immediately before and after the central bin. This is
similar to later layers of the model fit to natural images but dif-
ferent from early layers, where both directions are important. The
later layers of the statistical spectrogram model look across bands
but only within a single timestep in a manner completely unlike
the image model. This may reflect the pattern of repeating har-
monics in spectrogram signals. This may only be captured at later
layers as early layers have a higher resolution, i.e. there are more
frequency bands between harmonics. Using larger filters at early
layers may help to capture this. The fact that the model only uses
the central timestep at later layers may reflect the way that later
layers are effectively averaging across longer time windows. As
such, the signal will vary less smoothly between time bins and so
will be less predictive of the central value. Larger time filters may
start to capture rhythmic information. In contrast, the perceptual
spectrogram filters consider both time and frequency simultane-
ously, like early layers of the image model, with layers exhibiting
more smoothing behaviour in general. This may indicate that per-
ceptually trained models may be better at capturing degradations
that effect lower energy regions than statistical models.

5.2. Further Work

We have identified a need for a greater number of publicly avail-
able datasets of perceptual quality in audio with a larger variety
of sounds and degradation types. The scores in the GAN and
ViSQOL papers were collected according to the ITU-T P.800 rec-
ommendation (for telephone conversations). However, according
to ITU-R BS.1534-1 this proved insufficient for evaluating audio
signals of broadcast quality. Instead the "MUlti Stimulus test with
Hidden Reference and Anchor" is the recommended grading pro-
cedure, as is used in [12]. The non-adaptive psychophysical Two
Alternate Forced Choice (2AFC) paradigm, as used in IQMs [4, 5]
would also be suitable. Preliminary tests should be performed to
ensure the range of degradation is similar across degradation types.
Tests should also scale degradation amounts to avoid improving
the perceptual quality above the reference. A task training pro-
cedure or better task descriptions could also improve rating qual-
ity, as according to [3], participants were asked "How do you rate
the audio quality of this music segment?" where "quality" is left
largely up to participants to interpret. Such a dataset would allow
for a more reliable comparison with contemporary [24, 25] and fu-
ture AQMs. We also plan to investigate how divisive normalisation
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Figure 2: Divisive normalisation filters learnt different optimisation strategies. Each column is a different layer in the pyramid, k. The top
row (image) is the implementation of NLPD used for images, the second row (statistical) is statistically fit to audio spectrograms (Eq. 4),
and the final row (perceptual) are filters resulting from fitting NLPD to perceptual judgements on audio.

may be better tailored to audio, such as by using separate filters for
time and frequency. We intend to use these metrics as a loss func-
tion in generative modelling, so that such models generate audio
samples that sound more realistic with fewer perceived distortions.
We also want to investigate the degree to which navigating through
latent spaces of models trained with perceptual metrics aligns with
human expectations of how the generated audio should change.
We believe this should help with explainability, trust and control
over the outputs of generative audio models.

6. ACKNOWLEDGMENTS

TN is supported by the UKRI AI CDT (EP/S022937/1). AH and
RSR are supported by UKRI Turing AI Fellowship EP/V024817/1.
VL and JM are supported by MINCEO and ERDF grants PID2020-
118071GB-I00, DPI2017-89867-C2-2-R and GV/2021/074.

7. REFERENCES

[1] H. Gamper et al., “Intrusive and non-intrusive perceptual
speech quality using CNNs,” IEEE WASPAA, pp. 85–9, 2019.

[2] T. Thiede et al., “PEAQ-the ITU standard for measurement
of perceived audio quality,” J. Audio-Eng. Soc., vol. 48, no.
1/2, pp. 3–29, 2000.

[3] A. Hilmkil, C. Thomé, and A. Arpteg, “Perceiving music
quality with GANs,” arXiv:2006.06287, 2020.

[4] N. Ponomarenko et al., “TID2013: Peculiarities, results and
perspectives,” Sig.Proc.Im.Comm., vol. 30, pp. 57–77, 2015.

[5] R. Zhang et al., “The unreasonable effectiveness of deep
features as a perceptual metric,” IEEE CVPR, pp. 586–95,
2018.

[6] M. Carandini and D. J. Heeger, “Normalization as a canoni-
cal neural computation,” Nat.Rev.Neurosci., vol. 13, pp. 51–
62, 2012.

[7] O. Schwartz and E. P. Simoncelli, “Natural signal statistics
and sensory gain control,” Nat.Neurosci., vol. 4, pp. 819–
825, 2001.

[8] J. Malo and V. Laparra, “Psychophysically tuned divisive
normalization factorizes the PDF of natural images,” Neural
Comput., vol. 22, no. 12, pp. 3179–3206, 2010.

[9] B. Willmore and A. King, “Adaptation in auditory process-
ing,” Physiol.Rev., vol. 103, no. 2, pp. 1025–1058, 2023.

[10] L. Shams, Y. Kamitani, and S. Shimojo, “What you see is
what you hear,” Nature, vol. 408, no. 12, pp. 788, 2000.

[11] W. Mertens, “What you see is what you hear. Usura Records.
Belgium,” 2006.

[12] A. Vinay and A. Lerch, “Evaluating generative audio sys-
tems and their metrics,” in ISMIR, 2022.

[13] V. Laparra et al., “Divisive normalization image quality met-
ric revisited,” JOSA A, vol. 27, no. 4, pp. 852–64, 2010.

[14] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale
structural similarity for image quality,” in 37th IEEE Asilo-
mar Conf. Sig. Syst. Comp., 2003, vol. 2, pp. 1398–1402.

[15] V. Laparra, J. Ballé, A. Berardino, and E. P. Simoncelli, “Per-
ceptual image quality assessment using a normalized lapla-
cian pyramid,” Electr.Imag., vol. 2016, no. 16, pp. 1–6, 2016.

[16] M. Torcoli et al., “Objective measures of perceptual audio
quality reviewed,” IEEE/ACM Trans. Audio, Speech, Lang.
Proc., vol. 29, pp. 1530–1541, 2021.

[17] K. Kilgour et al., “Frechet audio distance: A reference-free
metric for evaluating music enhancem.,” InterSpeech, 2019.

[18] M. Heusel et al., “GANs trained by a two time-scale update
rule converge to a local Nash equilibrium,” in NeurIPS, 2017,
p. 6626–6637.

[19] S. Hershey et al., “CNN architectures for large-scale audio
classification,” in IEEE ICASSP, 2017, pp. 131–135.

[20] M. Chinen et al., “ViSQOL: An open source production-
ready object. speech and audio metric,” IEEE QoMEX, 2020.

[21] A. Hines and Harte. N, “Speech intelligibility prediction us-
ing a neurogram similarity index measure,” Speech Comm.,
vol. 54, no. 2, pp. 306 – 320, 2012.

[22] P. Burt and E. Adelson, “Laplacian pyramid as a compact im-
age code,” IEEE Trans.Comm., vol. 31, pp. 532–540, 1983.

[23] V. Laparra et al., “Perceptually optimized image rendering,”
JOSA A, vol. 34, 2017.

[24] P. Manocha et al., “CDPAM: Contrastive learning for per-
ceptual audio similarity,” in ICASSP, 2021.

[25] C. Gupta et al., “Parameter sensitivity of deep-feature based
evaluation metrics for audio textures,” in ISMIR, 2022.

4

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

370



Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

DESIGNING A LIBRARY FOR GENERATIVE AUDIO IN UNITY

Enrico Dorigatti and Stephen Pearse

School of Creative Technologies
University of Portsmouth

Portsmouth, UK
enrico.dorigatti@port.ac.uk | stephen.pearse@port.ac.uk

ABSTRACT

This paper overviews URALi, a library designed to add generative
sound synthesis capabilities to Unity. This project, in particular,
is directed towards audiovisual artists keen on working with al-
gorithmic systems in Unity but can not find native solutions for
procedural sound synthesis to pair with their visual and control
ones. After overviewing the options available in Unity concerning
audio, this paper reports on the functioning and architecture of the
library, which is an ongoing project.

1. INTRODUCTION

Unity is a game development software used in a range of scenarios
by a diverse and wide audience, from enthusiasts to researchers in
academia. Besides its capabilities concerning the development of
multi-platform games and software—Mac OS, Windows, iOS, and
Android being the most popular ones—the wide choice of options
and the flexibility it offers makes it the ideal, user-friendly environ-
ment for fast prototyping especially when it comes to VR (virtual
reality), XR (extended reality), and the production of virtual and
simulated environments. Examples of the widespread usage and
diverse contexts of application can be found in [1] and [2] (VR);
[3] (business); [4] (visualisation of biomedical data); [5] (schol-
arly research); and [6] (automotive). Furthermore, it is also used
within the artistic context. Interestingly, there is a general lack of
academic resources reporting on this usage of Unity; however, it
is possible to trace it back by visiting the websites of some artists
and reading their artistic statements or program notes—although,
as the focus is usually on the artistic outcome or message conveyed
by an artwork, the tools used in the creative process are often omit-
ted. Some examples, however, are reported below, and, addition-
ally, a dedicated page on the Unity website, reports and highlights
the specific features the software offers to artists and designers1.

Unity is composed of two main components. Firstly, a ro-
bust graphics and 3D engine allow one to quickly and easily draft
complex scenes and environments using 3D models, lights and
shadows, and materials with custom properties, as well as effects
such as particle systems, filters, and custom shaders—either writ-
ten in GLSL or created via the built-in node-based editor. Further-
more, the physics engine allows for the design of interactions be-
tween objects and, in general, the different surfaces of the environ-
ment, making it possible to create complex behaviours that either

1https://unity.com/solutions/artist-designers
Copyright: © 2023 Enrico Dorigatti et al. This is an open-access article distributed
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mimic real-world physics or introduce randomness and imaginary
behaviours.

Within Unity, these two systems work seamlessly, and, to-
gether with the possibility to control the behaviour of almost any
parameter via custom C# scripts—thus connecting graphic power
to computation—makes Unity the ideal environment when it comes
to the design of generative art systems based on algorithms, either
contemplating human interaction or not. Some examples this way
are given by the works of Danish artist Carl Emil Carlsen2, some
software developed by the composer and media artist Giovanni Al-
bini, such as Memoriale3, and Life4, a generative artwork devel-
oped by the first author and based on the Life algorithm developed
by J. H. Conway [7]. However, when it comes to audio, Unity
does not natively offer the same level of flexibility one can find in
its components dedicated to scripting and visuals, especially when
it comes to algorithmically based projects.

Nowadays, the main competitor of Unity is Unreal Engine, a
source-available proprietary software which includes Metasound5,
a low-level, sample-accurate node-based system that allows devel-
opers to create synthesis and music systems within the engine—one
of the most notable additions to the fifth version of the software.
However, despite the great potential of Unreal Engine, establish-
ing itself as the leading and reference platform in a wide range of
scenarios spacing from architecture and automotive rendering and
visualisation to game development, it is a popular opinion (e.g. on
dedicated websites6 or online communities7), especially amongst
enthusiasts and small or indie developers that it has a steeper learn-
ing curve and developing a project from scratch with it requires
much more effort—although strategies such as the Blueprints sys-
tem8 have been implemented to ease it out. Unity, on the contrary,
has established itself as the go-to platform for fast prototyping and
creation, especially when it comes to mobile devices. In this per-
spective, the project presented in this paper could be seen as a rudi-
mental version of Metasound, an attempt to fill the gap concerning
procedural audio synthesis in Unity highlighted when developing
Life. The goal of URALi is thus to offer user-friendly generative
audio capabilities directly from within Unity.

2https://cec.dk/
3https://play.google.com/store/apps/details?id=com.albinigiovanni.memoriale
4https://www.enricodorigatti.com/wp-content/uploads/2022/01/Life.mp4
5https://docs.unrealengine.com/5.0/en-US/metasounds-in-unreal-

engine/
6https://gamedevacademy.org/unity-vs-unreal/
7https://www.quora.com/Is-Unity-easier-than-Unreal
8https://docs.unrealengine.com/4.27/en-

US/ProgrammingAndScripting/Blueprints/GettingStarted/
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2. AUDIO IN UNITY

When it comes to generative audio, Unity does not natively of-
fer solutions matching its possibilities in terms of graphics and
physics. However, besides the stock audio filters providing com-
mon effects such as delay, echo, equalisation, and 3D spatialisa-
tion, different approaches can be followed to deal with sound when
designing an application. Such approaches imply choosing differ-
ent objects and workflows and are highly dependent on the type of
project one is developing.

2.1. Audio Clips

The main way to deal with audio is based on the usage of pre-made
clips loaded as assets of the application in development and which
can be played when necessary—for example, when an action is
performed in the case of a game or a button is pressed in the case of
a user interface. Some methods of the AudioClip9 object allow the
programmer to retrieve information from the audio file—such as
frequency, number of channels, and duration—and perform fairly
advanced operations, such as setting the sample data that the clip
contains. It is clear, however, that filling a clip with procedurally
generated audio data is not a trivial operation and, on average, this
method will mostly come in handy for shaping the amplitude of
the original data, as shown in the example provided along with the
documentation of the method10.

Therefore, whilst audio clips are necessary in the average sce-
nario—for example in the case of a game, where a finite set of de-
fined actions and thus audio events is repeated over and over and
possibly manipulated through the stock filters based on the prop-
erties of the action itself such as the composition of the ground
for footstep—they are not the ideal solution in the case of gener-
ative and algorithmic systems, when the properties of the system
itself ‘evolves’ unpredictably, based on the state of an algorithm.
The most common scenario involving the usage of clips sees a
scene prepared with an audio listener component—the ‘ears’ of
the user—and different audio clips ready to be triggered when a
condition occurs and possibly manipulated and filtered by the spa-
tial properties of the space in which the scene takes place, as well
as the distance of the player from the spot where the action hap-
pens. Employing AudioClip objects can be seen as the standard
and most common way of dealing with audio in Unity and fits the
vast majority of use cases—although it offers a limited amount of
options and freedom.

2.2. Middleware

Another possible way to deal with audio in Unity is to employ au-
dio middleware such as the popular Wwise11 or FMOD12. Those
tools, designed and developed with the video game industry in
mind are meant to offer flexibility in this specific context, allowing
studios to separate the development of the audio engine from the
development of the game engine, keeping them, however, linked
and eventually integrating them together. The functioning of mid-
dleware is mainly based on the audio clips a sound designer im-
ports, which can however be triggered and manipulated in complex
ways based on the calls and parameters the middleware receives

9https://docs.unity3d.com/ScriptReference/AudioClip.html
10https://docs.unity3d.com/ScriptReference/AudioClip.SetData.html
11https://www.fmod.com/unity
12https://www.fmod.com/unity

from the game engine—an approach granting a high amount of
freedom and flexibility.

The drawback of this approach to audio in Unity is that soft-
ware such as Wwise and FMOD can be complex to master and
not everybody, especially in the case of one-man-teams, is likely
to learn them from scratch—on the contrary, in medium to big-
sized game studios, there are professionals whose job is just to
integrate the sounds provided by the sound designers, building all
the pipeline and system necessary to make them work smoothly in
accordance to what happens in the game engine, thus providing a
smooth interaction between the two systems.

2.3. Third-party software

Furthermore, another and more experimental way to deal with au-
dio in Unity contemplates the connection of third-party software
providing specific environments, tools, and abstractions for sound
and music—the most popular ones being SuperCollider, Pure Data,
ChucK, and Max/MSP—through protocols such as the popular
OSC [8]. These software are well known in the experimental mu-
sic and sound design contexts for providing sandboxes in which it
is possible to create algorithms for sound synthesis and manipula-
tion and algorithmic music composition.

Offering probably the highest amount of flexibility, however,
similar to what happens with middleware, they are different sys-
tems and languages from Unity, which means that, once again,
one has to learn how to use them from scratch. On top of that,
unlike Wwise or FMOD, they are not designed to natively inte-
grate with Unity, as they are primarily conceived as standalone
software. Thus, this means that one has to employ tools acting
as bridges to port their functionalities within the software devel-
oped in Unity, which in turn leads to compatibility issues and the
impossibility of using all the functions, classes, and objects avail-
able—especially when it comes to export a project for platforms
such as Android. Projects like Chunity [9] have been developed to
offer a fully-functioning connection between Unity and the ChucK
audio programming language [10], allowing one to fully integrate
Chuck code within Unity projects. However, this solution does
not solve the issues of the different languages, which still forces
an artist or developer to learn a different and specific one.

2.4. OnAudioFilterRead

There is one last option to deal with audio in Unity natively by
taking advance of the possibility offered by implementing a cus-
tom OnAudioFilterRead13 function. According to the documenta-
tion, it fits the audio DSP chain as a custom filter—a filter is each
effect within the chain, such as an echo effect or a low-pass fil-
ter—manipulating the data flowing from the preceding one. How-
ever, if OnAudioFilterRead is the first or sole filter in the chain,
it can be used to procedurally generate the audio data. The pur-
pose of OnAudioFilterRead is, to summarise, to provide an ’access
window’ on the audio data passing through. Beyond that, it is the
programmer’s choice to decide where to place it and, therefore,
whether to use it to generate the data or only access and manip-
ulate the existing ones—as an example, multiplying them by 0.5
will approximately halve the level output level.

Similar to what has been previously said about the AudioClip
object, the challenge resides in that generating audio procedurally
can be challenging. However, the difference lies in the way the two

13https://docs.unity3d.com/ScriptReference/MonoBehaviour.OnAudioFilterRead.html
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systems work. Whilst audio clips are especially useful when deal-
ing with fixed sounds that do not change and need to be played
only when necessary (e.g. a footstep occurring only when the
player moves a step), OnAudioFilterRead, on the contrary, gives
the possibility to create, manipulate and, in general, work on con-
stant streams of data in real-time. This, in turn, makes possible the
realisation of a flexible framework for the algorithmic generation
of the samples—that is, the procedural generation of sounds.

3. URALI

Taking advantage of the OnAudioFilterRead function, URALi is
a library designed and developed to provide an easy-to-use frame-
work for procedural audio in Unity without the need for external
software such as Wwise or FMOD nor specialised programming
languages such as SuperCollider or Pure Data and related bridging
software when the connection is not natively possible. URALi is
the acronym for Unity Real-Time Audio Library, and, as the name
suggests, it offers a collection of functions and classes meant to
work as the building blocks for audio algorithms. The function-
ing of the library recalls the fashion of the aforementioned audio
programming languages, where the programmer can use, connect-
ing them together, a set of objects and functions which eventually
will compose an algorithm for audio synthesis or manipulation.
As it happens in SuperCollider, such objects are defined by strings
instead of being represented by visual nodes, characteristics of lan-
guages such as Pure Data or Max/MSP.

The development of URALi started with different motivations,
as it originally was an exploratory attempt to investigate possible
solutions for generative audio in Unity for the artwork described in
[7]. However, as the system developed proved worthy, and, most
importantly, with potential yet to explore, it was reworked with the
goal of building a solid, flexible, and scalable framework designed
to offer easy and efficient access and utilisation of the functions
and objects of the library, avoiding the drawback of the other audio
solutions previously explored [11].

3.1. Design of the Library

The first consideration done while developing the library was that
relying on the thread running OnAudioFilterRead for the calcula-
tion of the audio samples would lead—especially in the case of
complex synthesis algorithms with many different generators, and
especially when running on older systems—to slowdowns and data
starvation. The official OnAudioFilterRead documentation indeed
states that it needs to process chunks of audio data at fixed in-
tervals to provide a smooth stream; should it not be able to do
so—for example, due to too many calculations to perform—the
data stream would break and, perceptually, this would result in
glitches. For this reason, OnAudioFilterRead runs on a separate
thread, which incidentally means that many Unity functions can
not be used. This considered, as every operation performed within
the dedicated thread would reduce the headroom for further pro-
cessing and increase the risk of occurring in data starvation, it was
decided to split the calculation of the data from their retrieval.

The solution implemented consisted of another separated thread
continuously computing new audio samples without timing or con-
straints. The results are stored in a circular buffer accessible both
by this dedicated thread and OnAudioFilterRead, and the safety
of the data concerning overwriting is guaranteed by a system of
flags which pauses the calculation of new samples if there is no

more space available for storing them. Whilst paused, through
busy waiting [12], the thread periodically checks if some buffer
space has been marked as free by the flag system and possibly re-
sumes its activity. The free space is flagged as that by OnAudioFil-
terRead, which, when necessary, fetches chunks of data from the
buffer and, by leveraging the flag system, marks the correspond-
ing slots as overwritable. Retrieved data are then sent through the
pipeline, ready to be outputted or modified by any filters natively
available in Unity, should they be stacked in the DSP chain.

User side, URALi is designed as a sandbox in which the pro-
grammer can work with all the classes and methods contained in
the library and beyond. This means that it is possible to integrate
and expand an audio chain built with the objects available from
within URALi with custom processes and logic, as well as data,
from other parts of the program—for example, to control the fre-
quency of an oscillator based on the speed of the player, which
is calculated in a separate script. URALi is indeed written in C#,
the scripting language used in Unity, and this makes it possible to
have a seamless stream of data to and from other scripts and to use
functions defined elsewhere.

Concretely, URALi needs the programmer to define a synthe-
sis function in which to build the actual synthesis chain. This func-
tion has to be passed to the class implementing the audio engine,
and this latter has to be started. Once done, the dedicated audio
thread of the library initiates its task, and audio data become avail-
able from the circular buffer as they get calculated. As a last step,
to fetch these data and have them outputted, the programmer needs
to implement a custom OnAudioFilterRead function from which to
access, through a specific call to the library, the circular buffer, to
retrieve the next chunk of audio data.

Outside the code, in the inspector, URALi, which within the
environment is represented by OnAudioFilterRead, is visualised
by the default visualisation of the latter, namely a VU meter show-
ing the output level and the processing time it takes. However,
due to the library design, this number should always stay in the
green zone—provided that no additional operations are performed
in OnAudioFilterRead—as all the calculations are done in the ded-
icated thread. As the OnAudioFilterRead representing the library
is a node of the audio chain, it is possible to stack it with all the
audio effects shipped with Unity, such as echo, delay, and filters.
The possibility to seamlessly integrate URALi within the existing
audio ecosystem of Unity makes it possible to streamline its de-
velopment, avoiding the necessity of implementing, and thus du-
plicating, audio effects already available natively.

4. CONCLUSIONS

URALi is a project forked from specific technical and artistic re-
search; thus, its advancement in terms of maintenance, optimisa-
tion, and implementation of new functions relies solely on the ef-
forts and free time of the first author. This is why, although the
project started in 2017 and was initially presented in 2019 [13],
an initial version has not been released yet, and the documenta-
tion has not been compiled. At the current time, URALi provides
access to an envelope generator, granular [14], frequency modula-
tion (FM) [15], and additive synthesisers, waveshaper, LFO (low-
frequency oscillator), lookup oscillator with built-in tables and the
possibility to load new ones, panners with different pan laws, clas-
sic waveform oscillators (sawtooth, triangular, square, sinusoidal),
and white noise generator. While implementing these nodes, the
problem of aliasing [16] was faced and subsequently addressed by
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implementing the technique described by Välimäki et al. [17].
Other functionalities are already listed for implementation and

have been selected by also taking inspiration from the palette of
well-established software such as Max/MSP14. However, unlike
this language, it was chosen to not include any object dealing with
logic as, given the nature of URALi and the language in which
it is written, and based on what has been discussed previously, it
would be easier for a programmer to implement their custom con-
ditions and logic to fit their peculiar case rather than understanding
and adapting any generic object provided by the library. This is
diametrally different from what happens in Max/MSP, where the
possibility to use stock objects offering even the most basic logic
functions, controls, and tasks improves the readability of the code
and prevents the programmer from building large networks of con-
trol objects or even being forced to deal with scripting. In general,
however, the confrontation with other musicians and artists would
be beneficial for the development of URALi as it would help to
understand what is missing and what should be prioritised.

Currently, some demos of URALi, built for Windows-based
machines, are available and aim to demonstrate some key features
of the library: the procedural generation of audio, the seamless
integration within the Unity audio ecosystem and the broader en-
vironment, and the possibility to control real-time the parameters
of the synthesis algorithm. Each demo is a standalone application
and showcases one or more of these features. Specifically, each of
them employs a different audio generator unit (e.g. waveshaper,
noise, FM synthesizer) and the movement of the mouse on both X
and Y axes to control relevant parameters. Furthermore, some em-
ploy stock Unity audio effects (e.g. a low-pass filter, an echo). The
code of these demos was written by linking the library to the Unity
project as a .dll file and follows the structure mentioned earlier, as
it is composed of the implementation of the synthesis function, the
instructions to set up the audio engine, and the code to control the
particle system in the middle—which has a merely aesthetic role
although shares the data of the mouse position with the audio chain
to loosely determine the direction of the particles. The demos will
be made open source at release time as example projects; currently,
however, the executable files can be sent upon request to the first
author, and an audiovisual recording showcasing the functioning
of some of them is available as well15.
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ABSTRACT
This article presents a real-time software solution that allows mu-
sicians to visualise the timbre content of their musical tones. The
timbre representation is based on the spectral estimates of the Snail-
Analyser, for a high frequency precision, and on a harmonic-like
representation. After a brief review on the derivation of these esti-
mates, some second-stage estimates and the mapping used for the
timbre representation are described. The visual representations in
the application have been prototyped using the MAX software and
developed with the Juce framework.

1. INTRODUCTION

The Snail-Analyser is a real-time software that allows the spectral
analysis of a sound with a high frequency precision [1, 2]. It de-
livers a visual rendering on a musical scale made of a spiral (one
turn is one octave, one angle is one chroma).

The ATRIM project1 aims to design reliable tools with reac-
tive visual renderings adapted to high precision pitch and timbre
analysis of musical wind instruments. It is devoted to provide
musicians with accurate and informative feedback in real time for
tuning and timbre assessment, during performance and in several
contexts such as: expert testing and improvement of manufactured
instruments, tuning or comparison of instruments, musical prac-
tice by helping musicians adjust their motor control to reach their
own or a teacher’s target (intonation, timbre, vibrato, glissando,
playing effects, etc).

A first tuning application has been designed in the ATRIM
project to assess the frequency-deviation from the target pitch, in
Hertz [3]. Its technology involves demodulated phase signals, low-
pass filtered phase-constancy indicators, and other complementary
signals calculated in the spectral estimates of the Snail-Analyser.
The visual rendering mimics electro-mechanical strobe-tuners that
exploit a stroboscopic technology (see e.g [4, 5] for original work
and [3] and references therein for some brief descriptive histori-
cal elements and more recent non-mechanical versions). A second
version of this application has been designed to assess a more com-
fortable deviation, in cents [6]. It involves a reactive local-in-time
constancy indicator of the demodulated phase.

1ATRIM is the French acronym for "Analyseur Temps-Réel haute pré-
cision de justesse et de timbre pour Instruments Musicaux" (High precision
real-time pitch and timbre analyser for musical instruments). This project
is supported by the plan "France Relance" (see acknowledgements at the
end of the paper).
Copyright: © 2023 Thomas Hélie et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

This paper addresses the assessment of timbre. This issue has
a long history from the point of view of perception, cognition and
signal processing (see e.g. [7, 8, 9]) and learning algorithms (see
e.g. [10] and references therein for a recent work integrating re-
sults on timbre and instrumental playing techniques). A resulting
general statement is that timbre is related to spectrotemporal indi-
cators and their modulations, and that it intimately covaries with
pitch and amplitude.

The paper is organised as follows. First, Section 2 presents a
brief review on some spectral estimates used in the Snail-Analyser,
the spiral visual rendering, a tuning spinner and in a rendering with
harmonic structure that provides a starting basis to address musi-
cal timbre representation. Then, the analyser is complemented by
an indicator overbuilt on that of local-in-time constancy of the de-
modulated phase, that characterises the harmonic synchronicity, in
order to provide a set of spectrotemporal timbre indicators adapted
to quasi-harmonic signals. Second, Section 3 presents the software
prototype and the designed visual rendering based on these indica-
tors. Section 4 ends with conclusive remarks and perspectives.

2. ANALYSIS METHOD

This section first presents a brief review on the principle used in
the Snail-Analyser [1] with its spectral estimates and their use in
the spiral rendering (in Section 2.1). These estimates are used in
a harmonic view (in Section 2.2) of interest to represent timbre.
They are complemented by an overbuilt estimate, the harmonic
synchronicity (in Section 2.3), to be used in the final visualisation.

2.1. Review of the Snail-Analyser process

The analysis process of the input sampled signal is based on (see [2,
Sec. 3.1] for more details) a spectral transform (here, a short-time
Fourier transform) for successive frames, the complex values of
which are interpolated according to a vector Freq_v of tuned fre-
quencies that are exponentially spaced to correspond to equally
spaced midi codes, and spectral estimates introduced in [1], some
of them being recalled below to make this paper self-contained.
Typical parameters are: Fs = 44.1 kHz (sampling frequency),
Tframe = 50ms (duration of a classic-shape window) associated
with the next power of 2 of the corresponding number of samples
(number of FFT points), T = 5ms (incremental time step for over-
lap) andRm = 20 frequency points per half tone (midi resolution)
for Freq_v over the analysed midi range.

The downstream indicators of the Snail-Analyser are derived
from the spectrum modulus and phase. They are presented by
steps, denoted (Si) below, and defined for all frames starting at
time t∈{nT s.t. n∈N} and all frequencies f in Freq_v.
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Fourier spectrum Frequency scale Cent scale

Figure 1: Spiral renderings of the spectrum of an ideal harmonic signal (harmonics synthetised with uniformly distributed amplitudes).
From left to right: Fourier transform (50ms, Hanning), Snail-Analyser (frequency precision: 6Hz), Snail-Analyser (cent precision: 5 cents).

.

(S1) Demodulated phase (ϕd): this signal is defined by

ϕd(t, f) = ϕFourier(t, f)− 2πft, (1)

where ϕFourier(t, f) denotes the spectrum phase.

(S2) Phase constancy indicator (Cfc , set by fc): this signal is
defined as the squared modulus of the output of a low-pass filter
(e.g. of Butterworth type) with cutoff frequency fc, excited by the
input complex signal uf : t 7→ exp

(
i ϕd(t, f)

)
, namely,

uf (t) = ei ϕd(t,f)

−−−−−−−−−−−−−→ Low-Pass (fc) −→
∣∣ ·
∣∣2 Cfc(t, f)−−−−−−−→ (2)

This indicator is used as a factor multiplying the spectrum
loudness (ISO226:2003) to form the thickness represented on the
spiral representation2. Compared to the Fourier spectrum (see
Fig. 1 left), this improves the frequency accuracy by contracting
the lobes to a precision of about ±fc (fc = 6Hz in center figure
and fc(f) = 2

κ
1200 f with κ = 5 cents in the right figure). Due to

the low-pass filter, this indicator also rejects time-varying compo-
nents faster than fc, which is of interest for tuning tasks in noisy
environments.

To capture fast components (glissando, vibrato, etc) with the
same precision (±fc), a third (reactive) indicator is introduced.

(S3) Local-in-time constancy (δΦd): this signal is defined by

δΦd(t, f) =M [ϕd(t, f)− ϕd(t− T, f)], (3)

where M denotes the 2π-modulo centered on (−π, π).
This deviation indicator is local-in-time, at the scale of the in-

cremental time step T . It quantifies a deviation-speed indicator
that can be converted in Hertz (frequency deviation δF ), in cents
(cent deviation δκ) and used to contract the spectral lobes (factor
C̃fc ) according to the shape inherited from the low-pass filter cho-
sen to compute Cfc , as described below.

2The spiral skeleton (+1 round from the center is +1 octave, so that
one angle is one chroma) is defined in polar coordinates by ρ(f) =
1 + log2(f/fmin), θ(f) = θref + 2π log2(f/fref ) where fmin and
fmax are the lowest and highest frequencies to be displayed and fref is
the tuning reference displayed at angle θref .

(S4) Frequency deviation (δF ): this signal defined by

δF (t, f) = δΦd(t, f)/(2πT ), (4)

estimates a frequency deviation from f to the central frequency
F ≈ f + δF of the spectral lobe of a stationary component
(see e.g. [11] for an overview of other estimates used for spec-
trum reallocation). Its robustness (to perturbations or an unsteady
frequency component) is achieved through the averaging of the
demodulated phase evolution over the frame duration Tframe. Its
reliability is limited to the range 1

2T
(−1, 1) of unaliased frequency

deviations (100Hz for T = 5ms).

(S5) Cent deviation (δκ): this signal is defined by

δκ(t, f) = Cents
(
f + δF (t, f)

f

)
, (5a)

where Cents(f1/f2) = 1200 log2(f1/f2), (5b)

estimates the deviation of f1 from a reference frequency f2 in
cents. A good approximation of δκ is 1200

ln 2
δF
f

for |δF/f | ≪ 1.
Note that according to the definition of δF , the unaliased range in
cents depends on f and is given by ±1200 log2

(
1 + 1

2Tf

)
.

(S6) Contraction factor (factor C̃fc ): this signal defined by

C̃fc(t, f) =
∣∣∣H
(
δF (t, f)/fc

)∣∣∣
2

, (6)

restores the same shape as Cfc for a stationary sound input signal,
choosing f 7→ H(f/fc) as the transfer function of the low-pass
filter used to compute Cfc .

The indicator ϕd mapped to the angle of a spinning pattern is
the one used in the Snail-Analyser and in the strobe-tuner appli-
cation [3], and that δκ mapped to the angle velocity of the same
pattern is the one used in the cent-sensitive version [6]. The con-
traction factor C̃fc can be used in the Snail-Analyser: the combi-
nation of its high time reactivity and frequency precision makes it
particularly suitable for enhancing real-time spectrogram-like ren-
dering.
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Figure 2: Harmonic representation (fc = 6Hz): (left) ideal harmonic signal of Fig. 1; (right) inharmonic string (acoustic upright piano).

2.2. Harmonic view

A new rendering to be integrated into future Snail-Analyser distri-
butions is a harmonic view that aligns harmonic components (see
Fig. 2). Given a fundamental frequency F1 (e.g. 440Hz for note
A4), each stage n represents a spectral area of harmonics n ≥ 1
on a cent-scaled axis centered according to the abscissa

Xn
F1

(f) = Cents
(

f

nF1

)
= 1200 log2

f

nF1
. (7)

This representation is chosen as one of the bases of the timbre
representation described in Section 3.

2.3. Harmonic synchronicity

The harmonic information is complemented by new descriptors of
harmonic synchronicity in Hertz (νn) or in cents (σn), for each
harmonic n ≥ 1, as follows.

(S7) Harmonic frequency synchronicity (νn): it is defined by

νn(t, f) = δF (t, nf)− n δF (t, f). (8)

This descriptor provides a local-in-time estimation of the harmonic
synchronicity for nearly harmonic signals in the following sense.

Consider an input signal composed of nearly harmonic par-
tials of frequencies Fn = n(1 + ϵn)F1 (with ϵ1 = 0), where ϵn
encodes the relative deviation of Fn compared to the expected har-
monic frequency nF1. Then, consider an analysis frequency f and
assume that nf is within the frequency range of the spectrum lobe
of the partial of frequency Fn. In this case, δF (t, nf) ≈ Fn−nf
estimates the frequency deviation between the ground-truth fre-
quency Fn and the analysis frequency nf , and νn(t, f) ≈ n(1 +
ϵn)F1−nF1 = nϵnF1 estimates the deviation from the harmonic
frequencies, independently from the analysis frequency f .

A conversion of νn into cents (relative to nf ) is below.

(S8) Cent harmonic synchronicity (σn): it is defined by

σn(t, f) = Cents
(
nf+ νn(t, f)

nf

)

= 1200 log2

(
1 +

νn(t, f)

nf

)
, (9)

a good approximation of which is given for small frequency devi-
ations by σn(t, f) ≈ 1200

ln 2
νn(t,f)

nf
.

Note that a version into cents, relative to an estimate of the
target harmonic frequency nF1≈n

(
f + δF (t, f)

)
, is σ̃n(t, f) =

1200 log2

(
1+ νn(t,f)

n
(
f+δF (t,f)

)
)
≈ 1200

ln 2
νn(t,f)

n
(
f+δF (t,f)

) .

3. VISUAL RENDERING AND SOFTWARE

3.1. Description of the visualisation

The software is a first prototype integrating a tuning spinner [6]
and a harmonic representation inspired from Fig. 2 complemented
by spinners cent-sensitive to the harmonic synchronicity (σn). The
visual rendering is organised in two main parts (see Fig. 3).

The left part displays a vertical representation of the harmon-
ics, with the fundamental (of target pitch F1) at the bottom of the
representation and higher harmonics superimposed in tiers above.
Note that this vertical harmonic representation is not the spectrum
unrolled on the frequency Y-axis but a superposition of visual win-
dows, centered around these harmonics, extracted from the Snail
analysis kernel. Each visual window covers a range of ±1 semi-
tones around the target harmonic frequency (nF1), the target being
represented by a pink line in the middle of the window.

The right part of each window displays a rotating spinning
hexagon, that conveys pitch and harmonic synchronicity informa-
tion. In the lowest one (pitch window), the rotation speed indicates
the pitch deviation from the target F1. Its color linearly varies from
red (50 cents or more deviation) to green (0 cent). In the staged
upper windows (harmonics n ≥ 2), the rotation of the hexagons
(of fixed blue color for now) indicates the harmonic synchronicity
estimate, with an angular speed proportional to νn(t, nF1).

The Figure 3 shows a sawtooth wave playing a E3 (normally
164.81Hz) slightly detuned to +20 cents (=166.73Hz). Each F0
spinner on the right has a yellow color due to the +20 cts deviation
from the target frequency (E3=164.81Hz).

Consistently, the center of the lobes deviates above the refer-
ence pink line due to the slight detuning effect. The figure on the
right shows the result using the cents scale processing of the con-
traction factor C̃fc (fc is set to 5 cents as in Fig. 1-right). This
method significantly enhances accuracy and ensures equal sizing
of the lobes on a cents scale. This is in contrast to the center fig-
ure, which represents the same signal but with fc = 6,Hz (as in
Fig. 1-center) and displays unequal lobe sizes.

To compare the precision stemming from the Snail analysis
to the Fourier approach, Figure 3-left shows the loudness of the
Fourier spectrum of the same signal.
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Fourier Frequency scale Cent scale

Figure 3: Harmonicity renderings of a sawtooth wave with a fundamental frequency at 166.73Hz (E3 +20 cents), 8 visible harmonics.
From left to right: Fourier (50ms, Hanning), Snail-Analyser (frequency precision: 6 Hz), Snail-Analyser (cent precision: 5 cents).

3.2. Rapid prototyping with MAX

The prototype Software and the visualisation have been developed
using the Max environment [12], a visual programming paradigm
for interactive multimedia applications. A Max external object
(MXO), loaded as a dynamic library in the environment at startup,
encapsulates the Snail kernel library and computes for the signal
processing chain. The real-time visualisation is then built using
the Javascript for User Interface (or JSUI [13]) in Max, which has
internal bindings to the Max graphics engine. Each analysis sig-
nal from the Max object is passed on to the JSUI object to build
the rendering. This first approach proves reliable enough for the
design of proof of concept real-time renderings, running approx-
imately at 25 frames per second and requiring fast development
iterations [6]. Thus, other views for future developments are yet
to be tested. Once the user interface prototypes reach a final state,
a desktop version of the prototype should also be converted to the
JUCE environment [14].

4. CONCLUSION AND PERSPECTIVES

The Snail analysis process appears relevant to design applications
specifically aimed at real-time representations of the timbre of
nearly harmonic sounds. The proposed visual rendering incorpo-
rates reactive descriptors pertaining to the amplitude of spectral
components, tuning, and harmonic synchronicity. These descrip-
tors ensure accurate frequency representation, making this proto-
type a reliable initial development. Further work will focus on ex-
ploring this tool and refining visualisations in collaboration with
expert musicians, integrating new descriptors to enhance both in-
formation and legibility, and designing a desktop application.
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ABSTRACT

The hand harmonium is arguably the most popular instrument for
vocal accompaniment in Hindustani music today. However, it lacks
microtonality and the ability to produce controlled pitch glides,
which are both important in Hindustani music. A harmonium
sound synthesis model with a source-filter structure was previously
presented by the authors in which the harmonium reed sound is
synthesized using a physical model and the effect of the wooden
enclosure is applied by a filter estimated from a recorded note.
In this paper, we propose a simplified and perceptually informed
signal model capable of real time synthesis with timbre control. In
the signal model, the source is constructed as a band-limited wave-
form matching the spectral characteristics of the source signal in
the physical model. Simplifications are suggested to parametrize
the filter on the basis of prominent peaks in the filter frequency re-
sponse. The signal model is implemented as a Pure Data [1] patch
for live performance using a standard MIDI keyboard.

1. INTRODUCTION

While Asian free reed instruments such as the sheng, the sho and
the khaen have existed for over 2000 years, the development of
Western musical instruments using free reeds (e.g. harmonium,
accordion, harmonica, etc.) did not occur until the end of 19th cen-
tury. The harmonium, also known as the reed organ or pump or-
gan, reached the peak of its popularity in the Western world during
the latter half of the 20th century. Dwarkanath Ghose is generally
credited to have modified the European harmonium to invent the
Indian hand-bellowed harmonium (Fig. 1 ) in 1884 [2]. Although
the use of the harmonium in Western music declined, the hand har-
monium grew in popularity to become the instrument of choice for
vocal accompaniment in North Indian (Hindustani) classical music
today.

However, the use of the harmonium in Indian music has at-
tracted a lot of criticism from musicologists [3]. Due to its stan-
dard keyboard design, only a discrete set of twelve notes per oc-
tave, typically spaced at intervals of one semitone can be played
on a harmonium. This is inconsistent with the non-equal temper-
ament system in Hindustani music that uses 22 notes (referred to
as shrutis) in one octave. Additionally, the harmonium cannot pro-
duce continuous pitch glides from one note to another as would
be possible in a string instrument like a violin. Such a lack of
capability makes the harmonium unsuitable for producing essen-
tial ornaments in Hindustani music such as meend, andolan, and

Copyright: © 2023 Ninad Puranik et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

for non-commercial purposes provided the original author and source are credited.

Figure 1: An Indian hand harmonium (top view).

gamaka, which are elements similar to glissando, portamento, and
vibrato in Western music.

To address these limitations in a real harmonium, the authors
recently proposed a physics-based synthesis system for harmo-
nium sounds [4]. The proposed system used a source-filter struc-
ture in which a 1D physics-based model of a free reed interacting
with the air flow acted as the source and the effect of the wooden
enclosure of the instrument was approximated by an all-pole fil-
ter whose coefficients were estimated from a recorded harmonium
sound.

While the proposed system produced convincing results, we
observed some limitations that hindered its use for real-time syn-
thesis in a live-performance context. Consequently, a simplified
signal model that perceptually replicated the physics-based syn-
thesis model was developed.

Section 2 provides a short literature review on free reeds while
in section 3, we describe in brief the physics-based system for har-
monium sound synthesis from our previous work. Section 4 de-
fines the main requirements for an equivalent signal model and
describes our implementation of the signal model in Pure Data.

2. RELATED WORK

A comprehensive review of prominent acoustic studies on free reed
instruments has been provided by Cottingham [5]. Early acous-
tic studies on free reeds have focused on understanding how self-
sustained oscillations are produced in a free reed. A series of ex-
perimental and theoretical studies by St. Hilaire [6, 7, 8] suggests
that the inertial effect of the upstream air flow is responsible in
setting up self-oscillations in free reeds. Experimental studies by
Tarnopolsky [9, 10] and Ricot [11] agree with this theory. Millot
and Baumann [12] have described a minimal 1D model and a nu-
merical solution scheme to simulate the sound from any free reed
instrument. In previous work [4], we have proposed adaptations
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to the Millot-Baumann model to suitably match the physical setup
and sound timbre of a Indian hand-harmonium.

3. SOURCE-FILTER BASED PHYSICAL MODEL OF A
HAND-HARMONIUM

In the source-filter model used for the synthesis of voiced vowel
sounds, a periodic glottal excitation signal determines the funda-
mental pitch (f0-frequency) while a linear filter representing the
vocal tract imparts the timbral characteristics to the sound [13].
The source-filter model can be used effectively in situations where
there is only a weak coupling between the source excitation and
the resonator [14]. This is the case for the harmonium sound pro-
duction. Since the metallic harmonium reeds are lightly damped,
their frequency response is concentrated in a narrow band around
their resonance frequencies. The effect of the wooden enclosure is
hence analogous to the vocal tract. The use of a source-filter model
to synthesize harmonium sounds is thus justified. The source and
filter models that we used are described in the following subsec-
tions.

3.1. Physical model of the harmonium free reed

Figure 2: Configuration of the Physical model.

Figure 2 shows a schematic representation of the configuration
of the physical model used to simulate the harmonium free-reed.
The model assumes the region upstream of the reed (i.e. the reed
chamber) to be a large volume V1 where the pressure p1 is uni-
form. The volume V2, with cross-sectional area S2 and length
L2, models the region near the reed where the air flows across the
reed through a narrow jet. The reed itself was modeled as a sinu-
soidally oscillating lumped mass-spring-damper whose behavior is
predominantly governed by the eigenfrequency (ω0) and the qual-
ity factor (Q) parameters. The region downstream from the reed is
exposed to atmospheric pressure. In the original Millot-Baumann
model, the system was excited by the volume flow u0 entering
the volume V1. In our adaptation, however, we added the chamber
with pressure p0 to represent the bellows pressure which indirectly
controls the excitation signal u0. With this change, we observed a
better agreement between experimentally measured reed-chamber
pressures and the corresponding p1 values in the synthesis. It also
allowed for the use of bellows pressure as a parameter to con-
trol the sound produced, like in a real harmonium. The governing
equations for the system and the details of the numerical solution

scheme are presented in [12, 4]. It should be noted that the bellows
pressure p0 and the reed eigenfrequency ω0 are the only control
parameters that vary while playing the harmonium. The note onset
time and the stability of the numerical scheme was observed to be
dependent on the other non-playing parameters.

3.2. Estimation of the wooden enclosure filter

The Iterative Adaptive Inverse Filtering (IAIF) algorithm devel-
oped by P. Alku [15] and implemented in the COVAREP Toolbox
[16] can used to estimate the ‘glottal flow’ and the ‘vocal tract’
filter for a speech sound. For a harmonium sound, we expected the
algorithm to estimate the analogous ‘reed airflow’ and ‘wooden
enclosure’ filter respectively.

(a) Estimated reed airflow.

(b) Simulated reed airflow.

Figure 3: A comparison of estimated vs simulated reed airflow.

A comparison of the reed airflow estimated by the IAIF algo-
rithm for a recorded harmonium note with the reed airflow sim-
ulated by the physical model is shown in Figs. 3a and 3b, re-
spectively. The two signals display similar features. In particular,
they show a discontinuity within each period that is assumed to
occur when the reed passes from one side of its support plate to
the other. The amplitude of the airflow signal estimated for the
recorded sound is varying considerably, which is expected since
the bellows pressure cannot be maintained perfectly constant in a
real harmonium. Given the similarity, we proposed that the ‘vocal
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tract’ filter estimated by the IAIF can be a good estimate of the
‘wooden enclosure’ filter.

4. SIGNAL MODEL AND IMPLEMENTATION IN PURE
DATA

4.1. Source approximation

As mentioned in the previous section, the numerical stability for
the physical model was dependent on the non-playing parameters,
such as reed-chamber volume, reed clearance, etc. Hence, in or-
der to change the playing frequency for a note, these parameters
had to be changed in addition to the reed eigenfrequency (ω0) and
they had to be determined by manual trial-and-error, which is not
possible in a live-performance context. Moreover, it was observed
that the filter has a much stronger influence on the synthesized
sound timbre than the source. Hence, a simplified signal model
capable of approximately generating the reed source signal at the
different playing frequencies would produce perceptually similar
results while eliminating the problems of numerical stability and
computation cost involved in the physical model.
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Figure 4: Normalized LTAS for the reed source signal simulated
using physics model.

The normalized Long Term Average Spectrum (LTAS) for an
‘F4’ note (349 Hz) simulated by the physical model can be seen
in Fig. 4. A band-limited signal with harmonic weights equal
to the peak heights in the normalized LTAS was used to model
the reed source signal. In our Pure Data implementation (Fig. 6),
this was achieved by using a ‘sinesum’ message with the harmonic
weights of the first 37 peaks in the normalized LTAS to populate
a wavetable. Notes with different frequencies were synthesized by
reading the wavetable at the particular frequencies.

4.2. Filter approximation

The all-pole filter estimated by the IAIF algorithm had 49 coeffi-
cients. However, the magnitude filter response for different har-
moniums tested was observed to have 8-9 peaks. Hence, a close
approximation of the IAIF estimated filter using a series of 10 sec-
ond order sections (i.e. 10 biquad elements in a cascade in the
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Figure 5: Frequency response of estimated and approximated
wooden enclosure filters for a concert quality harmonium.

Pure Data implementation) was deemed feasible. In MATLAB,
the ‘stmcb’ algorithm [17] was used to estimate an approximate
filter with 10 poles and 10 zeros and the ‘tf2sos’ function was
then used to determine the second order filter coefficients. Also,
a smooth frequency response curve passing through all the peaks
and valleys was obtained using the ‘pchip’ algorithm [18] and the
‘yulewalk’ algorithm [19] was used to construct a filter with that
frequency response. Although there was a larger error in the sec-
ond approach for the filter approximation, the error was observed
to be perceptually insignificant in the synthesis while allowing for
the parametrization of the filter on the basis of just 9 peak and 9
valley points. Such a parametrization would be helpful to construct
arbitrary frequency responses that can be used to synthesize har-
monium sounds with a variety of timbres. The IAIF filter response
and its approximations using the two methods described can be
seen in Fig. 5.

4.3. Effect of bellows pressure

The primary role of the bellows pressure is to modulate the ampli-
tude of the sound. Additionally, in the physical model as well as
in the case of recorded harmonium sounds, it is observed that the
note fundamental frequency (f0) slightly varies when the bellows
pressure is changed. Although the variation is very small (typi-
cally less than 1-2 Hz), it is still perceptible and is used by har-
monium players to create a perceptual effect of continuous pitch
glides through specific bellowing techniques. The most prominent
effect of this behaviour is the slight increase in playing frequency
as the air leaks out of the harmonium, thus reducing the bellows
pressure. In the Pure Data implementation, the bellows pressure is
used to control the amplitude envelope of the sound. In addition,
it is added to the ‘f0’ frequency to change the rate at which the
wavetable is read to mimic the frequency variation described.

5. CONCLUSIONS

The paper describes a signal model for synthesizing Indian hand
harmonium sounds. The signal model uses a source-filter struc-
ture similar to a previously developed physical model. The source
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Figure 6: Pure Data patch to implement the signal model.

is constructed as a band-limited waveform that has similar spec-
tral characteristics as the physical model. Simplifications are sug-
gested to parametrize the filter on the basis of the prominent peaks
in the filter frequency response. Different timbres of the harmo-
nium can be realized by hand-crafting or estimating the filter pa-
rameters. The simplified model implemented in Pure Data presents
the possibility of real-time synthesis and live performance using
the virtual instrument.
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ABSTRACT

In this paper, we introduce means of improving fidelity and con-
trollability of the RAVE generative audio model by factorizing
pitch and other features. We accomplish this primarily by creating
a multi-band excitation signal capturing pitch and/or loudness in-
formation, and by using it to FiLM-condition the RAVE generator.
To further improve fidelity when applied to a singing voice appli-
cation explored here, we also consider concatenating a supervised
phonetic encoding to its latent representation. An ablation analysis
highlights the improved performance of our incremental improve-
ments relative to the baseline RAVE model. As our primary en-
hancement involves adding a stable pitch conditioning mechanism
into the RAVE model, we simply call our method P-RAVE.

1. INTRODUCTION

Deep generative audio models aim to reconstruct and/or synthesize
novel audio by learning its underlying data distribution. Since the
inception of WaveNet [1], models have made considerable gains
to improve fidelity, and achieve state-of-the-art realism in many
domains. However, they are still largely considered too complex
for widespread use, and offer limited controllability to end users.

Recently, the RAVE approach was introduced [2]. This vari-
ational autoencoder (VAE) has garnered excitement in the audio
community due to its expressive synthesis, stable training pro-
cedure, favorable performance, and tractability for streaming ap-
plications running on edge devices [3], while modeling audio at
sampling rates suitable for music production (i.e. ≥ 44.1 kHz).
Despite this breakthrough, its baseline formulation can be prone
to pitch glitches, especially when applied to out-of-domain input
samples. Its latent representation may also still conflate timbral,
pitch, and other factors without additional mechanisms to steer
their disentanglement, limiting controllability.

Meanwhile, modern voice AI techniques have become emer-
gent in research and pop culture [4]. Singing voice conversion
(SVC) is one such application, whose goal is to transform sung
material to match the timbre of some target singer while main-
taining the source performance. SVC methods such as FastSVC
[5] and [6] condition waveform generation on a harmonic excita-
tion signal to counteract the fact that most neural generators lack
sufficient pitch stability otherwise [7]. SawSing [8] considered a
sawtooth excitation, and in our own work [9], we considered a hy-
brid end-to-end approach, where a differentiable WORLD synthe-
sizer creates an initial synthesized output from inferred features,
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Figure 1: RAVE model and proposed enhancements in P-RAVE.

which is then further refined via a black-box postnet. Few SVC
approaches are amenable to real-time streaming applications [10],
so naturally, it is of interest to explore how the RAVE model can
be refined for this use case.

In this work, we offer improvements to the RAVE model. We
apply insights from the SVC community to improve tonal signal
reconstruction and/or generation in RAVE in a multi-band gener-
ator context [11], effectively conditioning its generator on exci-
tation signals capturing pitch and/or loudness information. Ac-
cordingly, we call our method P-RAVE. Approaches are exem-
plified for an SVC application, and within this context, we also
consider whether the model can benefit from supervised encod-
ings of linguistic content. A byproduct of this work is an efficient
phoneme recognizer that learns a feature representation from the
time-domain waveform. Our goals are two-fold: we would like
to improve the outputs of RAVE while maintaining its advantages,
and to disentangle features such as pitch from its latent representa-
tion so that they are not conflated in the latent space and/or so that
they can be controlled explicitly. In doing so, we are inherently
investigating whether and/or how RAVE can be adapted for SVC.
We illustrate the benefits of our enhancements relative to a stan-
dard RAVE baseline. We organize our paper as follows: Section
2 describes our proposed method, Section 3 reports experimental
results, and Section 4 draws conclusions.

2. PROPOSED METHOD

The RAVE model, as well as our proposed additions in P-RAVE,
are illustrated in Figure 1. Generally, an input signal x is mapped
to a latent encoding z. The decoder aims to invert z, yielding the
reconstructed waveform x̂. The architecture utilizes a 16-band
Pseudo Quadrature Mirror Filterbank (PQMF) [11], which aids
model efficiency by allowing the core architecture to operate in-
ternally at a fraction (i.e. 1/16th) of the audio system sampling
rate fs. As in [2], we consider fs = 48 kHz in this work. Signal re-
construction involves generation of an audio waveform from a suit-
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able encoding z, along with specifications of any available control
signals. Novel signal generation would additionally involve pre-
diction of a relevant latent trajectory (via a second "prior" model).
Our focus leans to the former task without restricting the latter.

P-RAVE improves upon RAVE by 1) FiLM conditioning [12]
the RAVE generator with a multi-band harmonic excitation signal,
2) incorporating loudness information into said excitation, and 3)
appending a supervised phonetic encoding alongside the learned
latent representation, considering our particular interest in singing
voice applications. We outline the motivation and implementation
of each enhancement.

2.1. Harmonic excitation and FiLM conditioning

In order to provide stability and controllability of pitch, we lever-
age pitch-driven excitations as conditioning signals and adapt them
to the multi-band RAVE generator. Combining the excitation gen-
eration approaches in [6, 8, 13], we generate the excitation e as

e[n] =

{
η[n] if f0[n] = 0∑K

k=1
1
k
sin(ϕk[n]) otherwise

(1)

K = ⌊ fs
2f0[n]

⌋ (2)

ϕk[n] = ϕk[n− 1] + 2πk
f0[n]

fs
(3)

where η ∼ N (0, 1) and f0 is a fundamental frequency contour
that can be user-specified or estimated directly from an input sig-
nal x. For the latter case, pitch is detected at a specified interval
(we arbitrarily use a stride of 128 samples in this work), and up-
sampled to audio rate using a basic zeroth order interpolation in
order to match the input audio waveform dimension. To this end,
we leverage the torchyin library, which among other conve-
niences, ensures that the entire pipeline is constructed in PyTorch
and can leverage the GPU more effectively during training.

We proceed by creating the multi-band excitation representa-
tion ePQMF = PQMF (e). Naturally, these sub-bands still oper-
ate at a faster sampling rate than the encoding z (in fact, it would
match that of the hypothetical multi-band output signal estimate
x̂PQMF ). Accordingly, we apply FiLM conditioning to layers
of the multi-band generator (decoder), as illustrated in Figure 2.
We apply successive downsampling layers to ePQMF according
to the upsampling factors of each generator layer to ensure that
they operate at the same rate. While downsampling could have
been accomplished without trainable parameters, we opt to use
strided convolutional layers instead, maintaining a constant 16-
channel count for each downsampling stage. The outputs of each
downsampling stage are subjected to respective 1x1 convolutional
layers whose channels equal twice that of the corresponding gener-
ator upsampling layer which they are paired with. Output channels
are split in half to form the scale and offset terms for FiLM condi-
tioning. For an arbitrary scale γ, offset β, and upsampling layer y,
the FiLM-conditioned output is given by

yFiLM = γ ⊙ y + β (4)

When scales and offsets are equal to unity and zero, respec-
tively, FiLM conditioning sites act as pass-throughs. Unlike DDSP
[14], note that we are not imposing for the model output to be
strictly monophonic per se. The model is still fully capable of gen-
erating polyphonic audio, and therefore, we entirely maintain the

↑4 ↑4 ↑4

↓4 ↓4 ↓2 ↓1

1x11x11x11x1

↑2 xPQMF^z

ePQMF

Figure 2: Proposed multi-band FiLM conditioning applied in the
P-RAVE generator. Solid black dots represent conditioning sites.

generality of the RAVE system. We are simply adding a condition-
ing signal to steer generator upsampling layers, and if the model
did not find useful information contained within it, could choose to
ignore it. Nonetheless, when applied to intrinsically monophonic
applications (e.g. solo voice), we expect that the model would
learn to interpret it as an excitation signal (so we continue to refer
to it as such), and to non-linearly filter it as a neural source-filter
[13].

2.2. Injection of loudness information into the conditioning

We can also incorporate loudness information into our pitched ex-
citation signal. This is to say that its signal strength can be set
to a user-specified value (a constant loudness, amplitude envelope,
and/or mapping to MIDI velocity, as in [15]), or to match that of
x. In the case of the latter, much like the f0 computation in Sec-
tion 2.1, we achieve this by measuring the frame-level root-mean-
square (RMS) of x at some notional stride and upsampling it to
full resolution, yielding the desired loudness trace L0. If we sim-
ilarly extract the RMS of e, yielding Le, we can embed loudness
information into a loudness-adjusted conditioning signal eL via

eL[n] =

(
L0[n] + ϵ

Le[n] + ϵ

)
e[n] (5)

where ϵ = 10−5 is used for numerical stability. Accordingly, the
multi-band excitation signal is then ePQMF = PQMF (eL).

2.3. Supervised phonetic encoding

When trained for a voice application, the encoder is tasked with
capturing not only pitch, loudness, and tone in a global sense, but
also timbral changes which vary as a function of the phonetic unit
being uttered. As this may prove challenging to accomplish suf-
ficiently in a purely unsupervised manner, the final enhancement
considered here concatenates the learned latent representation with
a phonetic posteriorgram (PPG) capturing linguistic content.

We train a phonetic encoder on the TIMIT dataset [16] in a
supervised manner. One subtlety here is that this dataset is na-
tively sampled at 16 kHz, containing 8 kHz of bandwidth. There-
fore, we upsample the data to audio rate (48 kHz in this case), and
only consider the lower 5 PQMF sub-bands as input to the pho-
netic encoder, ideally covering 7.5 kHz with sufficient roll-off by
8 kHz. We use the condensed 40-class phonetic dictionary for the
TIMIT dataset (39 phonemes and a silence class) [17], and train
the phonetic encoder for 250K training steps before freezing it for
the remainder of system training. Maintaining a total encoding
size of 128, this leaves 88 latent dimensions to be learned in an
unsupervised manner. Input and output sizes aside, the phonetic
encoder EP architecture is identical to that of the unsupervised
encoderE. We reduce the number of channels in the two encoders
by 50%, such that the number of parameters of their composite is
effectively the same as in the encoder of the baseline RAVE model.
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3. EXPERIMENTAL RESULTS

For subjective listening, we refer readers to our demo website at
https://sites.google.com/izotope.com/prave-demo.

Generally, we observe that the VAE framework offers a suffi-
cient information bottleneck in its latent space [18] for providing
the speaker disentanglement needed for SVC. Accordingly, in or-
der to illustrate the effectiveness of our proposed methods, we train
models and analyze their robustness in this context. Models were
trained on approximately two hours of internal singing voice data
of a single target singer. Four different conversion models were
considered: a baseline RAVE system, and three P-RAVE systems
where we incrementally add our proposed enhancements, as per
their enumeration in Section 2. We follow the training strategy
outlined in [2], using a batch size of 8, Adam optimizer and its
adversarial objective function. In the initial "warm-up" training
phase, the encoder and decoder models are optimized jointly for
1M training steps, with the adversarial loss terms omitted. The
(latent) encoder is then frozen and the decoder undergoes an ad-
ditional 2M training steps which attempts to minimize the full ob-
jective.

We summarize our quantitative ablation analysis in Table 1,
reporting the multi-spectrogram loss (MSL), the number of com-
ponents needed to summarize 99% of the latent manifold (M99)
[2]. We see that our P-RAVE variants considerably improve re-
construction performance relative to the RAVE baseline, as mea-
sured by the MSL. Explicit incorporation of loudness informa-
tion in P-RAVE (1+2) improves upon P-RAVE (1). Meanwhile,
P-RAVE (1+2+3) technically sees slightly degraded quantitative
performance on the self-reconstruction task relative to P-RAVE
(1+2). We attribute this to the fact that the learned latent repre-
sentation is catered to the target singer (in-domain distribution),
while the PPG is a vocalist-independent representation to be lever-
aged by any source singer (out-of-domain distribution). Therefore,
its inclusion still has favorable implications for our ultimate goal
of the conversion task. P-RAVE (1) and P-RAVE (1+2) create sig-
nificantly more compact latent feature representations relative to
the baseline RAVE model, as the pitched and/or leveled excitation
reduces the burden on the unsupervised encoder to fully model
the feature space. The feature space is effectively reduced by one
component between P-RAVE (1) and P-RAVE (1+2), hinting that
conceivably, there may have indeed been a single latent dimension
capturing loudness variations in the data. Interestingly, addition of
the PPG in P-RAVE (1+2+3) considerably increasesM99. Though
seemingly unintuitive, we explain this by noting that the informa-
tion contained within PPGs arguably reflects the majority of the
voice modeling task beyond pitch and loudness. Therefore, by
now offloading the unsupervised encoder of its primary modeling
"duties", P-RAVE (1+2+3) reduces the posterior collapse effect
overall, allowing its unsupervised encoder to concentrate its de-
grees of freedom to modeling a smaller subspace of the variability

in the data in a way that better matches the prior. This can be con-
firmed by observing that the Kullback-Liebler divergence against
the prior for RAVE and P-RAVE (1+2+3) are 12.01 and 1.749,
respectively.

Next, we analyze the preservation and controllability of condi-
tioning features across different models for both self-reconstruction
(in-domain source vocalist) and conversion (out-of-domain source
vocalist), as listed in Table 2. Specifically, we compare condition-
ing features extracted from source and synthesized performances,
measuring their average absolute deviation in fundamental fre-
quency (∆F in Hz) and loudness (∆L in dB), and average categor-
ical cross-entropy between source and synthesized PPGs (∆CE in
nats). In the in-domain case, we see that the baseline RAVE model
performs decently, though features are better preserved in P-RAVE
variants, where P-RAVE (1+2+3) appears to provide the best bal-
ance across all features. Within the conversion context, we further
discern between whether or not we apply a pitch shift to f0 so
that the converted result is reflective of the register of the vocalist,
and report results for both cases. Here, the baseline RAVE model
struggles considerably, as it cannot maintain consistent pitch when
the source register does not match the target data, and moreover,
does not possess an explicit mechanism for applying a pitch shift if
it were needed to accomplish a convincing conversion. Again, we
see that P-RAVE (1+2+3) is better suited for the application, with
outputs roughly achieving their target values across all features.

4. CONCLUSIONS

In this paper, we suggested additions to the RAVE model which
improved fidelity and controllability of the generative audio model,
and applied it to a singing voice application. In future work, we
would like to add further refinements in order to improve fidelity.
For example, we may consider a loss term that encourages the
model to produce Mel spectrogram-like representations at an in-
termediate generator layer, or integrate aspects of the very recent
developments in [19]. We are also interested to get a better sense
of the prominent factors the latent space has learned when it is re-
lieved of modeling pitch, loudness, and phonetic content, and to
envision what other forms of transformative audio processing this
may be able to unlock. Lastly, we would like to investigate fur-
ther application of our enhancements in the context of novel tonal
content creation.

Table 1: Quantitative ablation analysis comparing RAVE to our
various enhancements in P-RAVE.

Experiment MSL M99%

RAVE 8.568 9
P-RAVE (1) 7.267 4
P-RAVE (1+2) 7.175 3
P-RAVE (1+2+3) 7.227 14

Table 2: Comparison of conditioning features between source and synthesized performances.

Reconstruction Conversion (without/with pitch shift)
Experiment ∆F (Hz) ∆L (dB) ∆CE (nats) ∆F (Hz) ∆L (dB) ∆CE (nats)
RAVE 3.351 3.667 0.0564 61.43 / 103.92 4.918 / 4.923 0.0769 / 0.768
P-RAVE (1) 0.443 2.362 0.0556 0.682 / 1.321 4.560 / 2.786 0.0731 / 0.071
P-RAVE (1+2) 0.596 1.764 0.0562 0.237 / 0.791 1.922 / 1.958 0.0706 / 0.0716
P-RAVE (1+2+3) 0.628 1.993 0.0515 0.277 / 0.823 3.3922 / 2.0625 0.0696 / 0.0676
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